Abstract

I respond to a comment on [Appl. Opt. 42, 4152 (2003)] and discuss some unusual features that arise in a plane-wave-inspired analysis of the virtually imaged phased-array spectral disperser.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Gauthier, “Comment on ‘Generalized grating equation for virtually-imaged phased-array spectral dispersers,’” Appl. Opt., 51, 8184–8186 (2012).
  2. M. Shirasaki, “Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,” Opt. Lett. 21, 366–368 (1996).
    [CrossRef]
  3. A. Vega, A. M. Weiner, and C. Lin, “Generalized grating equation for virtually-imaged phased-array spectral dispersers,” Appl. Opt. 42, 4152–4155 (2003).
    [CrossRef]
  4. S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40, 420–426 (2004).
    [CrossRef]
  5. D. R. Goosman, “Formulas for Fabry–Perot velocimeter performance using both stripe and multifrequency techniques,” Appl. Opt. 30, 3907–3923 (1991).
    [CrossRef]
  6. B. H. Kolner, “Space–time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30, 1951–1963(1994).
    [CrossRef]

2012 (1)

2004 (1)

S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40, 420–426 (2004).
[CrossRef]

2003 (1)

1996 (1)

1994 (1)

B. H. Kolner, “Space–time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30, 1951–1963(1994).
[CrossRef]

1991 (1)

Gauthier, D. J.

Goosman, D. R.

Kolner, B. H.

B. H. Kolner, “Space–time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30, 1951–1963(1994).
[CrossRef]

Lin, C.

S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40, 420–426 (2004).
[CrossRef]

A. Vega, A. M. Weiner, and C. Lin, “Generalized grating equation for virtually-imaged phased-array spectral dispersers,” Appl. Opt. 42, 4152–4155 (2003).
[CrossRef]

Shirasaki, M.

Vega, A.

Weiner, A. M.

S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40, 420–426 (2004).
[CrossRef]

A. Vega, A. M. Weiner, and C. Lin, “Generalized grating equation for virtually-imaged phased-array spectral dispersers,” Appl. Opt. 42, 4152–4155 (2003).
[CrossRef]

Xiao, S.

S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40, 420–426 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1.
Fig. 1.

Proposed time-domain analogue of the VIPA.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

2kL[cosθi]=2mπ,
EoutEin=t1t2ejδ/2m=0(r1r2ejδ)m,
IoutIin=(1R1)(1R2)1+R1R22r1r2cosδ.
EoutEin=t2ejδ/2m=0(r1r2ejδ)m=t2ejδ/21r1r2ejδ.
IoutIin=(1R2)1+R1R22r1r2cosδ.
IoutIin=1R2(1r1r2)2.
IoutIin=1+r21r2.
IoutIinδ=12πππIoutIindδ=1R21R1R2.
IoutIinδ=1.

Metrics