Abstract

Long-period fiber gratings were inscribed in a commercial silica fiber by a point-by-point arc discharge technique with different discharge conditions. The refractive index (RI) profile change induced by arc discharge was measured using the quantitative phase microscopy for the first time to our knowledge. The causes of the transmission variations induced by different arc discharges and the mechanisms of the RI profile change were investigated based on the measured phase profiles. The RI in the core and the cladding has clearly changed due to arc discharge. The central dip in the core profile diminished very much, and the index gradient became gradual. The resonance wavelengths have fluctuated by discharge current and time owing to variations of the reduction of the core–cladding RI difference and the extent of the RI change region.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Kaminow and T. Li, eds., Optical Fiber Telecommunications IV-A: Components (Academic, 2002), Chap. 10.
  2. J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008).
    [CrossRef]
  3. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).
  4. G. Humbert and A. Malki, “Electric-arc-induced gratings in non-hydrogenated fibres: fabrication and high-temperature characterizations,” J. Opt. A 4, 194–198 (2002).
    [CrossRef]
  5. K. Morishita, S. F. Yuan, Y. Miyake, and T. Fujihara, “Refractive index variations and long-period fiber gratings made by the glass structure change,” IEICE Trans. Electron. E86-C, 1749–1758 (2003).
  6. G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres,” Electron. Lett. 39, 349–350 (2003).
    [CrossRef]
  7. K. Morishita and Y. Miyake, “Fabrication and resonance wavelengths of long-period gratings written in a pure-silica photonic crystal fiber by the glass structure change,” J. Lightwave Technol. 22, 625–630 (2004).
    [CrossRef]
  8. K. Morishita and A. Kaino, “Adjusting resonance wavelengths of long-period fiber gratings by the glass-structure change,” Appl. Opt. 44, 5018–5023 (2005).
    [CrossRef]
  9. F. Abrishamian and K. Morishita, “Broadening adjustable range on post-fabrication resonance wavelength trimming of long-period fiber gratings and the mechanisms of resonance wavelength shifts,” IEICE Trans. Electron. E94-C, 641–647 (2011).
    [CrossRef]
  10. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
    [CrossRef]
  11. A. Malki, G. Humbert, Y. Ouerdane, A. Boukhenter, and A. Boudrioua, “Investigation of the writing mechanism of electric-arc-induced long-period fiber gratings,” Appl. Opt. 42, 3776–3779 (2003).
    [CrossRef]
  12. A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett. 27, 2061–2063 (2002).
    [CrossRef]
  13. N. M. Dragomir, G. W. Baxter, and A. Roberts, “Phase-sensitive imaging techniques applied to optical fibre characterisation,” IEE Proc. Optoelectron. 153, 217–221 (2006).
    [CrossRef]
  14. N. M. Dragomir, E. Ampen-Lassen, G. W. Baxter, P. Pace, S. T. Huntington, P. M. Farrell, A. J. Stevenson, and A. Roberts, “Analysis of changes in optical fibers during arc-fusion splicing by use of quantitative phase imaging,” Microsc. Res. Tech. 69, 847–851 (2006).
    [CrossRef]
  15. I. Hatakeyama and H. Tsuchiya, “Fusion splices for single-mode optical fibers,” IEEE J. Quantum Electron. 14, 614–619 (1978).
    [CrossRef]
  16. G. Rego, L. M. N. B. F. Santos, B. Schröder, P. V. S. Marques, J. L. Santos, and H. M. Salgado, “In situ temperature measurement of an optical fiber submitted to electric arc discharges,” IEEE Photon. Technol. Lett. 16, 2111–2113 (2004).
    [CrossRef]
  17. F. Abrishamian and K. Morishita, “Transfer-matrix method based on a discrete coupling model for analyzing uniform and nonuniform codirectional fiber grating couplers,” Appl. Opt. 51, 2367–2372 (2012).
    [CrossRef]
  18. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
    [CrossRef]
  19. F. Dürr, G. Rego, P. V. S. Marques, S. L. Semjonov, E. M. Dianov, H. G. Limberger, and R. P. Salathé, “Tomographic stress profiling of arc-induced long-period fiber gratings,” J. Lightwave Technol. 23, 3947–3953 (2005).
    [CrossRef]
  20. G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, “High-temperature stability of long-period fiber gratings produced using an electric arc,” J. Lightwave Technol. 19, 1574–1579 (2001).
    [CrossRef]
  21. Y. Liu, H. W. Lee, K. S. Chiang, T. Zhu, and Y. J. Rao, “Glass structure changes in CO2-laser writing of long-period fiber gratings in boron-doped single-mode fibers,” J. Lightwave Technol. 27, 857–863 (2009).
    [CrossRef]
  22. E. M. Dianov, V. I. Karpov, M. V. Grekov, K. M. Golant, S. A. Vasiliev, O. I. Medvedkov, and R. R. Khrapko, “Thermo-induced long-period fibre gratings,” in Proceedings of the International Conference on Integrated Optics and Optical Fibre Communications and European Conference on Optical Communications (IEEE, 1997), Vol. 2, pp. 53–56.
  23. H. G. Limberger and G. Violakis, “Formation of Bragg gratings in pristine SMF-28e fibre using CW 244 nm Ar+-laser,” Electron. Lett. 46, 363–365 (2010).
    [CrossRef]
  24. B. H. Kim, Y. Park, T.-J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W.-T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt. Lett. 26, 1657–1659 (2001).
    [CrossRef]
  25. T. S. Izumitani, Optical Glass (American Institute of Physics, 1986), Chaps. 1 and 3.
  26. A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 300–311 (2004).
    [CrossRef]
  27. R. Brückner, “Properties and structure of vitreous silica. I,” J. Non-Cryst. Solids 5, 123–175 (1970).
    [CrossRef]
  28. S. Sakaguchi and S. Todoroki, “Rayleigh scattering of silica glass and silica fibers with heat treatment,” Jpn. J. Appl. Phys. 37, Suppl. 37-1, 56–58 (1998).
    [CrossRef]
  29. D.-L. Kim, M. Tomozawa, S. Dubois, and G. Orcel, “Fictive temperature measurement of single-mode optical-fiber core and cladding,” J. Lightwave Technol. 19, 1155–1158 (2001).
    [CrossRef]

2012

2011

F. Abrishamian and K. Morishita, “Broadening adjustable range on post-fabrication resonance wavelength trimming of long-period fiber gratings and the mechanisms of resonance wavelength shifts,” IEICE Trans. Electron. E94-C, 641–647 (2011).
[CrossRef]

2010

H. G. Limberger and G. Violakis, “Formation of Bragg gratings in pristine SMF-28e fibre using CW 244 nm Ar+-laser,” Electron. Lett. 46, 363–365 (2010).
[CrossRef]

2009

2008

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008).
[CrossRef]

2006

N. M. Dragomir, G. W. Baxter, and A. Roberts, “Phase-sensitive imaging techniques applied to optical fibre characterisation,” IEE Proc. Optoelectron. 153, 217–221 (2006).
[CrossRef]

N. M. Dragomir, E. Ampen-Lassen, G. W. Baxter, P. Pace, S. T. Huntington, P. M. Farrell, A. J. Stevenson, and A. Roberts, “Analysis of changes in optical fibers during arc-fusion splicing by use of quantitative phase imaging,” Microsc. Res. Tech. 69, 847–851 (2006).
[CrossRef]

2005

2004

K. Morishita and Y. Miyake, “Fabrication and resonance wavelengths of long-period gratings written in a pure-silica photonic crystal fiber by the glass structure change,” J. Lightwave Technol. 22, 625–630 (2004).
[CrossRef]

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 300–311 (2004).
[CrossRef]

G. Rego, L. M. N. B. F. Santos, B. Schröder, P. V. S. Marques, J. L. Santos, and H. M. Salgado, “In situ temperature measurement of an optical fiber submitted to electric arc discharges,” IEEE Photon. Technol. Lett. 16, 2111–2113 (2004).
[CrossRef]

2003

A. Malki, G. Humbert, Y. Ouerdane, A. Boukhenter, and A. Boudrioua, “Investigation of the writing mechanism of electric-arc-induced long-period fiber gratings,” Appl. Opt. 42, 3776–3779 (2003).
[CrossRef]

K. Morishita, S. F. Yuan, Y. Miyake, and T. Fujihara, “Refractive index variations and long-period fiber gratings made by the glass structure change,” IEICE Trans. Electron. E86-C, 1749–1758 (2003).

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres,” Electron. Lett. 39, 349–350 (2003).
[CrossRef]

2002

2001

1998

S. Sakaguchi and S. Todoroki, “Rayleigh scattering of silica glass and silica fibers with heat treatment,” Jpn. J. Appl. Phys. 37, Suppl. 37-1, 56–58 (1998).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

1997

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

1978

I. Hatakeyama and H. Tsuchiya, “Fusion splices for single-mode optical fibers,” IEEE J. Quantum Electron. 14, 614–619 (1978).
[CrossRef]

1970

R. Brückner, “Properties and structure of vitreous silica. I,” J. Non-Cryst. Solids 5, 123–175 (1970).
[CrossRef]

Abrishamian, F.

F. Abrishamian and K. Morishita, “Transfer-matrix method based on a discrete coupling model for analyzing uniform and nonuniform codirectional fiber grating couplers,” Appl. Opt. 51, 2367–2372 (2012).
[CrossRef]

F. Abrishamian and K. Morishita, “Broadening adjustable range on post-fabrication resonance wavelength trimming of long-period fiber gratings and the mechanisms of resonance wavelength shifts,” IEICE Trans. Electron. E94-C, 641–647 (2011).
[CrossRef]

Ahn, T.-J.

Ampem-Lassen, E.

Ampen-Lassen, E.

N. M. Dragomir, E. Ampen-Lassen, G. W. Baxter, P. Pace, S. T. Huntington, P. M. Farrell, A. J. Stevenson, and A. Roberts, “Analysis of changes in optical fibers during arc-fusion splicing by use of quantitative phase imaging,” Microsc. Res. Tech. 69, 847–851 (2006).
[CrossRef]

Barty, A.

Baxter, G. W.

N. M. Dragomir, E. Ampen-Lassen, G. W. Baxter, P. Pace, S. T. Huntington, P. M. Farrell, A. J. Stevenson, and A. Roberts, “Analysis of changes in optical fibers during arc-fusion splicing by use of quantitative phase imaging,” Microsc. Res. Tech. 69, 847–851 (2006).
[CrossRef]

N. M. Dragomir, G. W. Baxter, and A. Roberts, “Phase-sensitive imaging techniques applied to optical fibre characterisation,” IEE Proc. Optoelectron. 153, 217–221 (2006).
[CrossRef]

A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett. 27, 2061–2063 (2002).
[CrossRef]

Boudrioua, A.

Boukhenter, A.

Brückner, R.

R. Brückner, “Properties and structure of vitreous silica. I,” J. Non-Cryst. Solids 5, 123–175 (1970).
[CrossRef]

Canning, J.

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008).
[CrossRef]

Chiang, K. S.

Chung, Y.

Davis, D. D.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

Dianov, E.

Dianov, E. M.

F. Dürr, G. Rego, P. V. S. Marques, S. L. Semjonov, E. M. Dianov, H. G. Limberger, and R. P. Salathé, “Tomographic stress profiling of arc-induced long-period fiber gratings,” J. Lightwave Technol. 23, 3947–3953 (2005).
[CrossRef]

E. M. Dianov, V. I. Karpov, M. V. Grekov, K. M. Golant, S. A. Vasiliev, O. I. Medvedkov, and R. R. Khrapko, “Thermo-induced long-period fibre gratings,” in Proceedings of the International Conference on Integrated Optics and Optical Fibre Communications and European Conference on Optical Communications (IEEE, 1997), Vol. 2, pp. 53–56.

Dragomir, N. M.

N. M. Dragomir, G. W. Baxter, and A. Roberts, “Phase-sensitive imaging techniques applied to optical fibre characterisation,” IEE Proc. Optoelectron. 153, 217–221 (2006).
[CrossRef]

N. M. Dragomir, E. Ampen-Lassen, G. W. Baxter, P. Pace, S. T. Huntington, P. M. Farrell, A. J. Stevenson, and A. Roberts, “Analysis of changes in optical fibers during arc-fusion splicing by use of quantitative phase imaging,” Microsc. Res. Tech. 69, 847–851 (2006).
[CrossRef]

A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett. 27, 2061–2063 (2002).
[CrossRef]

Dubois, S.

Dürr, F.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

Farrell, P. M.

N. M. Dragomir, E. Ampen-Lassen, G. W. Baxter, P. Pace, S. T. Huntington, P. M. Farrell, A. J. Stevenson, and A. Roberts, “Analysis of changes in optical fibers during arc-fusion splicing by use of quantitative phase imaging,” Microsc. Res. Tech. 69, 847–851 (2006).
[CrossRef]

Février, S.

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres,” Electron. Lett. 39, 349–350 (2003).
[CrossRef]

Fujihara, T.

K. Morishita, S. F. Yuan, Y. Miyake, and T. Fujihara, “Refractive index variations and long-period fiber gratings made by the glass structure change,” IEICE Trans. Electron. E86-C, 1749–1758 (2003).

Gaylord, T. K.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

Glytsis, E. N.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

Golant, K. M.

E. M. Dianov, V. I. Karpov, M. V. Grekov, K. M. Golant, S. A. Vasiliev, O. I. Medvedkov, and R. R. Khrapko, “Thermo-induced long-period fibre gratings,” in Proceedings of the International Conference on Integrated Optics and Optical Fibre Communications and European Conference on Optical Communications (IEEE, 1997), Vol. 2, pp. 53–56.

Grekov, M. V.

E. M. Dianov, V. I. Karpov, M. V. Grekov, K. M. Golant, S. A. Vasiliev, O. I. Medvedkov, and R. R. Khrapko, “Thermo-induced long-period fibre gratings,” in Proceedings of the International Conference on Integrated Optics and Optical Fibre Communications and European Conference on Optical Communications (IEEE, 1997), Vol. 2, pp. 53–56.

Han, W.-T.

Hatakeyama, I.

I. Hatakeyama and H. Tsuchiya, “Fusion splices for single-mode optical fibers,” IEEE J. Quantum Electron. 14, 614–619 (1978).
[CrossRef]

Humbert, G.

A. Malki, G. Humbert, Y. Ouerdane, A. Boukhenter, and A. Boudrioua, “Investigation of the writing mechanism of electric-arc-induced long-period fiber gratings,” Appl. Opt. 42, 3776–3779 (2003).
[CrossRef]

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres,” Electron. Lett. 39, 349–350 (2003).
[CrossRef]

G. Humbert and A. Malki, “Electric-arc-induced gratings in non-hydrogenated fibres: fabrication and high-temperature characterizations,” J. Opt. A 4, 194–198 (2002).
[CrossRef]

Huntington, S. T.

N. M. Dragomir, E. Ampen-Lassen, G. W. Baxter, P. Pace, S. T. Huntington, P. M. Farrell, A. J. Stevenson, and A. Roberts, “Analysis of changes in optical fibers during arc-fusion splicing by use of quantitative phase imaging,” Microsc. Res. Tech. 69, 847–851 (2006).
[CrossRef]

A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett. 27, 2061–2063 (2002).
[CrossRef]

Izumitani, T. S.

T. S. Izumitani, Optical Glass (American Institute of Physics, 1986), Chaps. 1 and 3.

Kaino, A.

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Karpov, V. I.

E. M. Dianov, V. I. Karpov, M. V. Grekov, K. M. Golant, S. A. Vasiliev, O. I. Medvedkov, and R. R. Khrapko, “Thermo-induced long-period fibre gratings,” in Proceedings of the International Conference on Integrated Optics and Optical Fibre Communications and European Conference on Optical Communications (IEEE, 1997), Vol. 2, pp. 53–56.

Khrapko, R. R.

E. M. Dianov, V. I. Karpov, M. V. Grekov, K. M. Golant, S. A. Vasiliev, O. I. Medvedkov, and R. R. Khrapko, “Thermo-induced long-period fibre gratings,” in Proceedings of the International Conference on Integrated Optics and Optical Fibre Communications and European Conference on Optical Communications (IEEE, 1997), Vol. 2, pp. 53–56.

Kim, B. H.

Kim, D. Y.

Kim, D.-L.

Kosinski, S. G.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

Lee, B. H.

Lee, H. W.

Limberger, H. G.

Liu, Y.

Malki, A.

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres,” Electron. Lett. 39, 349–350 (2003).
[CrossRef]

A. Malki, G. Humbert, Y. Ouerdane, A. Boukhenter, and A. Boudrioua, “Investigation of the writing mechanism of electric-arc-induced long-period fiber gratings,” Appl. Opt. 42, 3776–3779 (2003).
[CrossRef]

G. Humbert and A. Malki, “Electric-arc-induced gratings in non-hydrogenated fibres: fabrication and high-temperature characterizations,” J. Opt. A 4, 194–198 (2002).
[CrossRef]

Marques, P. V. S.

F. Dürr, G. Rego, P. V. S. Marques, S. L. Semjonov, E. M. Dianov, H. G. Limberger, and R. P. Salathé, “Tomographic stress profiling of arc-induced long-period fiber gratings,” J. Lightwave Technol. 23, 3947–3953 (2005).
[CrossRef]

G. Rego, L. M. N. B. F. Santos, B. Schröder, P. V. S. Marques, J. L. Santos, and H. M. Salgado, “In situ temperature measurement of an optical fiber submitted to electric arc discharges,” IEEE Photon. Technol. Lett. 16, 2111–2113 (2004).
[CrossRef]

Medvedkov, O. I.

E. M. Dianov, V. I. Karpov, M. V. Grekov, K. M. Golant, S. A. Vasiliev, O. I. Medvedkov, and R. R. Khrapko, “Thermo-induced long-period fibre gratings,” in Proceedings of the International Conference on Integrated Optics and Optical Fibre Communications and European Conference on Optical Communications (IEEE, 1997), Vol. 2, pp. 53–56.

Mettler, S. C.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

Miyake, Y.

K. Morishita and Y. Miyake, “Fabrication and resonance wavelengths of long-period gratings written in a pure-silica photonic crystal fiber by the glass structure change,” J. Lightwave Technol. 22, 625–630 (2004).
[CrossRef]

K. Morishita, S. F. Yuan, Y. Miyake, and T. Fujihara, “Refractive index variations and long-period fiber gratings made by the glass structure change,” IEICE Trans. Electron. E86-C, 1749–1758 (2003).

Morishita, K.

F. Abrishamian and K. Morishita, “Transfer-matrix method based on a discrete coupling model for analyzing uniform and nonuniform codirectional fiber grating couplers,” Appl. Opt. 51, 2367–2372 (2012).
[CrossRef]

F. Abrishamian and K. Morishita, “Broadening adjustable range on post-fabrication resonance wavelength trimming of long-period fiber gratings and the mechanisms of resonance wavelength shifts,” IEICE Trans. Electron. E94-C, 641–647 (2011).
[CrossRef]

K. Morishita and A. Kaino, “Adjusting resonance wavelengths of long-period fiber gratings by the glass-structure change,” Appl. Opt. 44, 5018–5023 (2005).
[CrossRef]

K. Morishita and Y. Miyake, “Fabrication and resonance wavelengths of long-period gratings written in a pure-silica photonic crystal fiber by the glass structure change,” J. Lightwave Technol. 22, 625–630 (2004).
[CrossRef]

K. Morishita, S. F. Yuan, Y. Miyake, and T. Fujihara, “Refractive index variations and long-period fiber gratings made by the glass structure change,” IEICE Trans. Electron. E86-C, 1749–1758 (2003).

Nugent, K. A.

Okhotnikov, O.

Orcel, G.

Othonos, A.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Ouerdane, Y.

Pace, P.

N. M. Dragomir, E. Ampen-Lassen, G. W. Baxter, P. Pace, S. T. Huntington, P. M. Farrell, A. J. Stevenson, and A. Roberts, “Analysis of changes in optical fibers during arc-fusion splicing by use of quantitative phase imaging,” Microsc. Res. Tech. 69, 847–851 (2006).
[CrossRef]

Paek, U. C.

Pagnoux, D.

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres,” Electron. Lett. 39, 349–350 (2003).
[CrossRef]

Park, Y.

Rao, Y. J.

Rego, G.

Roberts, A.

N. M. Dragomir, G. W. Baxter, and A. Roberts, “Phase-sensitive imaging techniques applied to optical fibre characterisation,” IEE Proc. Optoelectron. 153, 217–221 (2006).
[CrossRef]

N. M. Dragomir, E. Ampen-Lassen, G. W. Baxter, P. Pace, S. T. Huntington, P. M. Farrell, A. J. Stevenson, and A. Roberts, “Analysis of changes in optical fibers during arc-fusion splicing by use of quantitative phase imaging,” Microsc. Res. Tech. 69, 847–851 (2006).
[CrossRef]

A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett. 27, 2061–2063 (2002).
[CrossRef]

Roy, P.

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres,” Electron. Lett. 39, 349–350 (2003).
[CrossRef]

Sakaguchi, S.

S. Sakaguchi and S. Todoroki, “Rayleigh scattering of silica glass and silica fibers with heat treatment,” Jpn. J. Appl. Phys. 37, Suppl. 37-1, 56–58 (1998).
[CrossRef]

Salathé, R. P.

Salgado, H. M.

G. Rego, L. M. N. B. F. Santos, B. Schröder, P. V. S. Marques, J. L. Santos, and H. M. Salgado, “In situ temperature measurement of an optical fiber submitted to electric arc discharges,” IEEE Photon. Technol. Lett. 16, 2111–2113 (2004).
[CrossRef]

Santos, J. L.

G. Rego, L. M. N. B. F. Santos, B. Schröder, P. V. S. Marques, J. L. Santos, and H. M. Salgado, “In situ temperature measurement of an optical fiber submitted to electric arc discharges,” IEEE Photon. Technol. Lett. 16, 2111–2113 (2004).
[CrossRef]

Santos, L. M. N. B. F.

G. Rego, L. M. N. B. F. Santos, B. Schröder, P. V. S. Marques, J. L. Santos, and H. M. Salgado, “In situ temperature measurement of an optical fiber submitted to electric arc discharges,” IEEE Photon. Technol. Lett. 16, 2111–2113 (2004).
[CrossRef]

Schröder, B.

G. Rego, L. M. N. B. F. Santos, B. Schröder, P. V. S. Marques, J. L. Santos, and H. M. Salgado, “In situ temperature measurement of an optical fiber submitted to electric arc discharges,” IEEE Photon. Technol. Lett. 16, 2111–2113 (2004).
[CrossRef]

Semjonov, S. L.

Stevenson, A. J.

N. M. Dragomir, E. Ampen-Lassen, G. W. Baxter, P. Pace, S. T. Huntington, P. M. Farrell, A. J. Stevenson, and A. Roberts, “Analysis of changes in optical fibers during arc-fusion splicing by use of quantitative phase imaging,” Microsc. Res. Tech. 69, 847–851 (2006).
[CrossRef]

Sulimov, V.

Todoroki, S.

S. Sakaguchi and S. Todoroki, “Rayleigh scattering of silica glass and silica fibers with heat treatment,” Jpn. J. Appl. Phys. 37, Suppl. 37-1, 56–58 (1998).
[CrossRef]

Tomozawa, M.

Tsuchiya, H.

I. Hatakeyama and H. Tsuchiya, “Fusion splices for single-mode optical fibers,” IEEE J. Quantum Electron. 14, 614–619 (1978).
[CrossRef]

Vasiliev, S. A.

E. M. Dianov, V. I. Karpov, M. V. Grekov, K. M. Golant, S. A. Vasiliev, O. I. Medvedkov, and R. R. Khrapko, “Thermo-induced long-period fibre gratings,” in Proceedings of the International Conference on Integrated Optics and Optical Fibre Communications and European Conference on Optical Communications (IEEE, 1997), Vol. 2, pp. 53–56.

Vengsarkar, A. M.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

Violakis, G.

H. G. Limberger and G. Violakis, “Formation of Bragg gratings in pristine SMF-28e fibre using CW 244 nm Ar+-laser,” Electron. Lett. 46, 363–365 (2010).
[CrossRef]

Yablon, A. D.

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 300–311 (2004).
[CrossRef]

Yuan, S. F.

K. Morishita, S. F. Yuan, Y. Miyake, and T. Fujihara, “Refractive index variations and long-period fiber gratings made by the glass structure change,” IEICE Trans. Electron. E86-C, 1749–1758 (2003).

Zhu, T.

Appl. Opt.

Electron. Lett.

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres,” Electron. Lett. 39, 349–350 (2003).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

H. G. Limberger and G. Violakis, “Formation of Bragg gratings in pristine SMF-28e fibre using CW 244 nm Ar+-laser,” Electron. Lett. 46, 363–365 (2010).
[CrossRef]

IEE Proc. Optoelectron.

N. M. Dragomir, G. W. Baxter, and A. Roberts, “Phase-sensitive imaging techniques applied to optical fibre characterisation,” IEE Proc. Optoelectron. 153, 217–221 (2006).
[CrossRef]

IEEE J. Quantum Electron.

I. Hatakeyama and H. Tsuchiya, “Fusion splices for single-mode optical fibers,” IEEE J. Quantum Electron. 14, 614–619 (1978).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 300–311 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

G. Rego, L. M. N. B. F. Santos, B. Schröder, P. V. S. Marques, J. L. Santos, and H. M. Salgado, “In situ temperature measurement of an optical fiber submitted to electric arc discharges,” IEEE Photon. Technol. Lett. 16, 2111–2113 (2004).
[CrossRef]

IEICE Trans. Electron.

F. Abrishamian and K. Morishita, “Broadening adjustable range on post-fabrication resonance wavelength trimming of long-period fiber gratings and the mechanisms of resonance wavelength shifts,” IEICE Trans. Electron. E94-C, 641–647 (2011).
[CrossRef]

K. Morishita, S. F. Yuan, Y. Miyake, and T. Fujihara, “Refractive index variations and long-period fiber gratings made by the glass structure change,” IEICE Trans. Electron. E86-C, 1749–1758 (2003).

J. Lightwave Technol.

J. Non-Cryst. Solids

R. Brückner, “Properties and structure of vitreous silica. I,” J. Non-Cryst. Solids 5, 123–175 (1970).
[CrossRef]

J. Opt. A

G. Humbert and A. Malki, “Electric-arc-induced gratings in non-hydrogenated fibres: fabrication and high-temperature characterizations,” J. Opt. A 4, 194–198 (2002).
[CrossRef]

Jpn. J. Appl. Phys.

S. Sakaguchi and S. Todoroki, “Rayleigh scattering of silica glass and silica fibers with heat treatment,” Jpn. J. Appl. Phys. 37, Suppl. 37-1, 56–58 (1998).
[CrossRef]

Laser Photon. Rev.

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008).
[CrossRef]

Microsc. Res. Tech.

N. M. Dragomir, E. Ampen-Lassen, G. W. Baxter, P. Pace, S. T. Huntington, P. M. Farrell, A. J. Stevenson, and A. Roberts, “Analysis of changes in optical fibers during arc-fusion splicing by use of quantitative phase imaging,” Microsc. Res. Tech. 69, 847–851 (2006).
[CrossRef]

Opt. Lett.

Other

E. M. Dianov, V. I. Karpov, M. V. Grekov, K. M. Golant, S. A. Vasiliev, O. I. Medvedkov, and R. R. Khrapko, “Thermo-induced long-period fibre gratings,” in Proceedings of the International Conference on Integrated Optics and Optical Fibre Communications and European Conference on Optical Communications (IEEE, 1997), Vol. 2, pp. 53–56.

T. S. Izumitani, Optical Glass (American Institute of Physics, 1986), Chaps. 1 and 3.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

I. Kaminow and T. Li, eds., Optical Fiber Telecommunications IV-A: Components (Academic, 2002), Chap. 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Transmission spectra of the LPFGs with the grating period of 500 μm increasing the number of periods. The discharge current and time are (a) 35 mA and 75 ms and (b) 100 mA and 41 ms.

Fig. 2.
Fig. 2.

Transverse phase image of the discharged part with discharge current and time of 35 mA and 75 ms. The location of the discharge center is indicated by arrows.

Fig. 3.
Fig. 3.

RI profiles of the original fiber and the fibers discharged with the discharge current and time of 35 mA and 75 ms and 100 mA and 41 ms. (a) RI profiles of the entire fibers. (b) RI profiles in the vicinity of the fiber cores. (c) The RI profile for 35 mA and 75 ms is raised by 1.2×104 for a comparison between the forms of the RI profile of the discharged fibers.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λres=(n01n0m)Λ,
Δn(r,z)=λ2π2rRϕ(x,z)x(R2x2)1/2dx,

Metrics