Abstract

In this study, we investigated the effects of a sequence of laser pulses on the plasma emission intensity, plasma temperature, and electron density of laser-induced soil plasma. The experimental results indicate that the plasma radiation was gradually strengthened as the laser-pulse sequence progressed. The theoretical results show that the spectral line intensity and spectral signal-to-background ratio of the elements Fe, Mn, K, and Ti were strongest for plasma from the sixth laser pulse. These data suggest that repeatedly ablating the same surface position of a soil sample with a sequence of laser pulses can enhance the laser-induced breakdown spectroscopy signal.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
  2. P. Inakollu, T. Philip, A. K. Rai, F.-Y. Yueh, and J. P. Singh, “A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods,” Spectrochim. Acta B 64, 99–104 (2009).
    [CrossRef]
  3. W. T. Y. Mohamed, “Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable Echelle spectrometer with ICCD camera,” Opt. Laser Technol. 40, 30–38 (2008).
    [CrossRef]
  4. M. Dzyubenko, S. Kolpakov, D. Kulishenko, and A. Priyomko, “Rapid analysis of emission spectra for gold alloys,” Appl. Spectrosc. 77, 279–284 (2010).
    [CrossRef]
  5. G. P. Gupta, B. M. Suri, A. Verma, M. Sundararaman, V. K. Unnikrishnan, K. Alti, V. B. Kartha, and C. Santhosh, “Quantitative elemental analysis of nickel alloys using calibration-based laser-induced breakdown spectroscopy,” J. Alloys Compd. 509, 3740–3745 (2011).
    [CrossRef]
  6. S. Hamzaoui, R. Khleifia, N. Jaïdane, and Z. Ben Lakhdar, “Quantitative analysis of pathological nails using laser-induced breakdown spectroscopy (LIBS) technique,” Laser. Med. Sci. 26, 79–83 (2011).
    [CrossRef]
  7. R. A. Multari, D. A. Cremers, J. M. Dupre, and J. E. Gustafson, “The use of laser-induced breakdown spectroscopy for distinguishing between bacterial pathogen species and strains,” Appl. Spectrosc. 64, 750–759 (2010).
    [CrossRef]
  8. A. Erdem, A. Çilingiroğlu, A. Giakoumaki, M. Castanys, E. Kartsonaki, C. Fotakis, and D. Anglos, “Characterization of Iron age pottery from eastern Turkey by laser- induced breakdown spectroscopy (LIBS),” J. Archaeol. Sci. 35, 2486–2494 (2008).
    [CrossRef]
  9. L. Caneve, A. Diamanti, F. Grimaldi, G. Palleschi, V. Spizzichino, and F. Valentini, “Analysis of fresco by laser induced breakdown spectroscopy,” Spectrochim. Acta B 65, 702–706 (2010).
    [CrossRef]
  10. R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. DeLucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
    [CrossRef]
  11. J. L. Gottfried, R. S. Harmon, F. C. De Lucia, and A. W. Miziolek, “Multivariate analysis of laser-induced breakdown spectroscopy chemical signatures for geomaterial classification,” Spectrochim. Acta B 64, 1009–1019 (2009).
    [CrossRef]
  12. I. Rauschenbach, E. K. Jessberger, S. G. Pavlov, and H. W. Hübers, “Miniaturized laser-induced breakdown spectroscopy for the in-situ analysis of the Martian surface: calibration and quantification,” Spectrochim. Acta B 65, 758–768 (2010).
    [CrossRef]
  13. M. D. Dyar, J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta B 66, 39–56 (2011).
    [CrossRef]
  14. X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91, 081501–081503 (2007).
    [CrossRef]
  15. A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24, 602–604 (2009).
    [CrossRef]
  16. A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25, 837–848 (2010).
    [CrossRef]
  17. D. Santos, L. C. Nunes, L. C. Trevizan, Q. Godoi, F. O. Leme, W. B. Braga, and F. José Krug, “Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils,” Spectrochim. Acta B 64, 1073–1078 (2009).
    [CrossRef]
  18. G. S. Senesi, M. D. Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. D. Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
    [CrossRef]
  19. A. Ismaël, B. Bousquet, K. Michel-Le Pierrès, G. Travaillé, L. Canioni, and S. Roy, “In situ semi-quantitative analysis of polluted soils by laser-induced breakdown spectroscopy (LIBS),” Appl. Spectrosc. 65, 467–473 (2011).
    [CrossRef]
  20. R. Ahmed and M. A. Baig, “A comparative study of single and double pulse laser induce breakdown spectroscopy,” J. Appl. Phys. 106, 033307 (2009).
    [CrossRef]
  21. M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features,” Appl. Spectrosc. 59, 853–860 (2005).
    [CrossRef]
  22. National Institute of Standards and Technology Physical Measurement Laboratory, “NIST Atomic Spectra Database,” http://physics.nist.gov/PhysRefData/ASD/lines_form.html .
  23. W. Tawfik, Y. Mohamed, and A. Askar, “Study of the matrix effect on the plasma characterization of heavy elements in soil sediments using LIBS with a portable Echell spectrometer,” Prog. Elem. Part. Cosmic Ray Phys. 1, 47–53 (2007).
  24. H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University, 1997).
  25. H. R. Griem, Plasma Spectroscopy (McGraw-Hill, 1964).
  26. K. Song, H. Cha, J. Lee, and Y. Lee, “Investigation of the line-broadening mechanism for laser-induced copper plasma by time-resolved laser-induced breakdown spectroscopy,” Microchem. J. 63, 53–60 (1999).
    [CrossRef]
  27. O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
    [CrossRef]
  28. J. E. Sansonetti and W. C. Martin, “Handbook of basic atomic spectroscopic data,” J. Phys. Chem. Ref. Data 34, 1559–2259 (2005).
    [CrossRef]
  29. S. Yao, J. Lu, K. Chen, S. Pan, J. Li, and M. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257, 3103–3110 (2011).
    [CrossRef]

2011 (5)

M. D. Dyar, J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta B 66, 39–56 (2011).
[CrossRef]

G. P. Gupta, B. M. Suri, A. Verma, M. Sundararaman, V. K. Unnikrishnan, K. Alti, V. B. Kartha, and C. Santhosh, “Quantitative elemental analysis of nickel alloys using calibration-based laser-induced breakdown spectroscopy,” J. Alloys Compd. 509, 3740–3745 (2011).
[CrossRef]

S. Hamzaoui, R. Khleifia, N. Jaïdane, and Z. Ben Lakhdar, “Quantitative analysis of pathological nails using laser-induced breakdown spectroscopy (LIBS) technique,” Laser. Med. Sci. 26, 79–83 (2011).
[CrossRef]

S. Yao, J. Lu, K. Chen, S. Pan, J. Li, and M. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257, 3103–3110 (2011).
[CrossRef]

A. Ismaël, B. Bousquet, K. Michel-Le Pierrès, G. Travaillé, L. Canioni, and S. Roy, “In situ semi-quantitative analysis of polluted soils by laser-induced breakdown spectroscopy (LIBS),” Appl. Spectrosc. 65, 467–473 (2011).
[CrossRef]

2010 (5)

R. A. Multari, D. A. Cremers, J. M. Dupre, and J. E. Gustafson, “The use of laser-induced breakdown spectroscopy for distinguishing between bacterial pathogen species and strains,” Appl. Spectrosc. 64, 750–759 (2010).
[CrossRef]

M. Dzyubenko, S. Kolpakov, D. Kulishenko, and A. Priyomko, “Rapid analysis of emission spectra for gold alloys,” Appl. Spectrosc. 77, 279–284 (2010).
[CrossRef]

L. Caneve, A. Diamanti, F. Grimaldi, G. Palleschi, V. Spizzichino, and F. Valentini, “Analysis of fresco by laser induced breakdown spectroscopy,” Spectrochim. Acta B 65, 702–706 (2010).
[CrossRef]

I. Rauschenbach, E. K. Jessberger, S. G. Pavlov, and H. W. Hübers, “Miniaturized laser-induced breakdown spectroscopy for the in-situ analysis of the Martian surface: calibration and quantification,” Spectrochim. Acta B 65, 758–768 (2010).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25, 837–848 (2010).
[CrossRef]

2009 (7)

D. Santos, L. C. Nunes, L. C. Trevizan, Q. Godoi, F. O. Leme, W. B. Braga, and F. José Krug, “Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils,” Spectrochim. Acta B 64, 1073–1078 (2009).
[CrossRef]

G. S. Senesi, M. D. Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. D. Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
[CrossRef]

P. Inakollu, T. Philip, A. K. Rai, F.-Y. Yueh, and J. P. Singh, “A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods,” Spectrochim. Acta B 64, 99–104 (2009).
[CrossRef]

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. DeLucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
[CrossRef]

J. L. Gottfried, R. S. Harmon, F. C. De Lucia, and A. W. Miziolek, “Multivariate analysis of laser-induced breakdown spectroscopy chemical signatures for geomaterial classification,” Spectrochim. Acta B 64, 1009–1019 (2009).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24, 602–604 (2009).
[CrossRef]

R. Ahmed and M. A. Baig, “A comparative study of single and double pulse laser induce breakdown spectroscopy,” J. Appl. Phys. 106, 033307 (2009).
[CrossRef]

2008 (2)

A. Erdem, A. Çilingiroğlu, A. Giakoumaki, M. Castanys, E. Kartsonaki, C. Fotakis, and D. Anglos, “Characterization of Iron age pottery from eastern Turkey by laser- induced breakdown spectroscopy (LIBS),” J. Archaeol. Sci. 35, 2486–2494 (2008).
[CrossRef]

W. T. Y. Mohamed, “Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable Echelle spectrometer with ICCD camera,” Opt. Laser Technol. 40, 30–38 (2008).
[CrossRef]

2007 (2)

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91, 081501–081503 (2007).
[CrossRef]

W. Tawfik, Y. Mohamed, and A. Askar, “Study of the matrix effect on the plasma characterization of heavy elements in soil sediments using LIBS with a portable Echell spectrometer,” Prog. Elem. Part. Cosmic Ray Phys. 1, 47–53 (2007).

2005 (2)

2000 (1)

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

1999 (1)

K. Song, H. Cha, J. Lee, and Y. Lee, “Investigation of the line-broadening mechanism for laser-induced copper plasma by time-resolved laser-induced breakdown spectroscopy,” Microchem. J. 63, 53–60 (1999).
[CrossRef]

Aglio, M. D.

G. S. Senesi, M. D. Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. D. Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
[CrossRef]

Ahmed, R.

R. Ahmed and M. A. Baig, “A comparative study of single and double pulse laser induce breakdown spectroscopy,” J. Appl. Phys. 106, 033307 (2009).
[CrossRef]

Alti, K.

G. P. Gupta, B. M. Suri, A. Verma, M. Sundararaman, V. K. Unnikrishnan, K. Alti, V. B. Kartha, and C. Santhosh, “Quantitative elemental analysis of nickel alloys using calibration-based laser-induced breakdown spectroscopy,” J. Alloys Compd. 509, 3740–3745 (2011).
[CrossRef]

Anglos, D.

A. Erdem, A. Çilingiroğlu, A. Giakoumaki, M. Castanys, E. Kartsonaki, C. Fotakis, and D. Anglos, “Characterization of Iron age pottery from eastern Turkey by laser- induced breakdown spectroscopy (LIBS),” J. Archaeol. Sci. 35, 2486–2494 (2008).
[CrossRef]

Askar, A.

W. Tawfik, Y. Mohamed, and A. Askar, “Study of the matrix effect on the plasma characterization of heavy elements in soil sediments using LIBS with a portable Echell spectrometer,” Prog. Elem. Part. Cosmic Ray Phys. 1, 47–53 (2007).

Baig, M. A.

R. Ahmed and M. A. Baig, “A comparative study of single and double pulse laser induce breakdown spectroscopy,” J. Appl. Phys. 106, 033307 (2009).
[CrossRef]

Beddows, D. C. S.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

Ben Lakhdar, Z.

S. Hamzaoui, R. Khleifia, N. Jaïdane, and Z. Ben Lakhdar, “Quantitative analysis of pathological nails using laser-induced breakdown spectroscopy (LIBS) technique,” Laser. Med. Sci. 26, 79–83 (2011).
[CrossRef]

Bousquet, B.

Braga, W. B.

D. Santos, L. C. Nunes, L. C. Trevizan, Q. Godoi, F. O. Leme, W. B. Braga, and F. José Krug, “Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils,” Spectrochim. Acta B 64, 1073–1078 (2009).
[CrossRef]

Caneve, L.

L. Caneve, A. Diamanti, F. Grimaldi, G. Palleschi, V. Spizzichino, and F. Valentini, “Analysis of fresco by laser induced breakdown spectroscopy,” Spectrochim. Acta B 65, 702–706 (2010).
[CrossRef]

Canioni, L.

Capitelli, M.

G. S. Senesi, M. D. Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. D. Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
[CrossRef]

Castanys, M.

A. Erdem, A. Çilingiroğlu, A. Giakoumaki, M. Castanys, E. Kartsonaki, C. Fotakis, and D. Anglos, “Characterization of Iron age pottery from eastern Turkey by laser- induced breakdown spectroscopy (LIBS),” J. Archaeol. Sci. 35, 2486–2494 (2008).
[CrossRef]

Cha, H.

K. Song, H. Cha, J. Lee, and Y. Lee, “Investigation of the line-broadening mechanism for laser-induced copper plasma by time-resolved laser-induced breakdown spectroscopy,” Microchem. J. 63, 53–60 (1999).
[CrossRef]

Chen, K.

S. Yao, J. Lu, K. Chen, S. Pan, J. Li, and M. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257, 3103–3110 (2011).
[CrossRef]

Çilingiroglu, A.

A. Erdem, A. Çilingiroğlu, A. Giakoumaki, M. Castanys, E. Kartsonaki, C. Fotakis, and D. Anglos, “Characterization of Iron age pottery from eastern Turkey by laser- induced breakdown spectroscopy (LIBS),” J. Archaeol. Sci. 35, 2486–2494 (2008).
[CrossRef]

Clegg, S. M.

M. D. Dyar, J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta B 66, 39–56 (2011).
[CrossRef]

Colao, F.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25, 837–848 (2010).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24, 602–604 (2009).
[CrossRef]

Collins, L.

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. DeLucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
[CrossRef]

Corsi, M.

Cremers, D. A.

Cristoforetti, G.

De Giacomo, A.

G. S. Senesi, M. D. Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. D. Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
[CrossRef]

De Lucia, F. C.

J. L. Gottfried, R. S. Harmon, F. C. De Lucia, and A. W. Miziolek, “Multivariate analysis of laser-induced breakdown spectroscopy chemical signatures for geomaterial classification,” Spectrochim. Acta B 64, 1009–1019 (2009).
[CrossRef]

DeLucia, F. C.

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. DeLucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
[CrossRef]

Diamanti, A.

L. Caneve, A. Diamanti, F. Grimaldi, G. Palleschi, V. Spizzichino, and F. Valentini, “Analysis of fresco by laser induced breakdown spectroscopy,” Spectrochim. Acta B 65, 702–706 (2010).
[CrossRef]

Dong, M.

S. Yao, J. Lu, K. Chen, S. Pan, J. Li, and M. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257, 3103–3110 (2011).
[CrossRef]

Dupre, J. M.

Dyar, M. D.

M. D. Dyar, J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta B 66, 39–56 (2011).
[CrossRef]

Dzyubenko, M.

M. Dzyubenko, S. Kolpakov, D. Kulishenko, and A. Priyomko, “Rapid analysis of emission spectra for gold alloys,” Appl. Spectrosc. 77, 279–284 (2010).
[CrossRef]

Erdem, A.

A. Erdem, A. Çilingiroğlu, A. Giakoumaki, M. Castanys, E. Kartsonaki, C. Fotakis, and D. Anglos, “Characterization of Iron age pottery from eastern Turkey by laser- induced breakdown spectroscopy (LIBS),” J. Archaeol. Sci. 35, 2486–2494 (2008).
[CrossRef]

Fantoni, R.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25, 837–848 (2010).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24, 602–604 (2009).
[CrossRef]

Fotakis, C.

A. Erdem, A. Çilingiroğlu, A. Giakoumaki, M. Castanys, E. Kartsonaki, C. Fotakis, and D. Anglos, “Characterization of Iron age pottery from eastern Turkey by laser- induced breakdown spectroscopy (LIBS),” J. Archaeol. Sci. 35, 2486–2494 (2008).
[CrossRef]

Gaudiuso, R.

G. S. Senesi, M. D. Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. D. Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
[CrossRef]

Giakoumaki, A.

A. Erdem, A. Çilingiroğlu, A. Giakoumaki, M. Castanys, E. Kartsonaki, C. Fotakis, and D. Anglos, “Characterization of Iron age pottery from eastern Turkey by laser- induced breakdown spectroscopy (LIBS),” J. Archaeol. Sci. 35, 2486–2494 (2008).
[CrossRef]

Godoi, Q.

D. Santos, L. C. Nunes, L. C. Trevizan, Q. Godoi, F. O. Leme, W. B. Braga, and F. José Krug, “Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils,” Spectrochim. Acta B 64, 1073–1078 (2009).
[CrossRef]

Gottfried, J. L.

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. DeLucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
[CrossRef]

J. L. Gottfried, R. S. Harmon, F. C. De Lucia, and A. W. Miziolek, “Multivariate analysis of laser-induced breakdown spectroscopy chemical signatures for geomaterial classification,” Spectrochim. Acta B 64, 1009–1019 (2009).
[CrossRef]

Griem, H. R.

H. R. Griem, Plasma Spectroscopy (McGraw-Hill, 1964).

H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University, 1997).

Grimaldi, F.

L. Caneve, A. Diamanti, F. Grimaldi, G. Palleschi, V. Spizzichino, and F. Valentini, “Analysis of fresco by laser induced breakdown spectroscopy,” Spectrochim. Acta B 65, 702–706 (2010).
[CrossRef]

Gupta, G. P.

G. P. Gupta, B. M. Suri, A. Verma, M. Sundararaman, V. K. Unnikrishnan, K. Alti, V. B. Kartha, and C. Santhosh, “Quantitative elemental analysis of nickel alloys using calibration-based laser-induced breakdown spectroscopy,” J. Alloys Compd. 509, 3740–3745 (2011).
[CrossRef]

Gustafson, J. E.

Hamzaoui, S.

S. Hamzaoui, R. Khleifia, N. Jaïdane, and Z. Ben Lakhdar, “Quantitative analysis of pathological nails using laser-induced breakdown spectroscopy (LIBS) technique,” Laser. Med. Sci. 26, 79–83 (2011).
[CrossRef]

Harmon, R. S.

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. DeLucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
[CrossRef]

J. L. Gottfried, R. S. Harmon, F. C. De Lucia, and A. W. Miziolek, “Multivariate analysis of laser-induced breakdown spectroscopy chemical signatures for geomaterial classification,” Spectrochim. Acta B 64, 1009–1019 (2009).
[CrossRef]

Hidalgo, M.

Hübers, H. W.

I. Rauschenbach, E. K. Jessberger, S. G. Pavlov, and H. W. Hübers, “Miniaturized laser-induced breakdown spectroscopy for the in-situ analysis of the Martian surface: calibration and quantification,” Spectrochim. Acta B 65, 758–768 (2010).
[CrossRef]

Humphries, S.

M. D. Dyar, J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta B 66, 39–56 (2011).
[CrossRef]

Inakollu, P.

P. Inakollu, T. Philip, A. K. Rai, F.-Y. Yueh, and J. P. Singh, “A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods,” Spectrochim. Acta B 64, 99–104 (2009).
[CrossRef]

Iriarte, D.

Ismaël, A.

Jaïdane, N.

S. Hamzaoui, R. Khleifia, N. Jaïdane, and Z. Ben Lakhdar, “Quantitative analysis of pathological nails using laser-induced breakdown spectroscopy (LIBS) technique,” Laser. Med. Sci. 26, 79–83 (2011).
[CrossRef]

Jessberger, E. K.

I. Rauschenbach, E. K. Jessberger, S. G. Pavlov, and H. W. Hübers, “Miniaturized laser-induced breakdown spectroscopy for the in-situ analysis of the Martian surface: calibration and quantification,” Spectrochim. Acta B 65, 758–768 (2010).
[CrossRef]

Kaiser, J.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

Kartha, V. B.

G. P. Gupta, B. M. Suri, A. Verma, M. Sundararaman, V. K. Unnikrishnan, K. Alti, V. B. Kartha, and C. Santhosh, “Quantitative elemental analysis of nickel alloys using calibration-based laser-induced breakdown spectroscopy,” J. Alloys Compd. 509, 3740–3745 (2011).
[CrossRef]

Kartsonaki, E.

A. Erdem, A. Çilingiroğlu, A. Giakoumaki, M. Castanys, E. Kartsonaki, C. Fotakis, and D. Anglos, “Characterization of Iron age pottery from eastern Turkey by laser- induced breakdown spectroscopy (LIBS),” J. Archaeol. Sci. 35, 2486–2494 (2008).
[CrossRef]

Khleifia, R.

S. Hamzaoui, R. Khleifia, N. Jaïdane, and Z. Ben Lakhdar, “Quantitative analysis of pathological nails using laser-induced breakdown spectroscopy (LIBS) technique,” Laser. Med. Sci. 26, 79–83 (2011).
[CrossRef]

Kolpakov, S.

M. Dzyubenko, S. Kolpakov, D. Kulishenko, and A. Priyomko, “Rapid analysis of emission spectra for gold alloys,” Appl. Spectrosc. 77, 279–284 (2010).
[CrossRef]

Krug, F. José

D. Santos, L. C. Nunes, L. C. Trevizan, Q. Godoi, F. O. Leme, W. B. Braga, and F. José Krug, “Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils,” Spectrochim. Acta B 64, 1073–1078 (2009).
[CrossRef]

Kukhlevsky, S. V.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

Kulishenko, D.

M. Dzyubenko, S. Kolpakov, D. Kulishenko, and A. Priyomko, “Rapid analysis of emission spectra for gold alloys,” Appl. Spectrosc. 77, 279–284 (2010).
[CrossRef]

Lane, M. D.

M. D. Dyar, J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta B 66, 39–56 (2011).
[CrossRef]

Lee, J.

K. Song, H. Cha, J. Lee, and Y. Lee, “Investigation of the line-broadening mechanism for laser-induced copper plasma by time-resolved laser-induced breakdown spectroscopy,” Microchem. J. 63, 53–60 (1999).
[CrossRef]

Lee, Y.

K. Song, H. Cha, J. Lee, and Y. Lee, “Investigation of the line-broadening mechanism for laser-induced copper plasma by time-resolved laser-induced breakdown spectroscopy,” Microchem. J. 63, 53–60 (1999).
[CrossRef]

Legnaioli, S.

Leme, F. O.

D. Santos, L. C. Nunes, L. C. Trevizan, Q. Godoi, F. O. Leme, W. B. Braga, and F. José Krug, “Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils,” Spectrochim. Acta B 64, 1073–1078 (2009).
[CrossRef]

Li, J.

S. Yao, J. Lu, K. Chen, S. Pan, J. Li, and M. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257, 3103–3110 (2011).
[CrossRef]

Ling, H.

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91, 081501–081503 (2007).
[CrossRef]

Liška, M.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

Lu, J.

S. Yao, J. Lu, K. Chen, S. Pan, J. Li, and M. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257, 3103–3110 (2011).
[CrossRef]

Lu, Y. F.

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91, 081501–081503 (2007).
[CrossRef]

Martin, W. C.

J. E. Sansonetti and W. C. Martin, “Handbook of basic atomic spectroscopic data,” J. Phys. Chem. Ref. Data 34, 1559–2259 (2005).
[CrossRef]

McManus, C.

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. DeLucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
[CrossRef]

McMillan, N. J.

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. DeLucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
[CrossRef]

Miano, T. M.

G. S. Senesi, M. D. Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. D. Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
[CrossRef]

Michel-Le Pierrès, K.

Miziolek, A. W.

J. L. Gottfried, R. S. Harmon, F. C. De Lucia, and A. W. Miziolek, “Multivariate analysis of laser-induced breakdown spectroscopy chemical signatures for geomaterial classification,” Spectrochim. Acta B 64, 1009–1019 (2009).
[CrossRef]

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. DeLucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
[CrossRef]

Mohamed, W. T. Y.

W. T. Y. Mohamed, “Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable Echelle spectrometer with ICCD camera,” Opt. Laser Technol. 40, 30–38 (2008).
[CrossRef]

Mohamed, Y.

W. Tawfik, Y. Mohamed, and A. Askar, “Study of the matrix effect on the plasma characterization of heavy elements in soil sediments using LIBS with a portable Echell spectrometer,” Prog. Elem. Part. Cosmic Ray Phys. 1, 47–53 (2007).

Multari, R. A.

Nunes, L. C.

D. Santos, L. C. Nunes, L. C. Trevizan, Q. Godoi, F. O. Leme, W. B. Braga, and F. José Krug, “Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils,” Spectrochim. Acta B 64, 1073–1078 (2009).
[CrossRef]

Palleschi, G.

L. Caneve, A. Diamanti, F. Grimaldi, G. Palleschi, V. Spizzichino, and F. Valentini, “Analysis of fresco by laser induced breakdown spectroscopy,” Spectrochim. Acta B 65, 702–706 (2010).
[CrossRef]

Palleschi, V.

Pan, S.

S. Yao, J. Lu, K. Chen, S. Pan, J. Li, and M. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257, 3103–3110 (2011).
[CrossRef]

Pascale, O. D.

G. S. Senesi, M. D. Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. D. Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
[CrossRef]

Pavlov, S. G.

I. Rauschenbach, E. K. Jessberger, S. G. Pavlov, and H. W. Hübers, “Miniaturized laser-induced breakdown spectroscopy for the in-situ analysis of the Martian surface: calibration and quantification,” Spectrochim. Acta B 65, 758–768 (2010).
[CrossRef]

Philip, T.

P. Inakollu, T. Philip, A. K. Rai, F.-Y. Yueh, and J. P. Singh, “A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods,” Spectrochim. Acta B 64, 99–104 (2009).
[CrossRef]

Popov, A. M.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25, 837–848 (2010).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24, 602–604 (2009).
[CrossRef]

Priyomko, A.

M. Dzyubenko, S. Kolpakov, D. Kulishenko, and A. Priyomko, “Rapid analysis of emission spectra for gold alloys,” Appl. Spectrosc. 77, 279–284 (2010).
[CrossRef]

Radziemski, L. J.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Rai, A. K.

P. Inakollu, T. Philip, A. K. Rai, F.-Y. Yueh, and J. P. Singh, “A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods,” Spectrochim. Acta B 64, 99–104 (2009).
[CrossRef]

Rauschenbach, I.

I. Rauschenbach, E. K. Jessberger, S. G. Pavlov, and H. W. Hübers, “Miniaturized laser-induced breakdown spectroscopy for the in-situ analysis of the Martian surface: calibration and quantification,” Spectrochim. Acta B 65, 758–768 (2010).
[CrossRef]

Remus, J.

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. DeLucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
[CrossRef]

Roy, S.

Salvetti, A.

Samek, O.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

Sansonetti, J. E.

J. E. Sansonetti and W. C. Martin, “Handbook of basic atomic spectroscopic data,” J. Phys. Chem. Ref. Data 34, 1559–2259 (2005).
[CrossRef]

Santhosh, C.

G. P. Gupta, B. M. Suri, A. Verma, M. Sundararaman, V. K. Unnikrishnan, K. Alti, V. B. Kartha, and C. Santhosh, “Quantitative elemental analysis of nickel alloys using calibration-based laser-induced breakdown spectroscopy,” J. Alloys Compd. 509, 3740–3745 (2011).
[CrossRef]

Santos, D.

D. Santos, L. C. Nunes, L. C. Trevizan, Q. Godoi, F. O. Leme, W. B. Braga, and F. José Krug, “Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils,” Spectrochim. Acta B 64, 1073–1078 (2009).
[CrossRef]

Senesi, G. S.

G. S. Senesi, M. D. Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. D. Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
[CrossRef]

Shen, X. K.

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91, 081501–081503 (2007).
[CrossRef]

Singh, J. P.

P. Inakollu, T. Philip, A. K. Rai, F.-Y. Yueh, and J. P. Singh, “A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods,” Spectrochim. Acta B 64, 99–104 (2009).
[CrossRef]

Song, K.

K. Song, H. Cha, J. Lee, and Y. Lee, “Investigation of the line-broadening mechanism for laser-induced copper plasma by time-resolved laser-induced breakdown spectroscopy,” Microchem. J. 63, 53–60 (1999).
[CrossRef]

Spizzichino, V.

L. Caneve, A. Diamanti, F. Grimaldi, G. Palleschi, V. Spizzichino, and F. Valentini, “Analysis of fresco by laser induced breakdown spectroscopy,” Spectrochim. Acta B 65, 702–706 (2010).
[CrossRef]

Sun, J.

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91, 081501–081503 (2007).
[CrossRef]

Sundararaman, M.

G. P. Gupta, B. M. Suri, A. Verma, M. Sundararaman, V. K. Unnikrishnan, K. Alti, V. B. Kartha, and C. Santhosh, “Quantitative elemental analysis of nickel alloys using calibration-based laser-induced breakdown spectroscopy,” J. Alloys Compd. 509, 3740–3745 (2011).
[CrossRef]

Suri, B. M.

G. P. Gupta, B. M. Suri, A. Verma, M. Sundararaman, V. K. Unnikrishnan, K. Alti, V. B. Kartha, and C. Santhosh, “Quantitative elemental analysis of nickel alloys using calibration-based laser-induced breakdown spectroscopy,” J. Alloys Compd. 509, 3740–3745 (2011).
[CrossRef]

Tawfik, W.

W. Tawfik, Y. Mohamed, and A. Askar, “Study of the matrix effect on the plasma characterization of heavy elements in soil sediments using LIBS with a portable Echell spectrometer,” Prog. Elem. Part. Cosmic Ray Phys. 1, 47–53 (2007).

Telle, H. H.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

Tognoni, E.

Travaillé, G.

Trevizan, L. C.

D. Santos, L. C. Nunes, L. C. Trevizan, Q. Godoi, F. O. Leme, W. B. Braga, and F. José Krug, “Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils,” Spectrochim. Acta B 64, 1073–1078 (2009).
[CrossRef]

Tucker, J. M.

M. D. Dyar, J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta B 66, 39–56 (2011).
[CrossRef]

Unnikrishnan, V. K.

G. P. Gupta, B. M. Suri, A. Verma, M. Sundararaman, V. K. Unnikrishnan, K. Alti, V. B. Kartha, and C. Santhosh, “Quantitative elemental analysis of nickel alloys using calibration-based laser-induced breakdown spectroscopy,” J. Alloys Compd. 509, 3740–3745 (2011).
[CrossRef]

Valentini, F.

L. Caneve, A. Diamanti, F. Grimaldi, G. Palleschi, V. Spizzichino, and F. Valentini, “Analysis of fresco by laser induced breakdown spectroscopy,” Spectrochim. Acta B 65, 702–706 (2010).
[CrossRef]

Verma, A.

G. P. Gupta, B. M. Suri, A. Verma, M. Sundararaman, V. K. Unnikrishnan, K. Alti, V. B. Kartha, and C. Santhosh, “Quantitative elemental analysis of nickel alloys using calibration-based laser-induced breakdown spectroscopy,” J. Alloys Compd. 509, 3740–3745 (2011).
[CrossRef]

Wiens, R. C.

M. D. Dyar, J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta B 66, 39–56 (2011).
[CrossRef]

Yao, S.

S. Yao, J. Lu, K. Chen, S. Pan, J. Li, and M. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257, 3103–3110 (2011).
[CrossRef]

Young, J.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

Yueh, F.-Y.

P. Inakollu, T. Philip, A. K. Rai, F.-Y. Yueh, and J. P. Singh, “A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods,” Spectrochim. Acta B 64, 99–104 (2009).
[CrossRef]

Zaccone, C.

G. S. Senesi, M. D. Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. D. Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
[CrossRef]

Appl. Geochem. (1)

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. DeLucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91, 081501–081503 (2007).
[CrossRef]

Appl. Spectrosc. (4)

Appl. Surf. Sci. (1)

S. Yao, J. Lu, K. Chen, S. Pan, J. Li, and M. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257, 3103–3110 (2011).
[CrossRef]

Environ. Res. (1)

G. S. Senesi, M. D. Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. D. Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
[CrossRef]

J. Alloys Compd. (1)

G. P. Gupta, B. M. Suri, A. Verma, M. Sundararaman, V. K. Unnikrishnan, K. Alti, V. B. Kartha, and C. Santhosh, “Quantitative elemental analysis of nickel alloys using calibration-based laser-induced breakdown spectroscopy,” J. Alloys Compd. 509, 3740–3745 (2011).
[CrossRef]

J. Anal. At. Spectrom. (2)

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24, 602–604 (2009).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25, 837–848 (2010).
[CrossRef]

J. Appl. Phys. (1)

R. Ahmed and M. A. Baig, “A comparative study of single and double pulse laser induce breakdown spectroscopy,” J. Appl. Phys. 106, 033307 (2009).
[CrossRef]

J. Archaeol. Sci. (1)

A. Erdem, A. Çilingiroğlu, A. Giakoumaki, M. Castanys, E. Kartsonaki, C. Fotakis, and D. Anglos, “Characterization of Iron age pottery from eastern Turkey by laser- induced breakdown spectroscopy (LIBS),” J. Archaeol. Sci. 35, 2486–2494 (2008).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

J. E. Sansonetti and W. C. Martin, “Handbook of basic atomic spectroscopic data,” J. Phys. Chem. Ref. Data 34, 1559–2259 (2005).
[CrossRef]

Laser. Med. Sci. (1)

S. Hamzaoui, R. Khleifia, N. Jaïdane, and Z. Ben Lakhdar, “Quantitative analysis of pathological nails using laser-induced breakdown spectroscopy (LIBS) technique,” Laser. Med. Sci. 26, 79–83 (2011).
[CrossRef]

Microchem. J. (1)

K. Song, H. Cha, J. Lee, and Y. Lee, “Investigation of the line-broadening mechanism for laser-induced copper plasma by time-resolved laser-induced breakdown spectroscopy,” Microchem. J. 63, 53–60 (1999).
[CrossRef]

Opt. Eng. (1)

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

Opt. Laser Technol. (1)

W. T. Y. Mohamed, “Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable Echelle spectrometer with ICCD camera,” Opt. Laser Technol. 40, 30–38 (2008).
[CrossRef]

Prog. Elem. Part. Cosmic Ray Phys. (1)

W. Tawfik, Y. Mohamed, and A. Askar, “Study of the matrix effect on the plasma characterization of heavy elements in soil sediments using LIBS with a portable Echell spectrometer,” Prog. Elem. Part. Cosmic Ray Phys. 1, 47–53 (2007).

Spectrochim. Acta B (6)

L. Caneve, A. Diamanti, F. Grimaldi, G. Palleschi, V. Spizzichino, and F. Valentini, “Analysis of fresco by laser induced breakdown spectroscopy,” Spectrochim. Acta B 65, 702–706 (2010).
[CrossRef]

D. Santos, L. C. Nunes, L. C. Trevizan, Q. Godoi, F. O. Leme, W. B. Braga, and F. José Krug, “Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils,” Spectrochim. Acta B 64, 1073–1078 (2009).
[CrossRef]

J. L. Gottfried, R. S. Harmon, F. C. De Lucia, and A. W. Miziolek, “Multivariate analysis of laser-induced breakdown spectroscopy chemical signatures for geomaterial classification,” Spectrochim. Acta B 64, 1009–1019 (2009).
[CrossRef]

I. Rauschenbach, E. K. Jessberger, S. G. Pavlov, and H. W. Hübers, “Miniaturized laser-induced breakdown spectroscopy for the in-situ analysis of the Martian surface: calibration and quantification,” Spectrochim. Acta B 65, 758–768 (2010).
[CrossRef]

M. D. Dyar, J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta B 66, 39–56 (2011).
[CrossRef]

P. Inakollu, T. Philip, A. K. Rai, F.-Y. Yueh, and J. P. Singh, “A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods,” Spectrochim. Acta B 64, 99–104 (2009).
[CrossRef]

Other (4)

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

National Institute of Standards and Technology Physical Measurement Laboratory, “NIST Atomic Spectra Database,” http://physics.nist.gov/PhysRefData/ASD/lines_form.html .

H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University, 1997).

H. R. Griem, Plasma Spectroscopy (McGraw-Hill, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of the experimental setup.

Fig. 2.
Fig. 2.

Photograph of craters with different laser sequence pulse.

Fig. 3.
Fig. 3.

Emission spectra obtained in spectral ranges of 356–366 nm for the soil sample ablation followed by seven pulses, from the second pulse in the sequence to the eighth.

Fig. 4.
Fig. 4.

Variation of the spectral intensity with laser pulse sequence.

Fig. 5.
Fig. 5.

Variation of spectral SBR with laser pulse sequence.

Fig. 6.
Fig. 6.

(a) Boltzmann plots for Fe of the third laser pulse ablation the soil sample. (b) Changes of plasma temperature with laser pulse sequence.

Fig. 7.
Fig. 7.

(a) Lorentzian fit to the observed intensity data of the third laser pulse ablation the soil sample for K line of 361.834 nm. (b) Changes of electron density with laser pulse sequence.

Tables (2)

Tables Icon

Table 1. Spectroscopic Parameters of Fe Atomic Emission Line from NIST Database

Tables Icon

Table 2. Ablation Mass of Soil Samples for Each Laser Pulse Acted on the Same Place of Soil Sample Surface

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ln(IλgA)=EpkTe+C,
Δλ1/2=2ϖ(Ne1016),
Ne1.6×1012T1/2ΔE3,

Metrics