Abstract

The vectorial complex ray model (VCRM) is applied to the light scattering of an elliptical cylinder illuminated by a plane wave. In the VCRM, all waves are described by vectorial complex rays, and the scattering intensities are computed by the superposition of the complex amplitudes of the vectorial rays. The significant merit of this approach is that the wave properties are integrated in the ray model such that the divergence/convergence of the wave each time it encounters a dioptric surface is deduced by the wavefront curvature equation, and the phase shifts due to the focal lines are determined directly by the curvature of the wavefront. The approach is particularly suitable for a large cylinder with an elliptical cross section.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Girasole, H. Bultynck, G. Gouesbet, G. Gréhan, F. Le Meur, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, C. Rozé, and D. Wysoczanski, “Cylindrical fibre orientation analysis by light scattering. Part 1: numerical aspects,” Part. Part. Syst. Charact. 14, 163–174 (1997).
  2. T. Girasole, G. Gouesbet, G. Gréhan, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, and D. Wysoczanski, “Cylindrical fiber orientation analysis by light scattering. Part 2: experimental aspects,” Part. Part. Syst. Charact. 14, 211–218 (1997).
  3. D. Lebrun, S. Belaid, C. Özkul, K. F. Ren, and G. Gréhan, “Enhancement of wire diameter measurements: comparison between Fraunhofer diffraction and Lorenz–Mie theory,” Opt. Eng. 35, 946–950 (1996).
    [CrossRef]
  4. X. Han, K. F. Ren, Z. Wu, F. Corbin, G. Gouesbet, and G. Gréhan, “Characterization of initial disturbances in liquid jet by rainbow sizing,” Appl. Opt. 37, 8498–8503 (1998).
    [CrossRef]
  5. S. S. Seker and G. Apaydin, “Light scattering by thin curved dielectric surface and cylinder,” in Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2009), pp. I-29–I-32.
  6. C. A. Valagiannopoulos, “Electromagnetic scattering of the field of a metamaterial slab antenna by an arbitrarily positioned cluster of metallic cylinders,” Progress Electromagn. Res. 114, 51–66 (2011).
  7. M. Yamada, A. Tomoe, and H. Takara, “Light scattering characteristics of hole formed by fibre fuse,” Electron. Lett. 48, 519–520 (2012).
    [CrossRef]
  8. C. Yeh, “Backscattering cross section of a dielectric elliptical cylinder,” J. Opt. Soc. Am. 55, 309–312 (1965).
    [CrossRef]
  9. J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes (Taylor & Francis, 1988).
  10. A. K. Hamid and F. R. Cooray, “Scattering by a perfect electromagnetic conducting elliptic cylinder,” PIER Lett. 10, 59–67 (2009).
  11. V. V. Varadan, “Scattering matrix for elastic waves. II. Application to elliptic cylinders,” J. Acoust. Soc. Am. 63, 1014–1024 (1978).
    [CrossRef]
  12. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1957).
  13. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  14. J. A. Lock and C. L. Adler, “Debye-series analysis of the first-order rainbow produced in scattering of a diagonally incident plane wave by a circular cylinder,” J. Opt. Soc. Am. A 14, 1316–1328 (1997).
    [CrossRef]
  15. R. Li, X. Han, H. Jiang, and K. F. Ren, “Debye series of normally incident plane wave scattering by an infinite multi-layered cylinder,” Appl. Opt. 45, 6255–6262 (2006).
    [CrossRef]
  16. R. Li, X. Han, and K. F. Ren, “Generalized Debye series expansion of electromagnetic plane wave scattering by an infinite multilayered cylinder at oblique incidence,” Phys. Rev. E 79, 036602 (2009).
    [CrossRef]
  17. K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in GLMT-framework, formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).
    [CrossRef]
  18. G. Gouesbet, K. F. Ren, L. Mees, and G. Gréhan, “Cylindrical localized approximation to speed up computations for Gaussian beams in the generalized Lorenz–Mie theory for cylinders, with arbitrary location and orientation of the scatterer,” Appl. Opt. 38, 2647–2665 (1999).
    [CrossRef]
  19. L. Mees, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation, numerical results,” Appl. Opt. 38, 1867–1876 (1999).
    [CrossRef]
  20. J. A. Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,” J. Opt. Soc. Am. A 14, 640–652 (1997).
    [CrossRef]
  21. G. Gouesbet and L. Mees, “Generalized Lorenz–Mie theory for infinitely long elliptical cylinders,” J. Opt. Soc. Am. A 16, 1333–1341 (1999).
    [CrossRef]
  22. G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Localized approximation for Gaussian beams in elliptical cylinder coordinates,” Appl. Opt. 39, 1008–1025 (2000).
    [CrossRef]
  23. G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Description of arbitrary shaped beams in elliptical cylinder coordinates, by using a plane wave spectrum approach,” Opt. Commun. 161, 63–78 (1999).
    [CrossRef]
  24. S. C. Mao and Z.-S. Wu, “Scattering by an infinite homogenous anisotropic elliptic cylinder in terms of Mathieu functions and fourier series,” J. Opt. Soc. Am. A 25, 2925–2931(2008).
    [CrossRef]
  25. S. C. Mao, Z. S. Wu, and H. Y. Li, “Three-dimensional scattering by an infinite homogeneous anisotropic elliptic cylinder in terms of Mathieu functions,” J. Opt. Soc. Am. A 26, 2282–2291 (2009).
    [CrossRef]
  26. S. Caorsi, M. Pastorino, and M. Raffetto, “Electromagnetic scattering by a multilayer elliptic cylinder under transverse-magnetic illumination: series solution in terms of Mathieu functions,” IEEE Trans. Antennas Propag. 45, 926–935(1997).
    [CrossRef]
  27. D. Marcuse, “Light scattering from elliptical fibers,” Appl. Opt. 13, 1903–1905 (1974).
    [CrossRef]
  28. A. R. Steinhardt and L. Fukshansky, “Geometrical optics approach to the intensity distribution in finite cylindrical media,” Appl. Opt. 26, 3778–3789 (1987).
    [CrossRef]
  29. C. L. Adler, J. A. Lock, and B. R. Stone, “Rainbow scattering by a cylinder with a nearly elliptical cross section,” Appl. Opt. 37, 1540–1550 (1998).
    [CrossRef]
  30. P. Yang and K. N. Liou, “Geometrics-optics-integral-equation method for light scattering by non-spherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996).
    [CrossRef]
  31. P. Yang and K. N. Liou, “An exact geometric-optics approach for computing the optical properties of large absorbing particles,” J. Quant. Spectrosc. Radiat. Transfer 110, 1162–1177 (2009).
    [CrossRef]
  32. P. Yang, H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, M. I. Mishchenko, G. W. Kattawar, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512–5523 (2005).
    [CrossRef]
  33. Z. Zhang, P. Yang, G. W. Kattawar, and W. J. Wiscombe, “Single scattering properties of platonic solids in geometric-optics regime,” J. Quant. Spectrosc. Radiat. Transfer 106, 595–603 (2007).
    [CrossRef]
  34. L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112, 1492–1508(2011).
    [CrossRef]
  35. E. A. Hovenac, “Calculation of far-field scattering from nonspherical particles using a geometrical optics approach,” Appl. Opt. 30, 4739–4746 (1991).
    [CrossRef]
  36. F. Xu, K. F. Ren, and X. Cai, “Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. I. By a spherical particle,” Appl. Opt. 45, 4990–4999 (2006).
    [CrossRef]
  37. F. Xu, K. F. Ren, X. Cai, and J. Shen, “Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. II. By a spheroidal particle with end-on incidence,” Appl. Opt. 45, 5000–5009 (2006).
    [CrossRef]
  38. J. A. Lock, C. L. Adler, and E. A. Hovenac, “Exterior caustics produced in scattering of a diagonally incident plane wave by a circular cylinder: semiclassical scattering theory analysis,” J. Opt. Soc. Am. A 17, 1846–1856 (2000).
    [CrossRef]
  39. C. L. Adler, J. A. Lock, B. R. Stone, and C. J. Garcia, “High-order interior caustics produced in scattering of a diagonally incident plane wave by a circular cylinder,” J. Opt. Soc. Am. A 14, 1305–1315 (1997).
    [CrossRef]
  40. K. F. Ren, F. Onofri, C. Rozé, and T. Girasole, “Vectorial complex ray model and application to two-dimensional scattering of plane wave by a spheroidal particle,” Opt. Lett. 36, 370–372 (2011).
    [CrossRef]
  41. K. F. Ren, C. Rozé, and T. Girasole, “Scattering and transversal divergence of anellipsoidal particle by using vectorial complex ray model,” J. Quant. Spectrosc. Radiat. Transfer, (to be published).
    [CrossRef]
  42. F. Onofri, A. Lenoble, H. Bultynck, and P.-H. Guéring, “High-resolution laser diffractometry for the on-line sizing of small transparent fibres,” Opt. Commun. 234, 183–191 (2004).
    [CrossRef]
  43. G. Gouesbet and L. Mees, “Validity of the elliptical cylinder localized approximation for arbitrary shaped beams in generalized Lorenz–Mie theory for elliptical cylinders,” J. Opt. Soc. Am. A 16, 2946–2958 (1999).
    [CrossRef]
  44. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 2000).

2012

M. Yamada, A. Tomoe, and H. Takara, “Light scattering characteristics of hole formed by fibre fuse,” Electron. Lett. 48, 519–520 (2012).
[CrossRef]

2011

L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112, 1492–1508(2011).
[CrossRef]

C. A. Valagiannopoulos, “Electromagnetic scattering of the field of a metamaterial slab antenna by an arbitrarily positioned cluster of metallic cylinders,” Progress Electromagn. Res. 114, 51–66 (2011).

K. F. Ren, F. Onofri, C. Rozé, and T. Girasole, “Vectorial complex ray model and application to two-dimensional scattering of plane wave by a spheroidal particle,” Opt. Lett. 36, 370–372 (2011).
[CrossRef]

2009

P. Yang and K. N. Liou, “An exact geometric-optics approach for computing the optical properties of large absorbing particles,” J. Quant. Spectrosc. Radiat. Transfer 110, 1162–1177 (2009).
[CrossRef]

R. Li, X. Han, and K. F. Ren, “Generalized Debye series expansion of electromagnetic plane wave scattering by an infinite multilayered cylinder at oblique incidence,” Phys. Rev. E 79, 036602 (2009).
[CrossRef]

A. K. Hamid and F. R. Cooray, “Scattering by a perfect electromagnetic conducting elliptic cylinder,” PIER Lett. 10, 59–67 (2009).

S. C. Mao, Z. S. Wu, and H. Y. Li, “Three-dimensional scattering by an infinite homogeneous anisotropic elliptic cylinder in terms of Mathieu functions,” J. Opt. Soc. Am. A 26, 2282–2291 (2009).
[CrossRef]

2008

2007

Z. Zhang, P. Yang, G. W. Kattawar, and W. J. Wiscombe, “Single scattering properties of platonic solids in geometric-optics regime,” J. Quant. Spectrosc. Radiat. Transfer 106, 595–603 (2007).
[CrossRef]

2006

2005

2004

F. Onofri, A. Lenoble, H. Bultynck, and P.-H. Guéring, “High-resolution laser diffractometry for the on-line sizing of small transparent fibres,” Opt. Commun. 234, 183–191 (2004).
[CrossRef]

2000

1999

1998

1997

S. Caorsi, M. Pastorino, and M. Raffetto, “Electromagnetic scattering by a multilayer elliptic cylinder under transverse-magnetic illumination: series solution in terms of Mathieu functions,” IEEE Trans. Antennas Propag. 45, 926–935(1997).
[CrossRef]

T. Girasole, H. Bultynck, G. Gouesbet, G. Gréhan, F. Le Meur, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, C. Rozé, and D. Wysoczanski, “Cylindrical fibre orientation analysis by light scattering. Part 1: numerical aspects,” Part. Part. Syst. Charact. 14, 163–174 (1997).

T. Girasole, G. Gouesbet, G. Gréhan, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, and D. Wysoczanski, “Cylindrical fiber orientation analysis by light scattering. Part 2: experimental aspects,” Part. Part. Syst. Charact. 14, 211–218 (1997).

J. A. Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,” J. Opt. Soc. Am. A 14, 640–652 (1997).
[CrossRef]

C. L. Adler, J. A. Lock, B. R. Stone, and C. J. Garcia, “High-order interior caustics produced in scattering of a diagonally incident plane wave by a circular cylinder,” J. Opt. Soc. Am. A 14, 1305–1315 (1997).
[CrossRef]

J. A. Lock and C. L. Adler, “Debye-series analysis of the first-order rainbow produced in scattering of a diagonally incident plane wave by a circular cylinder,” J. Opt. Soc. Am. A 14, 1316–1328 (1997).
[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in GLMT-framework, formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).
[CrossRef]

1996

D. Lebrun, S. Belaid, C. Özkul, K. F. Ren, and G. Gréhan, “Enhancement of wire diameter measurements: comparison between Fraunhofer diffraction and Lorenz–Mie theory,” Opt. Eng. 35, 946–950 (1996).
[CrossRef]

P. Yang and K. N. Liou, “Geometrics-optics-integral-equation method for light scattering by non-spherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996).
[CrossRef]

1991

1987

1978

V. V. Varadan, “Scattering matrix for elastic waves. II. Application to elliptic cylinders,” J. Acoust. Soc. Am. 63, 1014–1024 (1978).
[CrossRef]

1974

1965

Adler, C. L.

Apaydin, G.

S. S. Seker and G. Apaydin, “Light scattering by thin curved dielectric surface and cylinder,” in Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2009), pp. I-29–I-32.

Baum, B. A.

L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112, 1492–1508(2011).
[CrossRef]

P. Yang, H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, M. I. Mishchenko, G. W. Kattawar, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512–5523 (2005).
[CrossRef]

Belaid, S.

D. Lebrun, S. Belaid, C. Özkul, K. F. Ren, and G. Gréhan, “Enhancement of wire diameter measurements: comparison between Fraunhofer diffraction and Lorenz–Mie theory,” Opt. Eng. 35, 946–950 (1996).
[CrossRef]

Bi, L.

L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112, 1492–1508(2011).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Bowman, J. J.

J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes (Taylor & Francis, 1988).

Bultynck, H.

F. Onofri, A. Lenoble, H. Bultynck, and P.-H. Guéring, “High-resolution laser diffractometry for the on-line sizing of small transparent fibres,” Opt. Commun. 234, 183–191 (2004).
[CrossRef]

T. Girasole, H. Bultynck, G. Gouesbet, G. Gréhan, F. Le Meur, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, C. Rozé, and D. Wysoczanski, “Cylindrical fibre orientation analysis by light scattering. Part 1: numerical aspects,” Part. Part. Syst. Charact. 14, 163–174 (1997).

Cai, X.

Caorsi, S.

S. Caorsi, M. Pastorino, and M. Raffetto, “Electromagnetic scattering by a multilayer elliptic cylinder under transverse-magnetic illumination: series solution in terms of Mathieu functions,” IEEE Trans. Antennas Propag. 45, 926–935(1997).
[CrossRef]

Cooray, F. R.

A. K. Hamid and F. R. Cooray, “Scattering by a perfect electromagnetic conducting elliptic cylinder,” PIER Lett. 10, 59–67 (2009).

Corbin, F.

Fu, Q.

Fukshansky, L.

Garcia, C. J.

Girasole, T.

K. F. Ren, F. Onofri, C. Rozé, and T. Girasole, “Vectorial complex ray model and application to two-dimensional scattering of plane wave by a spheroidal particle,” Opt. Lett. 36, 370–372 (2011).
[CrossRef]

T. Girasole, H. Bultynck, G. Gouesbet, G. Gréhan, F. Le Meur, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, C. Rozé, and D. Wysoczanski, “Cylindrical fibre orientation analysis by light scattering. Part 1: numerical aspects,” Part. Part. Syst. Charact. 14, 163–174 (1997).

T. Girasole, G. Gouesbet, G. Gréhan, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, and D. Wysoczanski, “Cylindrical fiber orientation analysis by light scattering. Part 2: experimental aspects,” Part. Part. Syst. Charact. 14, 211–218 (1997).

K. F. Ren, C. Rozé, and T. Girasole, “Scattering and transversal divergence of anellipsoidal particle by using vectorial complex ray model,” J. Quant. Spectrosc. Radiat. Transfer, (to be published).
[CrossRef]

Gouesbet, G.

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Localized approximation for Gaussian beams in elliptical cylinder coordinates,” Appl. Opt. 39, 1008–1025 (2000).
[CrossRef]

L. Mees, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation, numerical results,” Appl. Opt. 38, 1867–1876 (1999).
[CrossRef]

G. Gouesbet, K. F. Ren, L. Mees, and G. Gréhan, “Cylindrical localized approximation to speed up computations for Gaussian beams in the generalized Lorenz–Mie theory for cylinders, with arbitrary location and orientation of the scatterer,” Appl. Opt. 38, 2647–2665 (1999).
[CrossRef]

G. Gouesbet and L. Mees, “Generalized Lorenz–Mie theory for infinitely long elliptical cylinders,” J. Opt. Soc. Am. A 16, 1333–1341 (1999).
[CrossRef]

G. Gouesbet and L. Mees, “Validity of the elliptical cylinder localized approximation for arbitrary shaped beams in generalized Lorenz–Mie theory for elliptical cylinders,” J. Opt. Soc. Am. A 16, 2946–2958 (1999).
[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Description of arbitrary shaped beams in elliptical cylinder coordinates, by using a plane wave spectrum approach,” Opt. Commun. 161, 63–78 (1999).
[CrossRef]

X. Han, K. F. Ren, Z. Wu, F. Corbin, G. Gouesbet, and G. Gréhan, “Characterization of initial disturbances in liquid jet by rainbow sizing,” Appl. Opt. 37, 8498–8503 (1998).
[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in GLMT-framework, formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).
[CrossRef]

T. Girasole, G. Gouesbet, G. Gréhan, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, and D. Wysoczanski, “Cylindrical fiber orientation analysis by light scattering. Part 2: experimental aspects,” Part. Part. Syst. Charact. 14, 211–218 (1997).

T. Girasole, H. Bultynck, G. Gouesbet, G. Gréhan, F. Le Meur, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, C. Rozé, and D. Wysoczanski, “Cylindrical fibre orientation analysis by light scattering. Part 1: numerical aspects,” Part. Part. Syst. Charact. 14, 163–174 (1997).

Gréhan, G.

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Localized approximation for Gaussian beams in elliptical cylinder coordinates,” Appl. Opt. 39, 1008–1025 (2000).
[CrossRef]

G. Gouesbet, K. F. Ren, L. Mees, and G. Gréhan, “Cylindrical localized approximation to speed up computations for Gaussian beams in the generalized Lorenz–Mie theory for cylinders, with arbitrary location and orientation of the scatterer,” Appl. Opt. 38, 2647–2665 (1999).
[CrossRef]

L. Mees, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation, numerical results,” Appl. Opt. 38, 1867–1876 (1999).
[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Description of arbitrary shaped beams in elliptical cylinder coordinates, by using a plane wave spectrum approach,” Opt. Commun. 161, 63–78 (1999).
[CrossRef]

X. Han, K. F. Ren, Z. Wu, F. Corbin, G. Gouesbet, and G. Gréhan, “Characterization of initial disturbances in liquid jet by rainbow sizing,” Appl. Opt. 37, 8498–8503 (1998).
[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in GLMT-framework, formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).
[CrossRef]

T. Girasole, H. Bultynck, G. Gouesbet, G. Gréhan, F. Le Meur, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, C. Rozé, and D. Wysoczanski, “Cylindrical fibre orientation analysis by light scattering. Part 1: numerical aspects,” Part. Part. Syst. Charact. 14, 163–174 (1997).

T. Girasole, G. Gouesbet, G. Gréhan, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, and D. Wysoczanski, “Cylindrical fiber orientation analysis by light scattering. Part 2: experimental aspects,” Part. Part. Syst. Charact. 14, 211–218 (1997).

D. Lebrun, S. Belaid, C. Özkul, K. F. Ren, and G. Gréhan, “Enhancement of wire diameter measurements: comparison between Fraunhofer diffraction and Lorenz–Mie theory,” Opt. Eng. 35, 946–950 (1996).
[CrossRef]

Guéring, P.-H.

F. Onofri, A. Lenoble, H. Bultynck, and P.-H. Guéring, “High-resolution laser diffractometry for the on-line sizing of small transparent fibres,” Opt. Commun. 234, 183–191 (2004).
[CrossRef]

Hamid, A. K.

A. K. Hamid and F. R. Cooray, “Scattering by a perfect electromagnetic conducting elliptic cylinder,” PIER Lett. 10, 59–67 (2009).

Han, X.

Hovenac, E. A.

Hovenier, J. W.

M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 2000).

Hu, Y.

L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112, 1492–1508(2011).
[CrossRef]

Hu, Y. X.

Huang, H.-L.

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Jiang, H.

Kattawar, G. W.

L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112, 1492–1508(2011).
[CrossRef]

Z. Zhang, P. Yang, G. W. Kattawar, and W. J. Wiscombe, “Single scattering properties of platonic solids in geometric-optics regime,” J. Quant. Spectrosc. Radiat. Transfer 106, 595–603 (2007).
[CrossRef]

P. Yang, H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, M. I. Mishchenko, G. W. Kattawar, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512–5523 (2005).
[CrossRef]

Le Meur, F.

T. Girasole, H. Bultynck, G. Gouesbet, G. Gréhan, F. Le Meur, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, C. Rozé, and D. Wysoczanski, “Cylindrical fibre orientation analysis by light scattering. Part 1: numerical aspects,” Part. Part. Syst. Charact. 14, 163–174 (1997).

Le Toulouzan, J. N.

T. Girasole, H. Bultynck, G. Gouesbet, G. Gréhan, F. Le Meur, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, C. Rozé, and D. Wysoczanski, “Cylindrical fibre orientation analysis by light scattering. Part 1: numerical aspects,” Part. Part. Syst. Charact. 14, 163–174 (1997).

T. Girasole, G. Gouesbet, G. Gréhan, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, and D. Wysoczanski, “Cylindrical fiber orientation analysis by light scattering. Part 2: experimental aspects,” Part. Part. Syst. Charact. 14, 211–218 (1997).

Lebrun, D.

D. Lebrun, S. Belaid, C. Özkul, K. F. Ren, and G. Gréhan, “Enhancement of wire diameter measurements: comparison between Fraunhofer diffraction and Lorenz–Mie theory,” Opt. Eng. 35, 946–950 (1996).
[CrossRef]

Lenoble, A.

F. Onofri, A. Lenoble, H. Bultynck, and P.-H. Guéring, “High-resolution laser diffractometry for the on-line sizing of small transparent fibres,” Opt. Commun. 234, 183–191 (2004).
[CrossRef]

Li, H. Y.

Li, R.

R. Li, X. Han, and K. F. Ren, “Generalized Debye series expansion of electromagnetic plane wave scattering by an infinite multilayered cylinder at oblique incidence,” Phys. Rev. E 79, 036602 (2009).
[CrossRef]

R. Li, X. Han, H. Jiang, and K. F. Ren, “Debye series of normally incident plane wave scattering by an infinite multi-layered cylinder,” Appl. Opt. 45, 6255–6262 (2006).
[CrossRef]

Liou, K. N.

P. Yang and K. N. Liou, “An exact geometric-optics approach for computing the optical properties of large absorbing particles,” J. Quant. Spectrosc. Radiat. Transfer 110, 1162–1177 (2009).
[CrossRef]

P. Yang and K. N. Liou, “Geometrics-optics-integral-equation method for light scattering by non-spherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996).
[CrossRef]

Lock, J. A.

Mao, S. C.

Marcuse, D.

Mees, L.

Mishchenko, M. I.

Mroczka, J.

T. Girasole, G. Gouesbet, G. Gréhan, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, and D. Wysoczanski, “Cylindrical fiber orientation analysis by light scattering. Part 2: experimental aspects,” Part. Part. Syst. Charact. 14, 211–218 (1997).

T. Girasole, H. Bultynck, G. Gouesbet, G. Gréhan, F. Le Meur, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, C. Rozé, and D. Wysoczanski, “Cylindrical fibre orientation analysis by light scattering. Part 1: numerical aspects,” Part. Part. Syst. Charact. 14, 163–174 (1997).

Onofri, F.

K. F. Ren, F. Onofri, C. Rozé, and T. Girasole, “Vectorial complex ray model and application to two-dimensional scattering of plane wave by a spheroidal particle,” Opt. Lett. 36, 370–372 (2011).
[CrossRef]

F. Onofri, A. Lenoble, H. Bultynck, and P.-H. Guéring, “High-resolution laser diffractometry for the on-line sizing of small transparent fibres,” Opt. Commun. 234, 183–191 (2004).
[CrossRef]

Özkul, C.

D. Lebrun, S. Belaid, C. Özkul, K. F. Ren, and G. Gréhan, “Enhancement of wire diameter measurements: comparison between Fraunhofer diffraction and Lorenz–Mie theory,” Opt. Eng. 35, 946–950 (1996).
[CrossRef]

Pastorino, M.

S. Caorsi, M. Pastorino, and M. Raffetto, “Electromagnetic scattering by a multilayer elliptic cylinder under transverse-magnetic illumination: series solution in terms of Mathieu functions,” IEEE Trans. Antennas Propag. 45, 926–935(1997).
[CrossRef]

Raffetto, M.

S. Caorsi, M. Pastorino, and M. Raffetto, “Electromagnetic scattering by a multilayer elliptic cylinder under transverse-magnetic illumination: series solution in terms of Mathieu functions,” IEEE Trans. Antennas Propag. 45, 926–935(1997).
[CrossRef]

Ren, K. F.

K. F. Ren, F. Onofri, C. Rozé, and T. Girasole, “Vectorial complex ray model and application to two-dimensional scattering of plane wave by a spheroidal particle,” Opt. Lett. 36, 370–372 (2011).
[CrossRef]

R. Li, X. Han, and K. F. Ren, “Generalized Debye series expansion of electromagnetic plane wave scattering by an infinite multilayered cylinder at oblique incidence,” Phys. Rev. E 79, 036602 (2009).
[CrossRef]

R. Li, X. Han, H. Jiang, and K. F. Ren, “Debye series of normally incident plane wave scattering by an infinite multi-layered cylinder,” Appl. Opt. 45, 6255–6262 (2006).
[CrossRef]

F. Xu, K. F. Ren, and X. Cai, “Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. I. By a spherical particle,” Appl. Opt. 45, 4990–4999 (2006).
[CrossRef]

F. Xu, K. F. Ren, X. Cai, and J. Shen, “Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. II. By a spheroidal particle with end-on incidence,” Appl. Opt. 45, 5000–5009 (2006).
[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Localized approximation for Gaussian beams in elliptical cylinder coordinates,” Appl. Opt. 39, 1008–1025 (2000).
[CrossRef]

G. Gouesbet, K. F. Ren, L. Mees, and G. Gréhan, “Cylindrical localized approximation to speed up computations for Gaussian beams in the generalized Lorenz–Mie theory for cylinders, with arbitrary location and orientation of the scatterer,” Appl. Opt. 38, 2647–2665 (1999).
[CrossRef]

L. Mees, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation, numerical results,” Appl. Opt. 38, 1867–1876 (1999).
[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Description of arbitrary shaped beams in elliptical cylinder coordinates, by using a plane wave spectrum approach,” Opt. Commun. 161, 63–78 (1999).
[CrossRef]

X. Han, K. F. Ren, Z. Wu, F. Corbin, G. Gouesbet, and G. Gréhan, “Characterization of initial disturbances in liquid jet by rainbow sizing,” Appl. Opt. 37, 8498–8503 (1998).
[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in GLMT-framework, formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).
[CrossRef]

T. Girasole, G. Gouesbet, G. Gréhan, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, and D. Wysoczanski, “Cylindrical fiber orientation analysis by light scattering. Part 2: experimental aspects,” Part. Part. Syst. Charact. 14, 211–218 (1997).

T. Girasole, H. Bultynck, G. Gouesbet, G. Gréhan, F. Le Meur, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, C. Rozé, and D. Wysoczanski, “Cylindrical fibre orientation analysis by light scattering. Part 1: numerical aspects,” Part. Part. Syst. Charact. 14, 163–174 (1997).

D. Lebrun, S. Belaid, C. Özkul, K. F. Ren, and G. Gréhan, “Enhancement of wire diameter measurements: comparison between Fraunhofer diffraction and Lorenz–Mie theory,” Opt. Eng. 35, 946–950 (1996).
[CrossRef]

K. F. Ren, C. Rozé, and T. Girasole, “Scattering and transversal divergence of anellipsoidal particle by using vectorial complex ray model,” J. Quant. Spectrosc. Radiat. Transfer, (to be published).
[CrossRef]

Rozé, C.

K. F. Ren, F. Onofri, C. Rozé, and T. Girasole, “Vectorial complex ray model and application to two-dimensional scattering of plane wave by a spheroidal particle,” Opt. Lett. 36, 370–372 (2011).
[CrossRef]

T. Girasole, H. Bultynck, G. Gouesbet, G. Gréhan, F. Le Meur, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, C. Rozé, and D. Wysoczanski, “Cylindrical fibre orientation analysis by light scattering. Part 1: numerical aspects,” Part. Part. Syst. Charact. 14, 163–174 (1997).

K. F. Ren, C. Rozé, and T. Girasole, “Scattering and transversal divergence of anellipsoidal particle by using vectorial complex ray model,” J. Quant. Spectrosc. Radiat. Transfer, (to be published).
[CrossRef]

Seker, S. S.

S. S. Seker and G. Apaydin, “Light scattering by thin curved dielectric surface and cylinder,” in Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2009), pp. I-29–I-32.

Senior, T. B. A.

J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes (Taylor & Francis, 1988).

Shen, J.

Steinhardt, A. R.

Stone, B. R.

Takara, H.

M. Yamada, A. Tomoe, and H. Takara, “Light scattering characteristics of hole formed by fibre fuse,” Electron. Lett. 48, 519–520 (2012).
[CrossRef]

Tomoe, A.

M. Yamada, A. Tomoe, and H. Takara, “Light scattering characteristics of hole formed by fibre fuse,” Electron. Lett. 48, 519–520 (2012).
[CrossRef]

Travis, L. D.

M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 2000).

Uslenghi, P. L. E.

J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes (Taylor & Francis, 1988).

Valagiannopoulos, C. A.

C. A. Valagiannopoulos, “Electromagnetic scattering of the field of a metamaterial slab antenna by an arbitrarily positioned cluster of metallic cylinders,” Progress Electromagn. Res. 114, 51–66 (2011).

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1957).

Varadan, V. V.

V. V. Varadan, “Scattering matrix for elastic waves. II. Application to elliptic cylinders,” J. Acoust. Soc. Am. 63, 1014–1024 (1978).
[CrossRef]

Wei, H.

Wiscombe, W. J.

Z. Zhang, P. Yang, G. W. Kattawar, and W. J. Wiscombe, “Single scattering properties of platonic solids in geometric-optics regime,” J. Quant. Spectrosc. Radiat. Transfer 106, 595–603 (2007).
[CrossRef]

Wu, Z.

Wu, Z. S.

Wu, Z.-S.

Wysoczanski, D.

T. Girasole, H. Bultynck, G. Gouesbet, G. Gréhan, F. Le Meur, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, C. Rozé, and D. Wysoczanski, “Cylindrical fibre orientation analysis by light scattering. Part 1: numerical aspects,” Part. Part. Syst. Charact. 14, 163–174 (1997).

T. Girasole, G. Gouesbet, G. Gréhan, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, and D. Wysoczanski, “Cylindrical fiber orientation analysis by light scattering. Part 2: experimental aspects,” Part. Part. Syst. Charact. 14, 211–218 (1997).

Xu, F.

Yamada, M.

M. Yamada, A. Tomoe, and H. Takara, “Light scattering characteristics of hole formed by fibre fuse,” Electron. Lett. 48, 519–520 (2012).
[CrossRef]

Yang, P.

L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112, 1492–1508(2011).
[CrossRef]

P. Yang and K. N. Liou, “An exact geometric-optics approach for computing the optical properties of large absorbing particles,” J. Quant. Spectrosc. Radiat. Transfer 110, 1162–1177 (2009).
[CrossRef]

Z. Zhang, P. Yang, G. W. Kattawar, and W. J. Wiscombe, “Single scattering properties of platonic solids in geometric-optics regime,” J. Quant. Spectrosc. Radiat. Transfer 106, 595–603 (2007).
[CrossRef]

P. Yang, H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, M. I. Mishchenko, G. W. Kattawar, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512–5523 (2005).
[CrossRef]

P. Yang and K. N. Liou, “Geometrics-optics-integral-equation method for light scattering by non-spherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996).
[CrossRef]

Yeh, C.

Zhang, Z.

Z. Zhang, P. Yang, G. W. Kattawar, and W. J. Wiscombe, “Single scattering properties of platonic solids in geometric-optics regime,” J. Quant. Spectrosc. Radiat. Transfer 106, 595–603 (2007).
[CrossRef]

Appl. Opt.

D. Marcuse, “Light scattering from elliptical fibers,” Appl. Opt. 13, 1903–1905 (1974).
[CrossRef]

A. R. Steinhardt and L. Fukshansky, “Geometrical optics approach to the intensity distribution in finite cylindrical media,” Appl. Opt. 26, 3778–3789 (1987).
[CrossRef]

E. A. Hovenac, “Calculation of far-field scattering from nonspherical particles using a geometrical optics approach,” Appl. Opt. 30, 4739–4746 (1991).
[CrossRef]

P. Yang and K. N. Liou, “Geometrics-optics-integral-equation method for light scattering by non-spherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996).
[CrossRef]

C. L. Adler, J. A. Lock, and B. R. Stone, “Rainbow scattering by a cylinder with a nearly elliptical cross section,” Appl. Opt. 37, 1540–1550 (1998).
[CrossRef]

X. Han, K. F. Ren, Z. Wu, F. Corbin, G. Gouesbet, and G. Gréhan, “Characterization of initial disturbances in liquid jet by rainbow sizing,” Appl. Opt. 37, 8498–8503 (1998).
[CrossRef]

L. Mees, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation, numerical results,” Appl. Opt. 38, 1867–1876 (1999).
[CrossRef]

G. Gouesbet, K. F. Ren, L. Mees, and G. Gréhan, “Cylindrical localized approximation to speed up computations for Gaussian beams in the generalized Lorenz–Mie theory for cylinders, with arbitrary location and orientation of the scatterer,” Appl. Opt. 38, 2647–2665 (1999).
[CrossRef]

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Localized approximation for Gaussian beams in elliptical cylinder coordinates,” Appl. Opt. 39, 1008–1025 (2000).
[CrossRef]

P. Yang, H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, M. I. Mishchenko, G. W. Kattawar, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512–5523 (2005).
[CrossRef]

F. Xu, K. F. Ren, and X. Cai, “Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. I. By a spherical particle,” Appl. Opt. 45, 4990–4999 (2006).
[CrossRef]

F. Xu, K. F. Ren, X. Cai, and J. Shen, “Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. II. By a spheroidal particle with end-on incidence,” Appl. Opt. 45, 5000–5009 (2006).
[CrossRef]

R. Li, X. Han, H. Jiang, and K. F. Ren, “Debye series of normally incident plane wave scattering by an infinite multi-layered cylinder,” Appl. Opt. 45, 6255–6262 (2006).
[CrossRef]

Electron. Lett.

M. Yamada, A. Tomoe, and H. Takara, “Light scattering characteristics of hole formed by fibre fuse,” Electron. Lett. 48, 519–520 (2012).
[CrossRef]

IEEE Trans. Antennas Propag.

S. Caorsi, M. Pastorino, and M. Raffetto, “Electromagnetic scattering by a multilayer elliptic cylinder under transverse-magnetic illumination: series solution in terms of Mathieu functions,” IEEE Trans. Antennas Propag. 45, 926–935(1997).
[CrossRef]

J. Acoust. Soc. Am.

V. V. Varadan, “Scattering matrix for elastic waves. II. Application to elliptic cylinders,” J. Acoust. Soc. Am. 63, 1014–1024 (1978).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

G. Gouesbet and L. Mees, “Generalized Lorenz–Mie theory for infinitely long elliptical cylinders,” J. Opt. Soc. Am. A 16, 1333–1341 (1999).
[CrossRef]

G. Gouesbet and L. Mees, “Validity of the elliptical cylinder localized approximation for arbitrary shaped beams in generalized Lorenz–Mie theory for elliptical cylinders,” J. Opt. Soc. Am. A 16, 2946–2958 (1999).
[CrossRef]

J. A. Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,” J. Opt. Soc. Am. A 14, 640–652 (1997).
[CrossRef]

C. L. Adler, J. A. Lock, B. R. Stone, and C. J. Garcia, “High-order interior caustics produced in scattering of a diagonally incident plane wave by a circular cylinder,” J. Opt. Soc. Am. A 14, 1305–1315 (1997).
[CrossRef]

J. A. Lock and C. L. Adler, “Debye-series analysis of the first-order rainbow produced in scattering of a diagonally incident plane wave by a circular cylinder,” J. Opt. Soc. Am. A 14, 1316–1328 (1997).
[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in GLMT-framework, formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).
[CrossRef]

S. C. Mao and Z.-S. Wu, “Scattering by an infinite homogenous anisotropic elliptic cylinder in terms of Mathieu functions and fourier series,” J. Opt. Soc. Am. A 25, 2925–2931(2008).
[CrossRef]

S. C. Mao, Z. S. Wu, and H. Y. Li, “Three-dimensional scattering by an infinite homogeneous anisotropic elliptic cylinder in terms of Mathieu functions,” J. Opt. Soc. Am. A 26, 2282–2291 (2009).
[CrossRef]

J. A. Lock, C. L. Adler, and E. A. Hovenac, “Exterior caustics produced in scattering of a diagonally incident plane wave by a circular cylinder: semiclassical scattering theory analysis,” J. Opt. Soc. Am. A 17, 1846–1856 (2000).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

Z. Zhang, P. Yang, G. W. Kattawar, and W. J. Wiscombe, “Single scattering properties of platonic solids in geometric-optics regime,” J. Quant. Spectrosc. Radiat. Transfer 106, 595–603 (2007).
[CrossRef]

L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112, 1492–1508(2011).
[CrossRef]

P. Yang and K. N. Liou, “An exact geometric-optics approach for computing the optical properties of large absorbing particles,” J. Quant. Spectrosc. Radiat. Transfer 110, 1162–1177 (2009).
[CrossRef]

Opt. Commun.

G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Description of arbitrary shaped beams in elliptical cylinder coordinates, by using a plane wave spectrum approach,” Opt. Commun. 161, 63–78 (1999).
[CrossRef]

F. Onofri, A. Lenoble, H. Bultynck, and P.-H. Guéring, “High-resolution laser diffractometry for the on-line sizing of small transparent fibres,” Opt. Commun. 234, 183–191 (2004).
[CrossRef]

Opt. Eng.

D. Lebrun, S. Belaid, C. Özkul, K. F. Ren, and G. Gréhan, “Enhancement of wire diameter measurements: comparison between Fraunhofer diffraction and Lorenz–Mie theory,” Opt. Eng. 35, 946–950 (1996).
[CrossRef]

Opt. Lett.

Part. Part. Syst. Charact.

T. Girasole, H. Bultynck, G. Gouesbet, G. Gréhan, F. Le Meur, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, C. Rozé, and D. Wysoczanski, “Cylindrical fibre orientation analysis by light scattering. Part 1: numerical aspects,” Part. Part. Syst. Charact. 14, 163–174 (1997).

T. Girasole, G. Gouesbet, G. Gréhan, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, and D. Wysoczanski, “Cylindrical fiber orientation analysis by light scattering. Part 2: experimental aspects,” Part. Part. Syst. Charact. 14, 211–218 (1997).

Phys. Rev. E

R. Li, X. Han, and K. F. Ren, “Generalized Debye series expansion of electromagnetic plane wave scattering by an infinite multilayered cylinder at oblique incidence,” Phys. Rev. E 79, 036602 (2009).
[CrossRef]

PIER Lett.

A. K. Hamid and F. R. Cooray, “Scattering by a perfect electromagnetic conducting elliptic cylinder,” PIER Lett. 10, 59–67 (2009).

Progress Electromagn. Res.

C. A. Valagiannopoulos, “Electromagnetic scattering of the field of a metamaterial slab antenna by an arbitrarily positioned cluster of metallic cylinders,” Progress Electromagn. Res. 114, 51–66 (2011).

Other

J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes (Taylor & Francis, 1988).

S. S. Seker and G. Apaydin, “Light scattering by thin curved dielectric surface and cylinder,” in Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2009), pp. I-29–I-32.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1957).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

K. F. Ren, C. Rozé, and T. Girasole, “Scattering and transversal divergence of anellipsoidal particle by using vectorial complex ray model,” J. Quant. Spectrosc. Radiat. Transfer, (to be published).
[CrossRef]

M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic of scattering of a plane wave by an infinite elliptical cylinder.

Fig. 2.
Fig. 2.

Comparison of the scattered intensities computed by LMT, GO, and VCRM for an infinite circular cylinder of refractive index m=1.33 and radius a=50μm illuminated by a plan wave of wavelength λ=0.6328μm. The results of LMT and GO are shifted for 102 and 102, respectively, for clarity.

Fig. 3.
Fig. 3.

Zoom of the scattering diagrams in near forward direction. The parameters are the same as in Fig. 2.

Fig. 4.
Fig. 4.

Same parameters as Fig. 2(a), but particle radius is a=10μm.

Fig. 5.
Fig. 5.

Same parameters as Fig. 2(a), but with the a=5μm.

Fig. 6.
Fig. 6.

Comparison of scattering diagrams of an elliptical cylinder and a long ellipsoid calculated by VCRM. The two semiaxes of the elliptical cylinder are, respectively, a=50μm and b=40μm. Three semiaxes of the ellipsoid are a=50μm, b=40μm and c=5mm. The refractive index is 1.33. The incident plane wave propagates along x axis. The scattered intensity of the long ellipsoid is offset 106 for clarity. The positions of the first and second rainbow, respectively, locate at 167.4° and 117.8°.

Fig. 7.
Fig. 7.

Same parameters as Fig. 6, but with a=40μm, b=50μm.The positions of the first and second rainbow, respectively, locate at 121.8° and 127.0°.

Fig. 8.
Fig. 8.

Scattering diagrams of an elliptical cylinder illuminated by a plane wave at different incident angles. The other parameters are the same as in Fig. 6.

Fig. 9.
Fig. 9.

Scattering diagrams of an elliptical cylinder illuminated by a plane wave for the different aspect ratios. The perpendicular polarization is chosen.

Fig. 10.
Fig. 10.

Relation of incident angle and the rainbow position with the different aspect ratio κ=a/b.

Tables (1)

Tables Icon

Table 1. Rainbow Positions of an Elliptical Cylinder a=50μm, b=40μm, and m=1.33 Illuminated by a Plane Wave λ=0.6328μm at Different Angle θ0a

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

kτ=kτ,
kn=k2kτ2.
(kk)·nC=kΘTQΘkΘTQΘ,
C=(1ρ1001ρ2),Q=(1R1001R2),Q=(1R1001R2),
kcos2θrR1=kcos2θiR1+kcosθrkcosθiρ1,
kR1=kR2+kcosθrkcosθiρ2,
D=R11R21R12R22·R12R22R13R23R1pR2p(r+R1p)(r+R2p),
x2a2+y2b2=1,
n=b2xex+a2yeyb4x2+a4y2=nxex+nyey,
τ=n×ez=nyexnxey.
ρ1=a2b2(x2a4+y2b4)3/2,
kn=k·n=kxnx+kyny,kτ=k·τ=kynx+kxny.
k=kxex+kyey=kττ+knn,k=kxex+kyey=kττknn
Dp=R11R12·R12R13···R1p(r+R1p).
AX,p(θj)=εX,pDpexp(iϕp),
εX,p={rX,0p=0tX,0tX,pn=1p1rX,np1.
SX(θ)=Sd(θ)+π2krp=0AX,p(θ),
Sd=1+cosθπsin(αsinθ)sinθ,
IX,p(θj)=εX,p2I0acosθidθidlrdθjdl=I0εX,p2Dp(θj),
Dp(θj)=αkrcosθi22ptanθrtanθi,
θj=q[2pθr2θi(p1)π+2kπ],
ϕp,FL=π4[2p(1+s)],
ϕp,PH=2α(cosθipmcosθr).
εX,p={rX,0p=0(1rX,02)(rX,0)p1p1.

Metrics