Abstract

We report on a method that can be used to improve the result of multiwavelength contouring in the case of objects with rough surface. It is based on the combined evaluation of multiple measurements with varying direction of illumination. While the individual measurements share the same systematics with respect to the shape of the investigated object, the noise arising from speckle decorrelation fluctuates statistically and hence can be reduced by means of averaging. For the case of three illumination directions we show that weighted averaging of the measured phase distributions enhances the signal-to-noise ratio by approximately 3 dB.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Correlated speckle noise in white-light interferometry: theoretical analysis of measurement uncertainty

Marco Hering, Klaus Körner, and Bernd Jähne
Appl. Opt. 48(3) 525-538 (2009)

Speckle from a cascade of two thin diffusers

Lyle G. Shirley and Nicholas George
J. Opt. Soc. Am. A 6(6) 765-781 (1989)

Efficient reduction of speckle noise in Optical Coherence Tomography

Maciej Szkulmowski, Iwona Gorczynska, Daniel Szlag, Marcin Sylwestrzak, Andrzej Kowalczyk, and Maciej Wojtkowski
Opt. Express 20(2) 1337-1359 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription