M. Yamada, A. Tomoe, and H. Takara, “Light scattering characteristics of hole formed by fibre fuse,” Electron. Lett. 48, 519–520 (2012).

[CrossRef]

L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112, 1492–1508(2011).

[CrossRef]

C. A. Valagiannopoulos, “Electromagnetic scattering of the field of a metamaterial slab antenna by an arbitrarily positioned cluster of metallic cylinders,” Progress Electromagn. Res. 114, 51–66 (2011).

K. F. Ren, F. Onofri, C. Rozé, and T. Girasole, “Vectorial complex ray model and application to two-dimensional scattering of plane wave by a spheroidal particle,” Opt. Lett. 36, 370–372 (2011).

[CrossRef]

P. Yang and K. N. Liou, “An exact geometric-optics approach for computing the optical properties of large absorbing particles,” J. Quant. Spectrosc. Radiat. Transfer 110, 1162–1177 (2009).

[CrossRef]

R. Li, X. Han, and K. F. Ren, “Generalized Debye series expansion of electromagnetic plane wave scattering by an infinite multilayered cylinder at oblique incidence,” Phys. Rev. E 79, 036602 (2009).

[CrossRef]

A. K. Hamid and F. R. Cooray, “Scattering by a perfect electromagnetic conducting elliptic cylinder,” PIER Lett. 10, 59–67 (2009).

S. C. Mao, Z. S. Wu, and H. Y. Li, “Three-dimensional scattering by an infinite homogeneous anisotropic elliptic cylinder in terms of Mathieu functions,” J. Opt. Soc. Am. A 26, 2282–2291 (2009).

[CrossRef]

Z. Zhang, P. Yang, G. W. Kattawar, and W. J. Wiscombe, “Single scattering properties of platonic solids in geometric-optics regime,” J. Quant. Spectrosc. Radiat. Transfer 106, 595–603 (2007).

[CrossRef]

F. Xu, K. F. Ren, and X. Cai, “Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. I. By a spherical particle,” Appl. Opt. 45, 4990–4999 (2006).

[CrossRef]

F. Xu, K. F. Ren, X. Cai, and J. Shen, “Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. II. By a spheroidal particle with end-on incidence,” Appl. Opt. 45, 5000–5009 (2006).

[CrossRef]

R. Li, X. Han, H. Jiang, and K. F. Ren, “Debye series of normally incident plane wave scattering by an infinite multi-layered cylinder,” Appl. Opt. 45, 6255–6262 (2006).

[CrossRef]

P. Yang, H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, M. I. Mishchenko, G. W. Kattawar, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512–5523 (2005).

[CrossRef]

F. Onofri, A. Lenoble, H. Bultynck, and P.-H. Guéring, “High-resolution laser diffractometry for the on-line sizing of small transparent fibres,” Opt. Commun. 234, 183–191 (2004).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Localized approximation for Gaussian beams in elliptical cylinder coordinates,” Appl. Opt. 39, 1008–1025 (2000).

[CrossRef]

J. A. Lock, C. L. Adler, and E. A. Hovenac, “Exterior caustics produced in scattering of a diagonally incident plane wave by a circular cylinder: semiclassical scattering theory analysis,” J. Opt. Soc. Am. A 17, 1846–1856 (2000).

[CrossRef]

G. Gouesbet and L. Mees, “Generalized Lorenz–Mie theory for infinitely long elliptical cylinders,” J. Opt. Soc. Am. A 16, 1333–1341 (1999).

[CrossRef]

G. Gouesbet and L. Mees, “Validity of the elliptical cylinder localized approximation for arbitrary shaped beams in generalized Lorenz–Mie theory for elliptical cylinders,” J. Opt. Soc. Am. A 16, 2946–2958 (1999).

[CrossRef]

L. Mees, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation, numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[CrossRef]

G. Gouesbet, K. F. Ren, L. Mees, and G. Gréhan, “Cylindrical localized approximation to speed up computations for Gaussian beams in the generalized Lorenz–Mie theory for cylinders, with arbitrary location and orientation of the scatterer,” Appl. Opt. 38, 2647–2665 (1999).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Description of arbitrary shaped beams in elliptical cylinder coordinates, by using a plane wave spectrum approach,” Opt. Commun. 161, 63–78 (1999).

[CrossRef]

C. L. Adler, J. A. Lock, and B. R. Stone, “Rainbow scattering by a cylinder with a nearly elliptical cross section,” Appl. Opt. 37, 1540–1550 (1998).

[CrossRef]

X. Han, K. F. Ren, Z. Wu, F. Corbin, G. Gouesbet, and G. Gréhan, “Characterization of initial disturbances in liquid jet by rainbow sizing,” Appl. Opt. 37, 8498–8503 (1998).

[CrossRef]

S. Caorsi, M. Pastorino, and M. Raffetto, “Electromagnetic scattering by a multilayer elliptic cylinder under transverse-magnetic illumination: series solution in terms of Mathieu functions,” IEEE Trans. Antennas Propag. 45, 926–935(1997).

[CrossRef]

T. Girasole, H. Bultynck, G. Gouesbet, G. Gréhan, F. Le Meur, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, C. Rozé, and D. Wysoczanski, “Cylindrical fibre orientation analysis by light scattering. Part 1: numerical aspects,” Part. Part. Syst. Charact. 14, 163–174 (1997).

T. Girasole, G. Gouesbet, G. Gréhan, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, and D. Wysoczanski, “Cylindrical fiber orientation analysis by light scattering. Part 2: experimental aspects,” Part. Part. Syst. Charact. 14, 211–218 (1997).

J. A. Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,” J. Opt. Soc. Am. A 14, 640–652 (1997).

[CrossRef]

C. L. Adler, J. A. Lock, B. R. Stone, and C. J. Garcia, “High-order interior caustics produced in scattering of a diagonally incident plane wave by a circular cylinder,” J. Opt. Soc. Am. A 14, 1305–1315 (1997).

[CrossRef]

J. A. Lock and C. L. Adler, “Debye-series analysis of the first-order rainbow produced in scattering of a diagonally incident plane wave by a circular cylinder,” J. Opt. Soc. Am. A 14, 1316–1328 (1997).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in GLMT-framework, formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

D. Lebrun, S. Belaid, C. Özkul, K. F. Ren, and G. Gréhan, “Enhancement of wire diameter measurements: comparison between Fraunhofer diffraction and Lorenz–Mie theory,” Opt. Eng. 35, 946–950 (1996).

[CrossRef]

P. Yang and K. N. Liou, “Geometrics-optics-integral-equation method for light scattering by non-spherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996).

[CrossRef]

V. V. Varadan, “Scattering matrix for elastic waves. II. Application to elliptic cylinders,” J. Acoust. Soc. Am. 63, 1014–1024 (1978).

[CrossRef]

J. A. Lock, C. L. Adler, and E. A. Hovenac, “Exterior caustics produced in scattering of a diagonally incident plane wave by a circular cylinder: semiclassical scattering theory analysis,” J. Opt. Soc. Am. A 17, 1846–1856 (2000).

[CrossRef]

C. L. Adler, J. A. Lock, and B. R. Stone, “Rainbow scattering by a cylinder with a nearly elliptical cross section,” Appl. Opt. 37, 1540–1550 (1998).

[CrossRef]

J. A. Lock and C. L. Adler, “Debye-series analysis of the first-order rainbow produced in scattering of a diagonally incident plane wave by a circular cylinder,” J. Opt. Soc. Am. A 14, 1316–1328 (1997).

[CrossRef]

C. L. Adler, J. A. Lock, B. R. Stone, and C. J. Garcia, “High-order interior caustics produced in scattering of a diagonally incident plane wave by a circular cylinder,” J. Opt. Soc. Am. A 14, 1305–1315 (1997).

[CrossRef]

S. S. Seker and G. Apaydin, “Light scattering by thin curved dielectric surface and cylinder,” in Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2009), pp. I-29–I-32.

L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112, 1492–1508(2011).

[CrossRef]

P. Yang, H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, M. I. Mishchenko, G. W. Kattawar, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512–5523 (2005).

[CrossRef]

D. Lebrun, S. Belaid, C. Özkul, K. F. Ren, and G. Gréhan, “Enhancement of wire diameter measurements: comparison between Fraunhofer diffraction and Lorenz–Mie theory,” Opt. Eng. 35, 946–950 (1996).

[CrossRef]

L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112, 1492–1508(2011).

[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes (Taylor & Francis, 1988).

F. Onofri, A. Lenoble, H. Bultynck, and P.-H. Guéring, “High-resolution laser diffractometry for the on-line sizing of small transparent fibres,” Opt. Commun. 234, 183–191 (2004).

[CrossRef]

T. Girasole, H. Bultynck, G. Gouesbet, G. Gréhan, F. Le Meur, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, C. Rozé, and D. Wysoczanski, “Cylindrical fibre orientation analysis by light scattering. Part 1: numerical aspects,” Part. Part. Syst. Charact. 14, 163–174 (1997).

F. Xu, K. F. Ren, X. Cai, and J. Shen, “Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. II. By a spheroidal particle with end-on incidence,” Appl. Opt. 45, 5000–5009 (2006).

[CrossRef]

F. Xu, K. F. Ren, and X. Cai, “Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. I. By a spherical particle,” Appl. Opt. 45, 4990–4999 (2006).

[CrossRef]

S. Caorsi, M. Pastorino, and M. Raffetto, “Electromagnetic scattering by a multilayer elliptic cylinder under transverse-magnetic illumination: series solution in terms of Mathieu functions,” IEEE Trans. Antennas Propag. 45, 926–935(1997).

[CrossRef]

A. K. Hamid and F. R. Cooray, “Scattering by a perfect electromagnetic conducting elliptic cylinder,” PIER Lett. 10, 59–67 (2009).

P. Yang, H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, M. I. Mishchenko, G. W. Kattawar, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512–5523 (2005).

[CrossRef]

K. F. Ren, F. Onofri, C. Rozé, and T. Girasole, “Vectorial complex ray model and application to two-dimensional scattering of plane wave by a spheroidal particle,” Opt. Lett. 36, 370–372 (2011).

[CrossRef]

T. Girasole, H. Bultynck, G. Gouesbet, G. Gréhan, F. Le Meur, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, C. Rozé, and D. Wysoczanski, “Cylindrical fibre orientation analysis by light scattering. Part 1: numerical aspects,” Part. Part. Syst. Charact. 14, 163–174 (1997).

T. Girasole, G. Gouesbet, G. Gréhan, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, and D. Wysoczanski, “Cylindrical fiber orientation analysis by light scattering. Part 2: experimental aspects,” Part. Part. Syst. Charact. 14, 211–218 (1997).

K. F. Ren, C. Rozé, and T. Girasole, “Scattering and transversal divergence of anellipsoidal particle by using vectorial complex ray model,” J. Quant. Spectrosc. Radiat. Transfer, (to be published).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Localized approximation for Gaussian beams in elliptical cylinder coordinates,” Appl. Opt. 39, 1008–1025 (2000).

[CrossRef]

G. Gouesbet and L. Mees, “Validity of the elliptical cylinder localized approximation for arbitrary shaped beams in generalized Lorenz–Mie theory for elliptical cylinders,” J. Opt. Soc. Am. A 16, 2946–2958 (1999).

[CrossRef]

G. Gouesbet and L. Mees, “Generalized Lorenz–Mie theory for infinitely long elliptical cylinders,” J. Opt. Soc. Am. A 16, 1333–1341 (1999).

[CrossRef]

G. Gouesbet, K. F. Ren, L. Mees, and G. Gréhan, “Cylindrical localized approximation to speed up computations for Gaussian beams in the generalized Lorenz–Mie theory for cylinders, with arbitrary location and orientation of the scatterer,” Appl. Opt. 38, 2647–2665 (1999).

[CrossRef]

L. Mees, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation, numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Description of arbitrary shaped beams in elliptical cylinder coordinates, by using a plane wave spectrum approach,” Opt. Commun. 161, 63–78 (1999).

[CrossRef]

X. Han, K. F. Ren, Z. Wu, F. Corbin, G. Gouesbet, and G. Gréhan, “Characterization of initial disturbances in liquid jet by rainbow sizing,” Appl. Opt. 37, 8498–8503 (1998).

[CrossRef]

T. Girasole, G. Gouesbet, G. Gréhan, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, and D. Wysoczanski, “Cylindrical fiber orientation analysis by light scattering. Part 2: experimental aspects,” Part. Part. Syst. Charact. 14, 211–218 (1997).

T. Girasole, H. Bultynck, G. Gouesbet, G. Gréhan, F. Le Meur, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, C. Rozé, and D. Wysoczanski, “Cylindrical fibre orientation analysis by light scattering. Part 1: numerical aspects,” Part. Part. Syst. Charact. 14, 163–174 (1997).

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in GLMT-framework, formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Localized approximation for Gaussian beams in elliptical cylinder coordinates,” Appl. Opt. 39, 1008–1025 (2000).

[CrossRef]

G. Gouesbet, K. F. Ren, L. Mees, and G. Gréhan, “Cylindrical localized approximation to speed up computations for Gaussian beams in the generalized Lorenz–Mie theory for cylinders, with arbitrary location and orientation of the scatterer,” Appl. Opt. 38, 2647–2665 (1999).

[CrossRef]

L. Mees, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation, numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Description of arbitrary shaped beams in elliptical cylinder coordinates, by using a plane wave spectrum approach,” Opt. Commun. 161, 63–78 (1999).

[CrossRef]

X. Han, K. F. Ren, Z. Wu, F. Corbin, G. Gouesbet, and G. Gréhan, “Characterization of initial disturbances in liquid jet by rainbow sizing,” Appl. Opt. 37, 8498–8503 (1998).

[CrossRef]

T. Girasole, G. Gouesbet, G. Gréhan, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, and D. Wysoczanski, “Cylindrical fiber orientation analysis by light scattering. Part 2: experimental aspects,” Part. Part. Syst. Charact. 14, 211–218 (1997).

T. Girasole, H. Bultynck, G. Gouesbet, G. Gréhan, F. Le Meur, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, C. Rozé, and D. Wysoczanski, “Cylindrical fibre orientation analysis by light scattering. Part 1: numerical aspects,” Part. Part. Syst. Charact. 14, 163–174 (1997).

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in GLMT-framework, formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

D. Lebrun, S. Belaid, C. Özkul, K. F. Ren, and G. Gréhan, “Enhancement of wire diameter measurements: comparison between Fraunhofer diffraction and Lorenz–Mie theory,” Opt. Eng. 35, 946–950 (1996).

[CrossRef]

F. Onofri, A. Lenoble, H. Bultynck, and P.-H. Guéring, “High-resolution laser diffractometry for the on-line sizing of small transparent fibres,” Opt. Commun. 234, 183–191 (2004).

[CrossRef]

A. K. Hamid and F. R. Cooray, “Scattering by a perfect electromagnetic conducting elliptic cylinder,” PIER Lett. 10, 59–67 (2009).

R. Li, X. Han, and K. F. Ren, “Generalized Debye series expansion of electromagnetic plane wave scattering by an infinite multilayered cylinder at oblique incidence,” Phys. Rev. E 79, 036602 (2009).

[CrossRef]

R. Li, X. Han, H. Jiang, and K. F. Ren, “Debye series of normally incident plane wave scattering by an infinite multi-layered cylinder,” Appl. Opt. 45, 6255–6262 (2006).

[CrossRef]

X. Han, K. F. Ren, Z. Wu, F. Corbin, G. Gouesbet, and G. Gréhan, “Characterization of initial disturbances in liquid jet by rainbow sizing,” Appl. Opt. 37, 8498–8503 (1998).

[CrossRef]

M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 2000).

L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112, 1492–1508(2011).

[CrossRef]

P. Yang, H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, M. I. Mishchenko, G. W. Kattawar, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512–5523 (2005).

[CrossRef]

P. Yang, H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, M. I. Mishchenko, G. W. Kattawar, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512–5523 (2005).

[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112, 1492–1508(2011).

[CrossRef]

Z. Zhang, P. Yang, G. W. Kattawar, and W. J. Wiscombe, “Single scattering properties of platonic solids in geometric-optics regime,” J. Quant. Spectrosc. Radiat. Transfer 106, 595–603 (2007).

[CrossRef]

P. Yang, H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, M. I. Mishchenko, G. W. Kattawar, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512–5523 (2005).

[CrossRef]

T. Girasole, H. Bultynck, G. Gouesbet, G. Gréhan, F. Le Meur, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, C. Rozé, and D. Wysoczanski, “Cylindrical fibre orientation analysis by light scattering. Part 1: numerical aspects,” Part. Part. Syst. Charact. 14, 163–174 (1997).

T. Girasole, H. Bultynck, G. Gouesbet, G. Gréhan, F. Le Meur, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, C. Rozé, and D. Wysoczanski, “Cylindrical fibre orientation analysis by light scattering. Part 1: numerical aspects,” Part. Part. Syst. Charact. 14, 163–174 (1997).

T. Girasole, G. Gouesbet, G. Gréhan, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, and D. Wysoczanski, “Cylindrical fiber orientation analysis by light scattering. Part 2: experimental aspects,” Part. Part. Syst. Charact. 14, 211–218 (1997).

D. Lebrun, S. Belaid, C. Özkul, K. F. Ren, and G. Gréhan, “Enhancement of wire diameter measurements: comparison between Fraunhofer diffraction and Lorenz–Mie theory,” Opt. Eng. 35, 946–950 (1996).

[CrossRef]

F. Onofri, A. Lenoble, H. Bultynck, and P.-H. Guéring, “High-resolution laser diffractometry for the on-line sizing of small transparent fibres,” Opt. Commun. 234, 183–191 (2004).

[CrossRef]

R. Li, X. Han, and K. F. Ren, “Generalized Debye series expansion of electromagnetic plane wave scattering by an infinite multilayered cylinder at oblique incidence,” Phys. Rev. E 79, 036602 (2009).

[CrossRef]

R. Li, X. Han, H. Jiang, and K. F. Ren, “Debye series of normally incident plane wave scattering by an infinite multi-layered cylinder,” Appl. Opt. 45, 6255–6262 (2006).

[CrossRef]

J. A. Lock, C. L. Adler, and E. A. Hovenac, “Exterior caustics produced in scattering of a diagonally incident plane wave by a circular cylinder: semiclassical scattering theory analysis,” J. Opt. Soc. Am. A 17, 1846–1856 (2000).

[CrossRef]

C. L. Adler, J. A. Lock, and B. R. Stone, “Rainbow scattering by a cylinder with a nearly elliptical cross section,” Appl. Opt. 37, 1540–1550 (1998).

[CrossRef]

J. A. Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,” J. Opt. Soc. Am. A 14, 640–652 (1997).

[CrossRef]

C. L. Adler, J. A. Lock, B. R. Stone, and C. J. Garcia, “High-order interior caustics produced in scattering of a diagonally incident plane wave by a circular cylinder,” J. Opt. Soc. Am. A 14, 1305–1315 (1997).

[CrossRef]

J. A. Lock and C. L. Adler, “Debye-series analysis of the first-order rainbow produced in scattering of a diagonally incident plane wave by a circular cylinder,” J. Opt. Soc. Am. A 14, 1316–1328 (1997).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Localized approximation for Gaussian beams in elliptical cylinder coordinates,” Appl. Opt. 39, 1008–1025 (2000).

[CrossRef]

G. Gouesbet and L. Mees, “Validity of the elliptical cylinder localized approximation for arbitrary shaped beams in generalized Lorenz–Mie theory for elliptical cylinders,” J. Opt. Soc. Am. A 16, 2946–2958 (1999).

[CrossRef]

G. Gouesbet and L. Mees, “Generalized Lorenz–Mie theory for infinitely long elliptical cylinders,” J. Opt. Soc. Am. A 16, 1333–1341 (1999).

[CrossRef]

G. Gouesbet, K. F. Ren, L. Mees, and G. Gréhan, “Cylindrical localized approximation to speed up computations for Gaussian beams in the generalized Lorenz–Mie theory for cylinders, with arbitrary location and orientation of the scatterer,” Appl. Opt. 38, 2647–2665 (1999).

[CrossRef]

L. Mees, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation, numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Description of arbitrary shaped beams in elliptical cylinder coordinates, by using a plane wave spectrum approach,” Opt. Commun. 161, 63–78 (1999).

[CrossRef]

P. Yang, H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, M. I. Mishchenko, G. W. Kattawar, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512–5523 (2005).

[CrossRef]

M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 2000).

T. Girasole, G. Gouesbet, G. Gréhan, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, and D. Wysoczanski, “Cylindrical fiber orientation analysis by light scattering. Part 2: experimental aspects,” Part. Part. Syst. Charact. 14, 211–218 (1997).

T. Girasole, H. Bultynck, G. Gouesbet, G. Gréhan, F. Le Meur, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, C. Rozé, and D. Wysoczanski, “Cylindrical fibre orientation analysis by light scattering. Part 1: numerical aspects,” Part. Part. Syst. Charact. 14, 163–174 (1997).

K. F. Ren, F. Onofri, C. Rozé, and T. Girasole, “Vectorial complex ray model and application to two-dimensional scattering of plane wave by a spheroidal particle,” Opt. Lett. 36, 370–372 (2011).

[CrossRef]

F. Onofri, A. Lenoble, H. Bultynck, and P.-H. Guéring, “High-resolution laser diffractometry for the on-line sizing of small transparent fibres,” Opt. Commun. 234, 183–191 (2004).

[CrossRef]

D. Lebrun, S. Belaid, C. Özkul, K. F. Ren, and G. Gréhan, “Enhancement of wire diameter measurements: comparison between Fraunhofer diffraction and Lorenz–Mie theory,” Opt. Eng. 35, 946–950 (1996).

[CrossRef]

S. Caorsi, M. Pastorino, and M. Raffetto, “Electromagnetic scattering by a multilayer elliptic cylinder under transverse-magnetic illumination: series solution in terms of Mathieu functions,” IEEE Trans. Antennas Propag. 45, 926–935(1997).

[CrossRef]

S. Caorsi, M. Pastorino, and M. Raffetto, “Electromagnetic scattering by a multilayer elliptic cylinder under transverse-magnetic illumination: series solution in terms of Mathieu functions,” IEEE Trans. Antennas Propag. 45, 926–935(1997).

[CrossRef]

K. F. Ren, F. Onofri, C. Rozé, and T. Girasole, “Vectorial complex ray model and application to two-dimensional scattering of plane wave by a spheroidal particle,” Opt. Lett. 36, 370–372 (2011).

[CrossRef]

R. Li, X. Han, and K. F. Ren, “Generalized Debye series expansion of electromagnetic plane wave scattering by an infinite multilayered cylinder at oblique incidence,” Phys. Rev. E 79, 036602 (2009).

[CrossRef]

F. Xu, K. F. Ren, X. Cai, and J. Shen, “Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. II. By a spheroidal particle with end-on incidence,” Appl. Opt. 45, 5000–5009 (2006).

[CrossRef]

R. Li, X. Han, H. Jiang, and K. F. Ren, “Debye series of normally incident plane wave scattering by an infinite multi-layered cylinder,” Appl. Opt. 45, 6255–6262 (2006).

[CrossRef]

F. Xu, K. F. Ren, and X. Cai, “Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. I. By a spherical particle,” Appl. Opt. 45, 4990–4999 (2006).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Localized approximation for Gaussian beams in elliptical cylinder coordinates,” Appl. Opt. 39, 1008–1025 (2000).

[CrossRef]

G. Gouesbet, K. F. Ren, L. Mees, and G. Gréhan, “Cylindrical localized approximation to speed up computations for Gaussian beams in the generalized Lorenz–Mie theory for cylinders, with arbitrary location and orientation of the scatterer,” Appl. Opt. 38, 2647–2665 (1999).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Description of arbitrary shaped beams in elliptical cylinder coordinates, by using a plane wave spectrum approach,” Opt. Commun. 161, 63–78 (1999).

[CrossRef]

L. Mees, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation, numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[CrossRef]

X. Han, K. F. Ren, Z. Wu, F. Corbin, G. Gouesbet, and G. Gréhan, “Characterization of initial disturbances in liquid jet by rainbow sizing,” Appl. Opt. 37, 8498–8503 (1998).

[CrossRef]

T. Girasole, G. Gouesbet, G. Gréhan, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, and D. Wysoczanski, “Cylindrical fiber orientation analysis by light scattering. Part 2: experimental aspects,” Part. Part. Syst. Charact. 14, 211–218 (1997).

T. Girasole, H. Bultynck, G. Gouesbet, G. Gréhan, F. Le Meur, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, C. Rozé, and D. Wysoczanski, “Cylindrical fibre orientation analysis by light scattering. Part 1: numerical aspects,” Part. Part. Syst. Charact. 14, 163–174 (1997).

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in GLMT-framework, formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

D. Lebrun, S. Belaid, C. Özkul, K. F. Ren, and G. Gréhan, “Enhancement of wire diameter measurements: comparison between Fraunhofer diffraction and Lorenz–Mie theory,” Opt. Eng. 35, 946–950 (1996).

[CrossRef]

K. F. Ren, C. Rozé, and T. Girasole, “Scattering and transversal divergence of anellipsoidal particle by using vectorial complex ray model,” J. Quant. Spectrosc. Radiat. Transfer, (to be published).

[CrossRef]

K. F. Ren, F. Onofri, C. Rozé, and T. Girasole, “Vectorial complex ray model and application to two-dimensional scattering of plane wave by a spheroidal particle,” Opt. Lett. 36, 370–372 (2011).

[CrossRef]

T. Girasole, H. Bultynck, G. Gouesbet, G. Gréhan, F. Le Meur, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, C. Rozé, and D. Wysoczanski, “Cylindrical fibre orientation analysis by light scattering. Part 1: numerical aspects,” Part. Part. Syst. Charact. 14, 163–174 (1997).

K. F. Ren, C. Rozé, and T. Girasole, “Scattering and transversal divergence of anellipsoidal particle by using vectorial complex ray model,” J. Quant. Spectrosc. Radiat. Transfer, (to be published).

[CrossRef]

S. S. Seker and G. Apaydin, “Light scattering by thin curved dielectric surface and cylinder,” in Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2009), pp. I-29–I-32.

J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes (Taylor & Francis, 1988).

C. L. Adler, J. A. Lock, and B. R. Stone, “Rainbow scattering by a cylinder with a nearly elliptical cross section,” Appl. Opt. 37, 1540–1550 (1998).

[CrossRef]

C. L. Adler, J. A. Lock, B. R. Stone, and C. J. Garcia, “High-order interior caustics produced in scattering of a diagonally incident plane wave by a circular cylinder,” J. Opt. Soc. Am. A 14, 1305–1315 (1997).

[CrossRef]

M. Yamada, A. Tomoe, and H. Takara, “Light scattering characteristics of hole formed by fibre fuse,” Electron. Lett. 48, 519–520 (2012).

[CrossRef]

M. Yamada, A. Tomoe, and H. Takara, “Light scattering characteristics of hole formed by fibre fuse,” Electron. Lett. 48, 519–520 (2012).

[CrossRef]

M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 2000).

J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes (Taylor & Francis, 1988).

C. A. Valagiannopoulos, “Electromagnetic scattering of the field of a metamaterial slab antenna by an arbitrarily positioned cluster of metallic cylinders,” Progress Electromagn. Res. 114, 51–66 (2011).

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1957).

V. V. Varadan, “Scattering matrix for elastic waves. II. Application to elliptic cylinders,” J. Acoust. Soc. Am. 63, 1014–1024 (1978).

[CrossRef]

P. Yang, H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, M. I. Mishchenko, G. W. Kattawar, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512–5523 (2005).

[CrossRef]

Z. Zhang, P. Yang, G. W. Kattawar, and W. J. Wiscombe, “Single scattering properties of platonic solids in geometric-optics regime,” J. Quant. Spectrosc. Radiat. Transfer 106, 595–603 (2007).

[CrossRef]

T. Girasole, H. Bultynck, G. Gouesbet, G. Gréhan, F. Le Meur, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, C. Rozé, and D. Wysoczanski, “Cylindrical fibre orientation analysis by light scattering. Part 1: numerical aspects,” Part. Part. Syst. Charact. 14, 163–174 (1997).

T. Girasole, G. Gouesbet, G. Gréhan, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, and D. Wysoczanski, “Cylindrical fiber orientation analysis by light scattering. Part 2: experimental aspects,” Part. Part. Syst. Charact. 14, 211–218 (1997).

F. Xu, K. F. Ren, X. Cai, and J. Shen, “Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. II. By a spheroidal particle with end-on incidence,” Appl. Opt. 45, 5000–5009 (2006).

[CrossRef]

F. Xu, K. F. Ren, and X. Cai, “Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. I. By a spherical particle,” Appl. Opt. 45, 4990–4999 (2006).

[CrossRef]

M. Yamada, A. Tomoe, and H. Takara, “Light scattering characteristics of hole formed by fibre fuse,” Electron. Lett. 48, 519–520 (2012).

[CrossRef]

L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112, 1492–1508(2011).

[CrossRef]

P. Yang and K. N. Liou, “An exact geometric-optics approach for computing the optical properties of large absorbing particles,” J. Quant. Spectrosc. Radiat. Transfer 110, 1162–1177 (2009).

[CrossRef]

Z. Zhang, P. Yang, G. W. Kattawar, and W. J. Wiscombe, “Single scattering properties of platonic solids in geometric-optics regime,” J. Quant. Spectrosc. Radiat. Transfer 106, 595–603 (2007).

[CrossRef]

P. Yang, H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, M. I. Mishchenko, G. W. Kattawar, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512–5523 (2005).

[CrossRef]

P. Yang and K. N. Liou, “Geometrics-optics-integral-equation method for light scattering by non-spherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996).

[CrossRef]

Z. Zhang, P. Yang, G. W. Kattawar, and W. J. Wiscombe, “Single scattering properties of platonic solids in geometric-optics regime,” J. Quant. Spectrosc. Radiat. Transfer 106, 595–603 (2007).

[CrossRef]

D. Marcuse, “Light scattering from elliptical fibers,” Appl. Opt. 13, 1903–1905 (1974).

[CrossRef]

A. R. Steinhardt and L. Fukshansky, “Geometrical optics approach to the intensity distribution in finite cylindrical media,” Appl. Opt. 26, 3778–3789 (1987).

[CrossRef]

E. A. Hovenac, “Calculation of far-field scattering from nonspherical particles using a geometrical optics approach,” Appl. Opt. 30, 4739–4746 (1991).

[CrossRef]

P. Yang and K. N. Liou, “Geometrics-optics-integral-equation method for light scattering by non-spherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996).

[CrossRef]

C. L. Adler, J. A. Lock, and B. R. Stone, “Rainbow scattering by a cylinder with a nearly elliptical cross section,” Appl. Opt. 37, 1540–1550 (1998).

[CrossRef]

X. Han, K. F. Ren, Z. Wu, F. Corbin, G. Gouesbet, and G. Gréhan, “Characterization of initial disturbances in liquid jet by rainbow sizing,” Appl. Opt. 37, 8498–8503 (1998).

[CrossRef]

L. Mees, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation, numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[CrossRef]

G. Gouesbet, K. F. Ren, L. Mees, and G. Gréhan, “Cylindrical localized approximation to speed up computations for Gaussian beams in the generalized Lorenz–Mie theory for cylinders, with arbitrary location and orientation of the scatterer,” Appl. Opt. 38, 2647–2665 (1999).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Localized approximation for Gaussian beams in elliptical cylinder coordinates,” Appl. Opt. 39, 1008–1025 (2000).

[CrossRef]

P. Yang, H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, M. I. Mishchenko, G. W. Kattawar, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512–5523 (2005).

[CrossRef]

F. Xu, K. F. Ren, and X. Cai, “Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. I. By a spherical particle,” Appl. Opt. 45, 4990–4999 (2006).

[CrossRef]

F. Xu, K. F. Ren, X. Cai, and J. Shen, “Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. II. By a spheroidal particle with end-on incidence,” Appl. Opt. 45, 5000–5009 (2006).

[CrossRef]

R. Li, X. Han, H. Jiang, and K. F. Ren, “Debye series of normally incident plane wave scattering by an infinite multi-layered cylinder,” Appl. Opt. 45, 6255–6262 (2006).

[CrossRef]

M. Yamada, A. Tomoe, and H. Takara, “Light scattering characteristics of hole formed by fibre fuse,” Electron. Lett. 48, 519–520 (2012).

[CrossRef]

S. Caorsi, M. Pastorino, and M. Raffetto, “Electromagnetic scattering by a multilayer elliptic cylinder under transverse-magnetic illumination: series solution in terms of Mathieu functions,” IEEE Trans. Antennas Propag. 45, 926–935(1997).

[CrossRef]

V. V. Varadan, “Scattering matrix for elastic waves. II. Application to elliptic cylinders,” J. Acoust. Soc. Am. 63, 1014–1024 (1978).

[CrossRef]

G. Gouesbet and L. Mees, “Generalized Lorenz–Mie theory for infinitely long elliptical cylinders,” J. Opt. Soc. Am. A 16, 1333–1341 (1999).

[CrossRef]

G. Gouesbet and L. Mees, “Validity of the elliptical cylinder localized approximation for arbitrary shaped beams in generalized Lorenz–Mie theory for elliptical cylinders,” J. Opt. Soc. Am. A 16, 2946–2958 (1999).

[CrossRef]

J. A. Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,” J. Opt. Soc. Am. A 14, 640–652 (1997).

[CrossRef]

C. L. Adler, J. A. Lock, B. R. Stone, and C. J. Garcia, “High-order interior caustics produced in scattering of a diagonally incident plane wave by a circular cylinder,” J. Opt. Soc. Am. A 14, 1305–1315 (1997).

[CrossRef]

J. A. Lock and C. L. Adler, “Debye-series analysis of the first-order rainbow produced in scattering of a diagonally incident plane wave by a circular cylinder,” J. Opt. Soc. Am. A 14, 1316–1328 (1997).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in GLMT-framework, formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

S. C. Mao and Z.-S. Wu, “Scattering by an infinite homogenous anisotropic elliptic cylinder in terms of Mathieu functions and fourier series,” J. Opt. Soc. Am. A 25, 2925–2931(2008).

[CrossRef]

S. C. Mao, Z. S. Wu, and H. Y. Li, “Three-dimensional scattering by an infinite homogeneous anisotropic elliptic cylinder in terms of Mathieu functions,” J. Opt. Soc. Am. A 26, 2282–2291 (2009).

[CrossRef]

J. A. Lock, C. L. Adler, and E. A. Hovenac, “Exterior caustics produced in scattering of a diagonally incident plane wave by a circular cylinder: semiclassical scattering theory analysis,” J. Opt. Soc. Am. A 17, 1846–1856 (2000).

[CrossRef]

Z. Zhang, P. Yang, G. W. Kattawar, and W. J. Wiscombe, “Single scattering properties of platonic solids in geometric-optics regime,” J. Quant. Spectrosc. Radiat. Transfer 106, 595–603 (2007).

[CrossRef]

L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112, 1492–1508(2011).

[CrossRef]

P. Yang and K. N. Liou, “An exact geometric-optics approach for computing the optical properties of large absorbing particles,” J. Quant. Spectrosc. Radiat. Transfer 110, 1162–1177 (2009).

[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Description of arbitrary shaped beams in elliptical cylinder coordinates, by using a plane wave spectrum approach,” Opt. Commun. 161, 63–78 (1999).

[CrossRef]

F. Onofri, A. Lenoble, H. Bultynck, and P.-H. Guéring, “High-resolution laser diffractometry for the on-line sizing of small transparent fibres,” Opt. Commun. 234, 183–191 (2004).

[CrossRef]

D. Lebrun, S. Belaid, C. Özkul, K. F. Ren, and G. Gréhan, “Enhancement of wire diameter measurements: comparison between Fraunhofer diffraction and Lorenz–Mie theory,” Opt. Eng. 35, 946–950 (1996).

[CrossRef]

T. Girasole, H. Bultynck, G. Gouesbet, G. Gréhan, F. Le Meur, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, C. Rozé, and D. Wysoczanski, “Cylindrical fibre orientation analysis by light scattering. Part 1: numerical aspects,” Part. Part. Syst. Charact. 14, 163–174 (1997).

T. Girasole, G. Gouesbet, G. Gréhan, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, and D. Wysoczanski, “Cylindrical fiber orientation analysis by light scattering. Part 2: experimental aspects,” Part. Part. Syst. Charact. 14, 211–218 (1997).

R. Li, X. Han, and K. F. Ren, “Generalized Debye series expansion of electromagnetic plane wave scattering by an infinite multilayered cylinder at oblique incidence,” Phys. Rev. E 79, 036602 (2009).

[CrossRef]

A. K. Hamid and F. R. Cooray, “Scattering by a perfect electromagnetic conducting elliptic cylinder,” PIER Lett. 10, 59–67 (2009).

C. A. Valagiannopoulos, “Electromagnetic scattering of the field of a metamaterial slab antenna by an arbitrarily positioned cluster of metallic cylinders,” Progress Electromagn. Res. 114, 51–66 (2011).

J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes (Taylor & Francis, 1988).

S. S. Seker and G. Apaydin, “Light scattering by thin curved dielectric surface and cylinder,” in Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2009), pp. I-29–I-32.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1957).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

K. F. Ren, C. Rozé, and T. Girasole, “Scattering and transversal divergence of anellipsoidal particle by using vectorial complex ray model,” J. Quant. Spectrosc. Radiat. Transfer, (to be published).

[CrossRef]

M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 2000).