Abstract

If a new complex optical multilayer system, coating chamber, material, or design has to be evaluated, there is often a need for several test deposition runs until most significant errors and coating properties are identified. We present an advanced procedure with combination of an optical broadband thickness monitor, computational manufacturing, and automated reoptimization, which requires only one single test deposition run. For the identification of material and deposition errors, the single test deposition run is evaluated by the computational manufacturing using different parameter sets. Determined main errors are corrected (e.g., dispersion), and remaining smaller errors will be compensated with the automated reoptimization tool as an expansion of the optical monitor.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Tikhonravov, M. K. Trubetskov, M. A. Kokarev, T. V. Amotchkina, A. Duparré, E. Quesnel, D. Ristau, and S. Günster, “Effect of systematic errors in spectral photometric data on the accuracy of determination of optical parameters of dielectric thin films,” Appl. Opt. 41, 2555–2560 (2002).
    [CrossRef]
  2. A. V. Tikonrahvov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the effect of accumulation of thickness errors in optical coating production by broadband optical monitoring,” Appl. Opt. 45, 7026–7034 (2006).
    [CrossRef]
  3. A. V. Tikhonravov and M. K. Trubetskov, “Computational manufacturing as a bridge between design and production,” Appl. Opt. 44, 6877–6884 (2005).
    [CrossRef]
  4. K. Friedrich, S. Willbrandt, O. Stenzel, N. Kaiser, and K. H. Hoffmann, “Computational manufacturing of optical interference coatings: methods, simulation results, and comparison with experiment,” Appl. Opt. 49, 3150–3162 (2010).
    [CrossRef]
  5. D. Poelman and P. F. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D: Appl. Phys. 36, 1850–1857 (2003).
    [CrossRef]
  6. A. Zoeller, R. Goetzelmann, R. Herrmann, and K. Matl, “Large-area IAD with a new plasma source,” Proc. SPIE 1270, 204–210 (1990).
    [CrossRef]
  7. H. A. Macleod, “Monitoring of optical coatings,” Appl. Opt. 20, 82–89 (1981).
    [CrossRef]
  8. B. Vidal, A. Fornier, and E. Pelletier, “Wideband optical monitoring of nonquarterwave multilayer filters,” Appl. Opt. 18, 3851–3856 (1979).
  9. K. Starke, T. Gross, M. Lappschies, and D. Ristau, “Rapid prototyping of optical thin film filters,” Proc. SPIE 4094, 83–92 (2000).
    [CrossRef]
  10. M. Lappschies, T. Gross, H. Ehlers, and D. Ristau, “Broadband optical monitoring for the deposition of complex coatings,” Proc. SPIE 5250, 637–645 (2004).
    [CrossRef]
  11. D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45, 1495–1501 (2006).
    [CrossRef]
  12. H. Ehlers, S. Schlichting, C. Schmitz, and D. Ristau, “Adaptive manufacturing of high-precision optics based on virtual deposition and hybrid process control techniques,” Chin. Opt. Lett. 8, 62–66 (2010).
    [CrossRef]
  13. S. Schlichting, K. Heinrich, H. Ehlers, and D. Ristau, “Online re-optimization as a powerful part of enhanced strategies in optical broadband monitoring,” Proc. SPIE 8168, 81681E (2011).
    [CrossRef]
  14. B. Tatian, “Fitting refractive-index data with the Sellmeier dispersion formula,” Appl. Opt. 23, 4477–4485 (1984).
    [CrossRef]
  15. J.-S. Chen, S. Chao, J.-S. Kao, H. Niu, and C. H. Chen, “Mixed films of TiO2-SiO2 deposited by double electron-beam coevaporation,” Appl. Phys. 35, 90–96 (1996).
  16. D. A. G. Bruggeman, “Berechnung physikalischer Konstanten von heterogenen Substanzen,” Ann. Phys. 24, 636–664 (1935).
    [CrossRef]
  17. W. M. Haynes, ed., “Index of refraction of water,” in Handbook of Chemistry and Physics (CRC, 2012), pp. 10–244.

2011 (1)

S. Schlichting, K. Heinrich, H. Ehlers, and D. Ristau, “Online re-optimization as a powerful part of enhanced strategies in optical broadband monitoring,” Proc. SPIE 8168, 81681E (2011).
[CrossRef]

2010 (2)

H. Ehlers, S. Schlichting, C. Schmitz, and D. Ristau, “Adaptive manufacturing of high-precision optics based on virtual deposition and hybrid process control techniques,” Chin. Opt. Lett. 8, 62–66 (2010).
[CrossRef]

K. Friedrich, S. Willbrandt, O. Stenzel, N. Kaiser, and K. H. Hoffmann, “Computational manufacturing of optical interference coatings: methods, simulation results, and comparison with experiment,” Appl. Opt. 49, 3150–3162 (2010).
[CrossRef]

2006 (2)

2005 (1)

2004 (1)

M. Lappschies, T. Gross, H. Ehlers, and D. Ristau, “Broadband optical monitoring for the deposition of complex coatings,” Proc. SPIE 5250, 637–645 (2004).
[CrossRef]

2003 (1)

D. Poelman and P. F. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D: Appl. Phys. 36, 1850–1857 (2003).
[CrossRef]

2002 (1)

2000 (1)

K. Starke, T. Gross, M. Lappschies, and D. Ristau, “Rapid prototyping of optical thin film filters,” Proc. SPIE 4094, 83–92 (2000).
[CrossRef]

1996 (1)

J.-S. Chen, S. Chao, J.-S. Kao, H. Niu, and C. H. Chen, “Mixed films of TiO2-SiO2 deposited by double electron-beam coevaporation,” Appl. Phys. 35, 90–96 (1996).

1990 (1)

A. Zoeller, R. Goetzelmann, R. Herrmann, and K. Matl, “Large-area IAD with a new plasma source,” Proc. SPIE 1270, 204–210 (1990).
[CrossRef]

1984 (1)

1981 (1)

1979 (1)

1935 (1)

D. A. G. Bruggeman, “Berechnung physikalischer Konstanten von heterogenen Substanzen,” Ann. Phys. 24, 636–664 (1935).
[CrossRef]

Amotchkina, T. V.

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechnung physikalischer Konstanten von heterogenen Substanzen,” Ann. Phys. 24, 636–664 (1935).
[CrossRef]

Chao, S.

J.-S. Chen, S. Chao, J.-S. Kao, H. Niu, and C. H. Chen, “Mixed films of TiO2-SiO2 deposited by double electron-beam coevaporation,” Appl. Phys. 35, 90–96 (1996).

Chen, C. H.

J.-S. Chen, S. Chao, J.-S. Kao, H. Niu, and C. H. Chen, “Mixed films of TiO2-SiO2 deposited by double electron-beam coevaporation,” Appl. Phys. 35, 90–96 (1996).

Chen, J.-S.

J.-S. Chen, S. Chao, J.-S. Kao, H. Niu, and C. H. Chen, “Mixed films of TiO2-SiO2 deposited by double electron-beam coevaporation,” Appl. Phys. 35, 90–96 (1996).

Duparré, A.

Ehlers, H.

S. Schlichting, K. Heinrich, H. Ehlers, and D. Ristau, “Online re-optimization as a powerful part of enhanced strategies in optical broadband monitoring,” Proc. SPIE 8168, 81681E (2011).
[CrossRef]

H. Ehlers, S. Schlichting, C. Schmitz, and D. Ristau, “Adaptive manufacturing of high-precision optics based on virtual deposition and hybrid process control techniques,” Chin. Opt. Lett. 8, 62–66 (2010).
[CrossRef]

D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45, 1495–1501 (2006).
[CrossRef]

M. Lappschies, T. Gross, H. Ehlers, and D. Ristau, “Broadband optical monitoring for the deposition of complex coatings,” Proc. SPIE 5250, 637–645 (2004).
[CrossRef]

Fornier, A.

Friedrich, K.

Goetzelmann, R.

A. Zoeller, R. Goetzelmann, R. Herrmann, and K. Matl, “Large-area IAD with a new plasma source,” Proc. SPIE 1270, 204–210 (1990).
[CrossRef]

Gross, T.

D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45, 1495–1501 (2006).
[CrossRef]

M. Lappschies, T. Gross, H. Ehlers, and D. Ristau, “Broadband optical monitoring for the deposition of complex coatings,” Proc. SPIE 5250, 637–645 (2004).
[CrossRef]

K. Starke, T. Gross, M. Lappschies, and D. Ristau, “Rapid prototyping of optical thin film filters,” Proc. SPIE 4094, 83–92 (2000).
[CrossRef]

Günster, S.

Heinrich, K.

S. Schlichting, K. Heinrich, H. Ehlers, and D. Ristau, “Online re-optimization as a powerful part of enhanced strategies in optical broadband monitoring,” Proc. SPIE 8168, 81681E (2011).
[CrossRef]

Herrmann, R.

A. Zoeller, R. Goetzelmann, R. Herrmann, and K. Matl, “Large-area IAD with a new plasma source,” Proc. SPIE 1270, 204–210 (1990).
[CrossRef]

Hoffmann, K. H.

Kaiser, N.

Kao, J.-S.

J.-S. Chen, S. Chao, J.-S. Kao, H. Niu, and C. H. Chen, “Mixed films of TiO2-SiO2 deposited by double electron-beam coevaporation,” Appl. Phys. 35, 90–96 (1996).

Kokarev, M. A.

Lappschies, M.

D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45, 1495–1501 (2006).
[CrossRef]

M. Lappschies, T. Gross, H. Ehlers, and D. Ristau, “Broadband optical monitoring for the deposition of complex coatings,” Proc. SPIE 5250, 637–645 (2004).
[CrossRef]

K. Starke, T. Gross, M. Lappschies, and D. Ristau, “Rapid prototyping of optical thin film filters,” Proc. SPIE 4094, 83–92 (2000).
[CrossRef]

Macleod, H. A.

Matl, K.

A. Zoeller, R. Goetzelmann, R. Herrmann, and K. Matl, “Large-area IAD with a new plasma source,” Proc. SPIE 1270, 204–210 (1990).
[CrossRef]

Niu, H.

J.-S. Chen, S. Chao, J.-S. Kao, H. Niu, and C. H. Chen, “Mixed films of TiO2-SiO2 deposited by double electron-beam coevaporation,” Appl. Phys. 35, 90–96 (1996).

Pelletier, E.

Poelman, D.

D. Poelman and P. F. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D: Appl. Phys. 36, 1850–1857 (2003).
[CrossRef]

Quesnel, E.

Ristau, D.

S. Schlichting, K. Heinrich, H. Ehlers, and D. Ristau, “Online re-optimization as a powerful part of enhanced strategies in optical broadband monitoring,” Proc. SPIE 8168, 81681E (2011).
[CrossRef]

H. Ehlers, S. Schlichting, C. Schmitz, and D. Ristau, “Adaptive manufacturing of high-precision optics based on virtual deposition and hybrid process control techniques,” Chin. Opt. Lett. 8, 62–66 (2010).
[CrossRef]

D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45, 1495–1501 (2006).
[CrossRef]

M. Lappschies, T. Gross, H. Ehlers, and D. Ristau, “Broadband optical monitoring for the deposition of complex coatings,” Proc. SPIE 5250, 637–645 (2004).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, M. A. Kokarev, T. V. Amotchkina, A. Duparré, E. Quesnel, D. Ristau, and S. Günster, “Effect of systematic errors in spectral photometric data on the accuracy of determination of optical parameters of dielectric thin films,” Appl. Opt. 41, 2555–2560 (2002).
[CrossRef]

K. Starke, T. Gross, M. Lappschies, and D. Ristau, “Rapid prototyping of optical thin film filters,” Proc. SPIE 4094, 83–92 (2000).
[CrossRef]

Schlichting, S.

S. Schlichting, K. Heinrich, H. Ehlers, and D. Ristau, “Online re-optimization as a powerful part of enhanced strategies in optical broadband monitoring,” Proc. SPIE 8168, 81681E (2011).
[CrossRef]

H. Ehlers, S. Schlichting, C. Schmitz, and D. Ristau, “Adaptive manufacturing of high-precision optics based on virtual deposition and hybrid process control techniques,” Chin. Opt. Lett. 8, 62–66 (2010).
[CrossRef]

Schmitz, C.

H. Ehlers, S. Schlichting, C. Schmitz, and D. Ristau, “Adaptive manufacturing of high-precision optics based on virtual deposition and hybrid process control techniques,” Chin. Opt. Lett. 8, 62–66 (2010).
[CrossRef]

Smet, P. F.

D. Poelman and P. F. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D: Appl. Phys. 36, 1850–1857 (2003).
[CrossRef]

Starke, K.

K. Starke, T. Gross, M. Lappschies, and D. Ristau, “Rapid prototyping of optical thin film filters,” Proc. SPIE 4094, 83–92 (2000).
[CrossRef]

Stenzel, O.

Tatian, B.

Tikhonravov, A. V.

Tikonrahvov, A. V.

Trubetskov, M. K.

Vidal, B.

Willbrandt, S.

Zoeller, A.

A. Zoeller, R. Goetzelmann, R. Herrmann, and K. Matl, “Large-area IAD with a new plasma source,” Proc. SPIE 1270, 204–210 (1990).
[CrossRef]

Ann. Phys. (1)

D. A. G. Bruggeman, “Berechnung physikalischer Konstanten von heterogenen Substanzen,” Ann. Phys. 24, 636–664 (1935).
[CrossRef]

Appl. Opt. (8)

B. Vidal, A. Fornier, and E. Pelletier, “Wideband optical monitoring of nonquarterwave multilayer filters,” Appl. Opt. 18, 3851–3856 (1979).

H. A. Macleod, “Monitoring of optical coatings,” Appl. Opt. 20, 82–89 (1981).
[CrossRef]

B. Tatian, “Fitting refractive-index data with the Sellmeier dispersion formula,” Appl. Opt. 23, 4477–4485 (1984).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, M. A. Kokarev, T. V. Amotchkina, A. Duparré, E. Quesnel, D. Ristau, and S. Günster, “Effect of systematic errors in spectral photometric data on the accuracy of determination of optical parameters of dielectric thin films,” Appl. Opt. 41, 2555–2560 (2002).
[CrossRef]

A. V. Tikhonravov and M. K. Trubetskov, “Computational manufacturing as a bridge between design and production,” Appl. Opt. 44, 6877–6884 (2005).
[CrossRef]

D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45, 1495–1501 (2006).
[CrossRef]

A. V. Tikonrahvov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the effect of accumulation of thickness errors in optical coating production by broadband optical monitoring,” Appl. Opt. 45, 7026–7034 (2006).
[CrossRef]

K. Friedrich, S. Willbrandt, O. Stenzel, N. Kaiser, and K. H. Hoffmann, “Computational manufacturing of optical interference coatings: methods, simulation results, and comparison with experiment,” Appl. Opt. 49, 3150–3162 (2010).
[CrossRef]

Appl. Phys. (1)

J.-S. Chen, S. Chao, J.-S. Kao, H. Niu, and C. H. Chen, “Mixed films of TiO2-SiO2 deposited by double electron-beam coevaporation,” Appl. Phys. 35, 90–96 (1996).

Chin. Opt. Lett. (1)

H. Ehlers, S. Schlichting, C. Schmitz, and D. Ristau, “Adaptive manufacturing of high-precision optics based on virtual deposition and hybrid process control techniques,” Chin. Opt. Lett. 8, 62–66 (2010).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

D. Poelman and P. F. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D: Appl. Phys. 36, 1850–1857 (2003).
[CrossRef]

Proc. SPIE (4)

A. Zoeller, R. Goetzelmann, R. Herrmann, and K. Matl, “Large-area IAD with a new plasma source,” Proc. SPIE 1270, 204–210 (1990).
[CrossRef]

K. Starke, T. Gross, M. Lappschies, and D. Ristau, “Rapid prototyping of optical thin film filters,” Proc. SPIE 4094, 83–92 (2000).
[CrossRef]

M. Lappschies, T. Gross, H. Ehlers, and D. Ristau, “Broadband optical monitoring for the deposition of complex coatings,” Proc. SPIE 5250, 637–645 (2004).
[CrossRef]

S. Schlichting, K. Heinrich, H. Ehlers, and D. Ristau, “Online re-optimization as a powerful part of enhanced strategies in optical broadband monitoring,” Proc. SPIE 8168, 81681E (2011).
[CrossRef]

Other (1)

W. M. Haynes, ed., “Index of refraction of water,” in Handbook of Chemistry and Physics (CRC, 2012), pp. 10–244.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Comparison of the reflectivity of both layer stacks.

Fig. 2.
Fig. 2.

Presimulations with different error stats. Black is related to small (SiO2) simulated errors, dark gray to intermediate ones (SiO2), and gray to high (SiO2, TiO2+) simulated errors (dashed curve equals reflectivity of uncoated back side).

Fig. 3.
Fig. 3.

Comparison between the computational manufacturing and the test deposition (dashed curve equals reflectivity of uncoated back side).

Fig. 4.
Fig. 4.

Coatings with corrected dispersion of silica (dashed curve equals reflectivity of uncoated back side).

Fig. 5.
Fig. 5.

Adaptive manufacturing of the three-material coating (dashed curve equals reflectivity of uncoated back side).

Fig. 6.
Fig. 6.

Exclusive use of reoptimization with different reoptimization parameters (dashed curve equals reflectivity of uncoated back side).

Fig. 7.
Fig. 7.

Adaptive manufacturing of the two-material coating (dashed curve equals reflectivity of uncoated back side).

Fig. 8.
Fig. 8.

Comparison between transmission and reflectivity of all enhanced coatings (lower dashed curve equals reflectivity of uncoated back side, upper dashed curve equals transmission through absorbing substrate and uncoated back side).

Tables (5)

Tables Icon

Table 1. Comparison of the Two Coatings

Tables Icon

Table 2. Theoretical Layer Stack of Design A

Tables Icon

Table 3. Theoretical Layer Stack of Design B

Tables Icon

Table 4. Sellmeier Coefficients of Target Materials

Tables Icon

Table 5. Overview of the dts and the Total Number of Deviation Pointsa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n2(λ)=1+B1(λ)λ2C1+B2(λ)λ2C2
dts=1N·380nm700nm{(RmeasRsp)(RmeasRsp)00(RmeasRsp)<0.

Metrics