Abstract

We have obtained absorption spectroscopic cross sections as a function of wavelength for the laser material Ho:YAG at 295, 175, and 83 K, in the spectral range from 1700 to 2200 nm. The absorption range corresponds to I85I75 transitions from the ground state to the first excited state amenable to direct pumping by laser diodes and Tm fiber lasers. The data allow a direct comparison of the absorption cross-section intensities and linewidths as temperature is lowered from room temperature to cryogenic temperatures. Universal absorption curves and numerical tables are presented for pump sources that are assumed to have a Gaussian spectral lineshape, as a function of center wavelength, bandwidth, and optical density (doping density×penetration depth), at 295 and 83 K. Curves and tables are presented for both 295 and 83 K and may be used to optimize the pump absorption and laser efficiency.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165 W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29, 2154–2156 (2004).
    [CrossRef]
  2. D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300 W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41, 1274–1277 (2005).
    [CrossRef]
  3. S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B. 80, 635–638 (2005).
    [CrossRef]
  4. D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power cw Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
    [CrossRef]
  5. D. C. Brown, J. M. Singley, K. Kowalewski, J. Guelzow, and V. Envid, “High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser,” Opt. Express 18, 24770–24792 (2010).
    [CrossRef]
  6. J. G. Manni, J. D. Hybl, D. Rand, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “100 W q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46, 95–98 (2010).
    [CrossRef]
  7. K. H. Hong, C. J. Lai, A. Siddiqui, and F. X. Kartner, “130 W picosecond green laser based on a frequency-doubled hybrid cryogenic Yb:YAG amplifier,” Opt. Express 17, 16911–16919 (2009).
    [CrossRef]
  8. D. C. Brown, K. Kowalewski, V. Envid, J. Zembek, and B. Canale, “Cryogenic Yb:YAG picosecond laser with high average power visible and ultraviolet harmonic generation,” Proc. SPIE 8381, 83810T (2012).
    [CrossRef]
  9. D. C. Brown, S. Tornegård, K. Kowalewski, V. Envid, and J. Zembek, “High average power—high peak power cryogenic Yb:YAG lasers for pumping Ti:Sapphire and OPCPA lasers,” Proc. SPIE 8381, 83810R (2012).
    [CrossRef]
  10. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 587–599 (2005).
    [CrossRef]
  11. T. Y. Fan, D. J. Ripin, and R. L. Aggarwal, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007).
    [CrossRef]
  12. J. I. Mackenzie, W. O. S. Bailey, J. W. Kim, L. Pearson, D. Y. Shen, Y. Yang, and W. A. Clarkson, “Tm:fiber laser in-band pumping a cryogenically-cooled Ho:YAG laser,” Proc. SPIE 7193, 71931H (2009).
    [CrossRef]
  13. B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67, 1567–1582 (2006).
    [CrossRef]
  14. A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, 1996), p. 174.
  15. D. C. Brown, R. L. Cone, T. Sun, and R. W. Equall, “Yb:YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11, 604–612 (2005).
    [CrossRef]

2012 (2)

D. C. Brown, K. Kowalewski, V. Envid, J. Zembek, and B. Canale, “Cryogenic Yb:YAG picosecond laser with high average power visible and ultraviolet harmonic generation,” Proc. SPIE 8381, 83810T (2012).
[CrossRef]

D. C. Brown, S. Tornegård, K. Kowalewski, V. Envid, and J. Zembek, “High average power—high peak power cryogenic Yb:YAG lasers for pumping Ti:Sapphire and OPCPA lasers,” Proc. SPIE 8381, 83810R (2012).
[CrossRef]

2010 (2)

D. C. Brown, J. M. Singley, K. Kowalewski, J. Guelzow, and V. Envid, “High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser,” Opt. Express 18, 24770–24792 (2010).
[CrossRef]

J. G. Manni, J. D. Hybl, D. Rand, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “100 W q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46, 95–98 (2010).
[CrossRef]

2009 (2)

K. H. Hong, C. J. Lai, A. Siddiqui, and F. X. Kartner, “130 W picosecond green laser based on a frequency-doubled hybrid cryogenic Yb:YAG amplifier,” Opt. Express 17, 16911–16919 (2009).
[CrossRef]

J. I. Mackenzie, W. O. S. Bailey, J. W. Kim, L. Pearson, D. Y. Shen, Y. Yang, and W. A. Clarkson, “Tm:fiber laser in-band pumping a cryogenically-cooled Ho:YAG laser,” Proc. SPIE 7193, 71931H (2009).
[CrossRef]

2008 (1)

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power cw Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

2007 (1)

T. Y. Fan, D. J. Ripin, and R. L. Aggarwal, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007).
[CrossRef]

2006 (1)

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67, 1567–1582 (2006).
[CrossRef]

2005 (4)

D. C. Brown, R. L. Cone, T. Sun, and R. W. Equall, “Yb:YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11, 604–612 (2005).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300 W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41, 1274–1277 (2005).
[CrossRef]

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B. 80, 635–638 (2005).
[CrossRef]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 587–599 (2005).
[CrossRef]

2004 (1)

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, and R. L. Aggarwal, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300 W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41, 1274–1277 (2005).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165 W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29, 2154–2156 (2004).
[CrossRef]

Bailey, W. O. S.

J. I. Mackenzie, W. O. S. Bailey, J. W. Kim, L. Pearson, D. Y. Shen, Y. Yang, and W. A. Clarkson, “Tm:fiber laser in-band pumping a cryogenically-cooled Ho:YAG laser,” Proc. SPIE 7193, 71931H (2009).
[CrossRef]

Barnes, N. P.

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67, 1567–1582 (2006).
[CrossRef]

Brown, D. C.

D. C. Brown, S. Tornegård, K. Kowalewski, V. Envid, and J. Zembek, “High average power—high peak power cryogenic Yb:YAG lasers for pumping Ti:Sapphire and OPCPA lasers,” Proc. SPIE 8381, 83810R (2012).
[CrossRef]

D. C. Brown, K. Kowalewski, V. Envid, J. Zembek, and B. Canale, “Cryogenic Yb:YAG picosecond laser with high average power visible and ultraviolet harmonic generation,” Proc. SPIE 8381, 83810T (2012).
[CrossRef]

D. C. Brown, J. M. Singley, K. Kowalewski, J. Guelzow, and V. Envid, “High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser,” Opt. Express 18, 24770–24792 (2010).
[CrossRef]

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power cw Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 587–599 (2005).
[CrossRef]

D. C. Brown, R. L. Cone, T. Sun, and R. W. Equall, “Yb:YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11, 604–612 (2005).
[CrossRef]

Canale, B.

D. C. Brown, K. Kowalewski, V. Envid, J. Zembek, and B. Canale, “Cryogenic Yb:YAG picosecond laser with high average power visible and ultraviolet harmonic generation,” Proc. SPIE 8381, 83810T (2012).
[CrossRef]

Clarkson, W. A.

J. I. Mackenzie, W. O. S. Bailey, J. W. Kim, L. Pearson, D. Y. Shen, Y. Yang, and W. A. Clarkson, “Tm:fiber laser in-band pumping a cryogenically-cooled Ho:YAG laser,” Proc. SPIE 7193, 71931H (2009).
[CrossRef]

Cone, R. L.

D. C. Brown, R. L. Cone, T. Sun, and R. W. Equall, “Yb:YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11, 604–612 (2005).
[CrossRef]

Envid, V.

D. C. Brown, S. Tornegård, K. Kowalewski, V. Envid, and J. Zembek, “High average power—high peak power cryogenic Yb:YAG lasers for pumping Ti:Sapphire and OPCPA lasers,” Proc. SPIE 8381, 83810R (2012).
[CrossRef]

D. C. Brown, K. Kowalewski, V. Envid, J. Zembek, and B. Canale, “Cryogenic Yb:YAG picosecond laser with high average power visible and ultraviolet harmonic generation,” Proc. SPIE 8381, 83810T (2012).
[CrossRef]

D. C. Brown, J. M. Singley, K. Kowalewski, J. Guelzow, and V. Envid, “High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser,” Opt. Express 18, 24770–24792 (2010).
[CrossRef]

Equall, R. W.

D. C. Brown, R. L. Cone, T. Sun, and R. W. Equall, “Yb:YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11, 604–612 (2005).
[CrossRef]

Fan, T. Y.

J. G. Manni, J. D. Hybl, D. Rand, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “100 W q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46, 95–98 (2010).
[CrossRef]

T. Y. Fan, D. J. Ripin, and R. L. Aggarwal, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300 W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41, 1274–1277 (2005).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165 W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29, 2154–2156 (2004).
[CrossRef]

Fujita, M.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B. 80, 635–638 (2005).
[CrossRef]

Grew, G. W.

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67, 1567–1582 (2006).
[CrossRef]

Guelzow, J.

D. C. Brown, J. M. Singley, K. Kowalewski, J. Guelzow, and V. Envid, “High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser,” Opt. Express 18, 24770–24792 (2010).
[CrossRef]

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power cw Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

Hong, K. H.

Hybl, J. D.

J. G. Manni, J. D. Hybl, D. Rand, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “100 W q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46, 95–98 (2010).
[CrossRef]

Izawa, Y.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B. 80, 635–638 (2005).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, 1996), p. 174.

Kartner, F. X.

Kawanaka, J.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B. 80, 635–638 (2005).
[CrossRef]

Kawashima, T.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B. 80, 635–638 (2005).
[CrossRef]

Kim, J. W.

J. I. Mackenzie, W. O. S. Bailey, J. W. Kim, L. Pearson, D. Y. Shen, Y. Yang, and W. A. Clarkson, “Tm:fiber laser in-band pumping a cryogenically-cooled Ho:YAG laser,” Proc. SPIE 7193, 71931H (2009).
[CrossRef]

Kowalewski, K.

D. C. Brown, S. Tornegård, K. Kowalewski, V. Envid, and J. Zembek, “High average power—high peak power cryogenic Yb:YAG lasers for pumping Ti:Sapphire and OPCPA lasers,” Proc. SPIE 8381, 83810R (2012).
[CrossRef]

D. C. Brown, K. Kowalewski, V. Envid, J. Zembek, and B. Canale, “Cryogenic Yb:YAG picosecond laser with high average power visible and ultraviolet harmonic generation,” Proc. SPIE 8381, 83810T (2012).
[CrossRef]

D. C. Brown, J. M. Singley, K. Kowalewski, J. Guelzow, and V. Envid, “High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser,” Opt. Express 18, 24770–24792 (2010).
[CrossRef]

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power cw Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

Kuper, J. W.

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power cw Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

Lai, C. J.

Mackenzie, J. I.

J. I. Mackenzie, W. O. S. Bailey, J. W. Kim, L. Pearson, D. Y. Shen, Y. Yang, and W. A. Clarkson, “Tm:fiber laser in-band pumping a cryogenically-cooled Ho:YAG laser,” Proc. SPIE 7193, 71931H (2009).
[CrossRef]

Manni, J. G.

J. G. Manni, J. D. Hybl, D. Rand, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “100 W q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46, 95–98 (2010).
[CrossRef]

Ochoa, J. R.

J. G. Manni, J. D. Hybl, D. Rand, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “100 W q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46, 95–98 (2010).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300 W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41, 1274–1277 (2005).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165 W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29, 2154–2156 (2004).
[CrossRef]

Pearson, L.

J. I. Mackenzie, W. O. S. Bailey, J. W. Kim, L. Pearson, D. Y. Shen, Y. Yang, and W. A. Clarkson, “Tm:fiber laser in-band pumping a cryogenically-cooled Ho:YAG laser,” Proc. SPIE 7193, 71931H (2009).
[CrossRef]

Rand, D.

J. G. Manni, J. D. Hybl, D. Rand, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “100 W q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46, 95–98 (2010).
[CrossRef]

Ripin, D. J.

J. G. Manni, J. D. Hybl, D. Rand, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “100 W q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46, 95–98 (2010).
[CrossRef]

T. Y. Fan, D. J. Ripin, and R. L. Aggarwal, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300 W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41, 1274–1277 (2005).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165 W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29, 2154–2156 (2004).
[CrossRef]

Shen, D. Y.

J. I. Mackenzie, W. O. S. Bailey, J. W. Kim, L. Pearson, D. Y. Shen, Y. Yang, and W. A. Clarkson, “Tm:fiber laser in-band pumping a cryogenically-cooled Ho:YAG laser,” Proc. SPIE 7193, 71931H (2009).
[CrossRef]

Siddiqui, A.

Singley, J. M.

D. C. Brown, J. M. Singley, K. Kowalewski, J. Guelzow, and V. Envid, “High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser,” Opt. Express 18, 24770–24792 (2010).
[CrossRef]

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power cw Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

Sun, T.

D. C. Brown, R. L. Cone, T. Sun, and R. W. Equall, “Yb:YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11, 604–612 (2005).
[CrossRef]

Tokita, S.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B. 80, 635–638 (2005).
[CrossRef]

Tornegård, S.

D. C. Brown, S. Tornegård, K. Kowalewski, V. Envid, and J. Zembek, “High average power—high peak power cryogenic Yb:YAG lasers for pumping Ti:Sapphire and OPCPA lasers,” Proc. SPIE 8381, 83810R (2012).
[CrossRef]

Walsh, B. M.

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67, 1567–1582 (2006).
[CrossRef]

Yager, E.

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power cw Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

Yang, Y.

J. I. Mackenzie, W. O. S. Bailey, J. W. Kim, L. Pearson, D. Y. Shen, Y. Yang, and W. A. Clarkson, “Tm:fiber laser in-band pumping a cryogenically-cooled Ho:YAG laser,” Proc. SPIE 7193, 71931H (2009).
[CrossRef]

Zembek, J.

D. C. Brown, K. Kowalewski, V. Envid, J. Zembek, and B. Canale, “Cryogenic Yb:YAG picosecond laser with high average power visible and ultraviolet harmonic generation,” Proc. SPIE 8381, 83810T (2012).
[CrossRef]

D. C. Brown, S. Tornegård, K. Kowalewski, V. Envid, and J. Zembek, “High average power—high peak power cryogenic Yb:YAG lasers for pumping Ti:Sapphire and OPCPA lasers,” Proc. SPIE 8381, 83810R (2012).
[CrossRef]

Appl. Phys. B. (1)

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B. 80, 635–638 (2005).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300 W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41, 1274–1277 (2005).
[CrossRef]

J. G. Manni, J. D. Hybl, D. Rand, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “100 W q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46, 95–98 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 587–599 (2005).
[CrossRef]

T. Y. Fan, D. J. Ripin, and R. L. Aggarwal, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007).
[CrossRef]

D. C. Brown, R. L. Cone, T. Sun, and R. W. Equall, “Yb:YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11, 604–612 (2005).
[CrossRef]

J. Phys. Chem. Solids (1)

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67, 1567–1582 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (4)

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power cw Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

D. C. Brown, K. Kowalewski, V. Envid, J. Zembek, and B. Canale, “Cryogenic Yb:YAG picosecond laser with high average power visible and ultraviolet harmonic generation,” Proc. SPIE 8381, 83810T (2012).
[CrossRef]

D. C. Brown, S. Tornegård, K. Kowalewski, V. Envid, and J. Zembek, “High average power—high peak power cryogenic Yb:YAG lasers for pumping Ti:Sapphire and OPCPA lasers,” Proc. SPIE 8381, 83810R (2012).
[CrossRef]

J. I. Mackenzie, W. O. S. Bailey, J. W. Kim, L. Pearson, D. Y. Shen, Y. Yang, and W. A. Clarkson, “Tm:fiber laser in-band pumping a cryogenically-cooled Ho:YAG laser,” Proc. SPIE 7193, 71931H (2009).
[CrossRef]

Other (1)

A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, 1996), p. 174.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Energy level diagram for Ho:YAG at room temperature showing the ground-state and first excited state manifolds, the approximate absorption and emission wavelengths, individual Stark energies, and Boltzmann occupation factors.

Fig. 2.
Fig. 2.

Spectroscopic absorption cross section as a function of wavelength in the spectral range 1700–2200 nm, at 83 K.

Fig. 3.
Fig. 3.

Spectroscopic absorption cross section as function of wavelength in the spectral range 1700–2200 nm, at 175 K.

Fig. 4.
Fig. 4.

Spectroscopic absorption cross section as a function of wavelength in the spectral range 1700–2200 nm, at 295 K.

Fig. 5.
Fig. 5.

Comparison of spectroscopic absorption cross section as a function of wavelength in the spectral range 1700–2200 nm, for temperatures of 83 (red/solid), 175 (green/short-dash), and 295 (blue/long-dash) K.

Fig. 6.
Fig. 6.

Comparison of expanded spectroscopic absorption cross section as a function of wavelength in the spectral range 1900–1980 nm, for temperatures of 83 (red/solid), 175 (green/short-dash), and 295 (blue/long-dash) K.

Fig. 7.
Fig. 7.

Ho:YAG (295 K) absorption vs. center wavelength and optical thickness for 0.1 nm bandwidth (1750–2200).

Fig. 8.
Fig. 8.

Ho:YAG (83 K) absorption versus center wavelength and optical thickness for 0.1 nm bandwidth (1750–2200).

Tables (9)

Tables Icon

Table 1 Peak Wavelength, Absorption Cross Section (ACS), and FWHM for 1908, 1928, 1932, and 1974 peaks at 295, 175, and 83 K

Tables Icon

Table 2 Absorption of Ho:YAG as a Function of Gaussian Center Wavelength and Optical Thickness at 295 K and for a 0.1 nm Gaussian FWHM Bandwidtha

Tables Icon

Table 3 Absorption of Ho:YAG as a Function of Gaussian Center Wavelength and Optical Thickness at 295 K and for a 1.0 nm Gaussian FWHM Bandwidtha

Tables Icon

Table 4 Absorption of Ho:YAG as a Function of Gaussian Center Wavelength and Optical Thickness at 295 K and for a 5.0 nm Gaussian FWHM Bandwidtha

Tables Icon

Table 5 Absorption of Ho:YAG as a Function of Gaussian Center Wavelength and Optical Thickness at 295 K and for a 7.0 nm Gaussian FWHM Bandwidtha

Tables Icon

Table 6 Absorption of Ho:YAG as a Function of Gaussian Center Wavelength and Optical Thickness at 83 K and for a 0.1 nm Gaussian FWHM Bandwidtha

Tables Icon

Table 7 Absorption of Ho:YAG as a Function of Gaussian Center Wavelength and Optical Thickness at 83 K and for a 1.0 nm Gaussian FWHM Bandwidtha

Tables Icon

Table 8 Absorption of Ho:YAG as a Function of Gaussian Center Wavelength and Optical Thickness at 83 K and for a 5.0 nm Gaussian FWHM Bandwidtha

Tables Icon

Table 9 Absorption of Ho:YAG as a Function of Gaussian Center Wavelength and Optical Thickness at 83 K and for a 7.0 nm Gaussian FWHM Bandwidtha

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I(λ)=Ioeα(λ)L,
g(ν)=2Δν[ln(2)π]1/2exp[4ln(2)[νν0Δν]2],
g(λ)=2Δλ[ln(2)π]1/2exp[4ln(2)[λλ0Δλ]2],
S0(ν)=I0g(ν),
S0(λ)=I0g(λ),
I0=S0(ν)dν=S0(λ)dλ.
T(λ0,λ,d)=2Δλ[ln(2)π]1/2exp[4ln(2)[λλ0Δλ]2]exp(σA(λ)d)dλ.
A(λ0,Δλ,d)=12Δλ[ln(2)π]1/2exp[4ln(2)[λλ0Δλ]2]exp(σA(λ)d)dλ.
d=ρz,

Metrics