## Abstract

I correct an error made by Vega *et al.* [Appl. Opt. **42**, 4152 (2003)], who derived the spectral dispersion properties of a virtually imaged phased-array etalon using a ray-based, multibounce interference analysis. I demonstrate that the corrected dispersion law is in agreement with the results obtained by paraxial wave theory [Xiao *et al.*, IEEE J. Quantum Electron. **40**, 420 (2004)].

© 2012 Optical Society of America

Full Article |

PDF Article
### Equations (5)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$2kL[\frac{1}{\mathrm{cos}({\theta}_{i})}-\mathrm{tan}({\theta}_{i})\mathrm{sin}({\theta}_{\lambda})]=2m\pi ,$$
(2)
$$2kL[\mathrm{cos}({\theta}_{i})-\mathrm{sin}({\theta}_{i}){\theta}_{\lambda}+\frac{1}{2}\mathrm{tan}({\theta}_{i})\mathrm{sin}({\theta}_{i}){\theta}_{\lambda}^{2}]=2m\pi .$$
(3)
$$2kL[\mathrm{cos}({\theta}_{i})-\mathrm{sin}({\theta}_{i}){\theta}_{\lambda}-\frac{1}{2}\mathrm{cos}({\theta}_{i}){\theta}_{\lambda}^{2}]=2m\pi .$$
(4)
$$2kL[\mathrm{cos}({\theta}_{i})]=2m\pi .$$
(5)
$$2kL[\mathrm{cos}({\theta}_{i})-\mathrm{sin}({\theta}_{i}){\theta}_{\lambda}-\frac{1}{2}\mathrm{cos}({\theta}_{i}){\theta}_{\lambda}^{2}]=2m\pi ,$$