Abstract

The Raman lidar for atmospheric moisture sensing (RAMSES) for unattended, continuous multiparameter atmospheric profiling is presented. A seeded frequency-tripled Nd:YAG laser serves as the light source. A nine-channel polychromator, nonfiber coupled to the main telescope (790 mm diameter), is used for far-range measurements. Near-range observations are performed with a three-channel polychromator, fiber coupled to a secondary telescope (200 mm diameter). Measurement parameters are water-vapor mixing ratio (MR), temperature, and the optical particle parameters, which are extinction coefficient, backscatter coefficient, lidar ratio, and depolarization ratio at 355 nm. Profiles of water-vapor MR are measured from close to the surface up to 14 km at night and 5 km during the day under favorable atmospheric conditions in 20 min. Temperature profiles of the troposphere and lower stratosphere are determined with the rotational-Raman technique. For the detection of the rotational Raman signals, a new beamsplitter/interference-filter experimental setup is implemented that is compact, robust, and easy to align. Furthermore, the polychromator design allows two independent methods for calibrating measurements of depolarization ratio. RAMSES optical design concept and experimental setup are detailed, and a description of the operational near-real-time data evaluation software is given. A multiday observation is discussed to illustrate the measurement capabilities of RAMSES.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Wandinger, “Raman lidar,” in Lidar: Range–Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 241–271.
  2. A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, and W. Michealis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
    [CrossRef]
  3. D. N. Whiteman, S. H. Melfi, and R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earths atmosphere,” Appl. Opt. 31, 3068–3082(1992).
    [CrossRef]
  4. J. Reichardt, U. Wandinger, M. Serwazi, and C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996).
    [CrossRef]
  5. J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, and D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
    [CrossRef]
  6. V. Sherlock, A. Garnier, A. Hauchecorne, and P. Keckhut, “Implementation and validation of a Raman lidar measurement of middle and upper tropospheric water vapor,” Appl. Opt. 38, 5838–5850 (1999).
    [CrossRef]
  7. D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zörner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Ocean. Technol. 17, 1469–1482 (2000).
    [CrossRef]
  8. T. Leblanc, I. S. McDermid, and R. A. Aspey, “First-year operation of a new water vapor Raman lidar at the JPL Table Mountain Facility, California,” J. Atmos. Ocean. Technol. 25, 1454–1462 (2008).
    [CrossRef]
  9. P. Di Girolamo, D. Summa, and R. Ferretti, “Multiparameter Raman lidar measurements for the characterization of a dry stratospheric intrusion event,” J. Atmos. Ocean. Technol. 26, 1742–1762 (2009).
    [CrossRef]
  10. A. Apituley, K. M. Wilson, C. Potma, H. Volten, and M. de Graaf, “Performance assessment and application of Caeli—a high-performance Raman lidar for diurnal profiling of water vapour, aerosols and clouds,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S06-O10.
  11. T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
    [CrossRef]
  12. T. Dinoev, P. Ristori, Y. Arshinov, S. Bobrovnikov, I. Serikov, B. Calpini, H. van den Bergh, and V. Simeonov, “Meteorological water vapor Raman lidar—advances,” Proc. SPIE 6367, U98 (2006).
  13. D. Engelbart, J. Reichardt, I. Mattis, U. Wandinger, V. Klein, A. Meister, B. Hilber, and V. Jaenisch, “RAMSES—German Meteorological Service Raman lidar for atmospheric moisture sensing,” in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 683–686.
  14. F. H. Berger, J. Reichardt, A. Beljaars, J. Güldner, and C. Heret, “Evaluation of modeled water vapour profiles using Raman lidar data,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S07-O05.
  15. H. Woick, S. Dewitte, A. Feijt, A. Gratzki, P. Hechler, R. Hollmann, K.-G. Karlsson, V. Laine, P. Löwe, H. Nitsche, M. Werscheck, and G. Wollenweber, “The Satellite Application Facility on climate monitoring,” Adv. Space Res. 30, 2405–2410 (2002).
    [CrossRef]
  16. D. J. Seidel, F. H. Berger, H. J. Diamond, J. Dykema, D. Goodrich, F. Immler, W. Murray, T. Peterson, D. Sisterson, M. Sommer, P. Thorne, H. Vömel, and J. Wang, “Reference upper-air observations for climate: rationale, progress, and plans,” Bull. Am. Meteorol. Soc. 90, 361–369 (2009).
    [CrossRef]
  17. J. Reichardt, D. Engelbart, U. Wandinger, I. Mattis, V. Klein, and B. Hilber, “Expansion of the German Meteorological Service Raman Lidar RAMSES,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S06-P06.
  18. J. Reichardt, R. Begbie, U. Wandinger, V. Klein, B. Hilber, and D. Engelbart, “First water vapor and cloud measurements with the new far-range receiver of the German Meteorological Service Raman lidar RAMSES,” in Proceedings of the 25th International Laser Radar Conference, G. Matvienko and A. Zemlyanov, eds. (2010), pp. 1179–1182.
  19. R. K. Newsom, D. D. Turner, B. Mielke, M. Clayton, R. Ferrare, and C. Sivaraman, “Simultaneous analog and photon counting detection for Raman lidar,” Appl. Opt. 48, 3903–3914 (2009).
    [CrossRef]
  20. V. Simeonov, G. Larcheveque, P. Quaglia, H. van den Bergh, and B. Calpini, “Influence of the photomultiplier tube spatial uniformity on lidar signals,” Appl. Opt. 38, 5186–5190 (1999).
    [CrossRef]
  21. V. Freudenthaler, “Effects of spatially inhomogeneous photomultiplier sensitivity on lidar signals and remedies,” in Proceedings of the 22nd International Laser Radar Conference (ESA Publications Division, 2004), SP-561, pp. 37–40.
  22. D. N. Whiteman, I. Veselovskii, M. Cadirola, K. Rush, J. Comer, J. R. Potter, and R. Tola, “Demonstration measurements of water vapor, cirrus clouds, and carbon dioxide using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 24, 1377–1388 (2007).
    [CrossRef]
  23. J. M. Alvarez, M. A. Vaughan, C. A. Hostetler, W. H. Hunt, and D. M. Winker, “Calibration technique for polarization-sensitive lidars,” J. Atmos. Ocean. Technol. 23, 683–699 (2006).
    [CrossRef]
  24. J. Reichardt, R. Baumgart, and T. J. McGee, “Three-signal method for accurate measurements of depolarization ratio with lidar,” Appl. Opt. 42, 4909–4913 (2003).
    [CrossRef]
  25. J. Reichardt, “Raman backscatter-coefficient spectra of cirrus ice,” in Reviewed and Revised Papers of the 26th International Laser Radar Conference, A. Papayannis, D. Balis, and V. Amiridis, eds. (2012), pp. 387–390.
  26. I. Mattis and V. Jaenisch, “Automated Lidar Data Analyzer (ALDA) for RAMSES—the autonomously operating German Meteorological Service Raman lidar for atmospheric moisture sensing,” in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 215–218.
  27. D. Whiteman, “Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations,” Appl. Opt. 42, 2571–2592 (2003).
    [CrossRef]
  28. L. Elterman, “UV, visible, and IR attenuation for altitudes to 50 km, 1968,” environmental research papers AFCRL-68-0153, Air Force Cambridge Research Laboratories, L. G. Hanscom Field, Bedford, Massachusetts (1968).
  29. P. M. Teillet, “Rayleigh optical depth comparisons from various sources,” Appl. Opt. 29, 1897–1900 (1990).
    [CrossRef]
  30. A. Behrendt and J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39, 1372–1378 (2000).
    [CrossRef]
  31. A. Ansmann and D. Müller, “Lidar and atmospheric aerosol particles,” in Lidar: Range–Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 105–141.
  32. A. Ansmann, U. Wandinger, O. Le Rille, D. Lajas, and A. Straume, “Particle backscatter and extinction profiling with the spaceborne HSR Doppler lidar ALADIN: methodology and simulations,” Appl. Opt. 46, 6606–6622 (2007).
    [CrossRef]
  33. D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801 (2010).
    [CrossRef]
  34. H. Vömel, D. E. David, and K. Smith, “Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: Instrumental details and observations,” J. Geophys. Res. 112, D08305 (2007).
    [CrossRef]
  35. J. Reichardt, S. Reichardt, R.-F. Lin, M. Hess, T. J. McGee, and D. O. Starr, “Optical-microphysical cirrus model,” J. Geophys. Res. 113, D22201 (2008).
    [CrossRef]
  36. J. Reichardt and S. Reichardt, “Determination of cloud effective particle size from the multiple-scattering effect on lidar integration-method temperature measurements,” Appl. Opt. 45, 2796–2804 (2006).
    [CrossRef]
  37. J. Reichardt, M. Hess, and A. Macke, “Lidar inelastic multiple-scattering parameters of cirrus particle ensembles determined with geometrical-optics crystal phase functions,” Appl. Opt. 39, 1895–1910 (2000).
    [CrossRef]
  38. U. Wandinger, “Multiple-scattering influence on extinction- and backscatter-coefficient measurements with Raman and high-spectral-resolution lidars,” Appl. Opt. 37, 417–427 (1998).
    [CrossRef]
  39. M. Wirth, A. Fix, G. Ehret, J. Reichardt, R. Begbie, D. Engelbart, H. Vömel, B. Calpini, G. Romanens, A. Apituley, K. M. Wilson, H. Vogelmann, and T. Trickl, “Intercomparison of airborne water vapour DIAL measurements with ground based remote sensing and radiosondes within the framework of LUAMI 2008,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S07-P01.
  40. M. Wirth, DLR Oberpfaffenhofen, Weßling, Germany, personal communication (2012).

2011 (1)

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

2010 (1)

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801 (2010).
[CrossRef]

2009 (3)

D. J. Seidel, F. H. Berger, H. J. Diamond, J. Dykema, D. Goodrich, F. Immler, W. Murray, T. Peterson, D. Sisterson, M. Sommer, P. Thorne, H. Vömel, and J. Wang, “Reference upper-air observations for climate: rationale, progress, and plans,” Bull. Am. Meteorol. Soc. 90, 361–369 (2009).
[CrossRef]

R. K. Newsom, D. D. Turner, B. Mielke, M. Clayton, R. Ferrare, and C. Sivaraman, “Simultaneous analog and photon counting detection for Raman lidar,” Appl. Opt. 48, 3903–3914 (2009).
[CrossRef]

P. Di Girolamo, D. Summa, and R. Ferretti, “Multiparameter Raman lidar measurements for the characterization of a dry stratospheric intrusion event,” J. Atmos. Ocean. Technol. 26, 1742–1762 (2009).
[CrossRef]

2008 (2)

T. Leblanc, I. S. McDermid, and R. A. Aspey, “First-year operation of a new water vapor Raman lidar at the JPL Table Mountain Facility, California,” J. Atmos. Ocean. Technol. 25, 1454–1462 (2008).
[CrossRef]

J. Reichardt, S. Reichardt, R.-F. Lin, M. Hess, T. J. McGee, and D. O. Starr, “Optical-microphysical cirrus model,” J. Geophys. Res. 113, D22201 (2008).
[CrossRef]

2007 (3)

H. Vömel, D. E. David, and K. Smith, “Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: Instrumental details and observations,” J. Geophys. Res. 112, D08305 (2007).
[CrossRef]

A. Ansmann, U. Wandinger, O. Le Rille, D. Lajas, and A. Straume, “Particle backscatter and extinction profiling with the spaceborne HSR Doppler lidar ALADIN: methodology and simulations,” Appl. Opt. 46, 6606–6622 (2007).
[CrossRef]

D. N. Whiteman, I. Veselovskii, M. Cadirola, K. Rush, J. Comer, J. R. Potter, and R. Tola, “Demonstration measurements of water vapor, cirrus clouds, and carbon dioxide using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 24, 1377–1388 (2007).
[CrossRef]

2006 (3)

J. M. Alvarez, M. A. Vaughan, C. A. Hostetler, W. H. Hunt, and D. M. Winker, “Calibration technique for polarization-sensitive lidars,” J. Atmos. Ocean. Technol. 23, 683–699 (2006).
[CrossRef]

T. Dinoev, P. Ristori, Y. Arshinov, S. Bobrovnikov, I. Serikov, B. Calpini, H. van den Bergh, and V. Simeonov, “Meteorological water vapor Raman lidar—advances,” Proc. SPIE 6367, U98 (2006).

J. Reichardt and S. Reichardt, “Determination of cloud effective particle size from the multiple-scattering effect on lidar integration-method temperature measurements,” Appl. Opt. 45, 2796–2804 (2006).
[CrossRef]

2003 (2)

2002 (1)

H. Woick, S. Dewitte, A. Feijt, A. Gratzki, P. Hechler, R. Hollmann, K.-G. Karlsson, V. Laine, P. Löwe, H. Nitsche, M. Werscheck, and G. Wollenweber, “The Satellite Application Facility on climate monitoring,” Adv. Space Res. 30, 2405–2410 (2002).
[CrossRef]

2000 (3)

1999 (2)

1998 (2)

1996 (1)

J. Reichardt, U. Wandinger, M. Serwazi, and C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996).
[CrossRef]

1992 (2)

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, and W. Michealis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

D. N. Whiteman, S. H. Melfi, and R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earths atmosphere,” Appl. Opt. 31, 3068–3082(1992).
[CrossRef]

1990 (1)

Adam, M.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801 (2010).
[CrossRef]

Althausen, D.

D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zörner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Ocean. Technol. 17, 1469–1482 (2000).
[CrossRef]

Alvarez, J. M.

J. M. Alvarez, M. A. Vaughan, C. A. Hostetler, W. H. Hunt, and D. M. Winker, “Calibration technique for polarization-sensitive lidars,” J. Atmos. Ocean. Technol. 23, 683–699 (2006).
[CrossRef]

Ansmann, A.

A. Ansmann, U. Wandinger, O. Le Rille, D. Lajas, and A. Straume, “Particle backscatter and extinction profiling with the spaceborne HSR Doppler lidar ALADIN: methodology and simulations,” Appl. Opt. 46, 6606–6622 (2007).
[CrossRef]

D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zörner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Ocean. Technol. 17, 1469–1482 (2000).
[CrossRef]

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, and W. Michealis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

A. Ansmann and D. Müller, “Lidar and atmospheric aerosol particles,” in Lidar: Range–Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 105–141.

Apituley, A.

M. Wirth, A. Fix, G. Ehret, J. Reichardt, R. Begbie, D. Engelbart, H. Vömel, B. Calpini, G. Romanens, A. Apituley, K. M. Wilson, H. Vogelmann, and T. Trickl, “Intercomparison of airborne water vapour DIAL measurements with ground based remote sensing and radiosondes within the framework of LUAMI 2008,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S07-P01.

A. Apituley, K. M. Wilson, C. Potma, H. Volten, and M. de Graaf, “Performance assessment and application of Caeli—a high-performance Raman lidar for diurnal profiling of water vapour, aerosols and clouds,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S06-O10.

Arshinov, Y.

T. Dinoev, P. Ristori, Y. Arshinov, S. Bobrovnikov, I. Serikov, B. Calpini, H. van den Bergh, and V. Simeonov, “Meteorological water vapor Raman lidar—advances,” Proc. SPIE 6367, U98 (2006).

Aspey, R. A.

T. Leblanc, I. S. McDermid, and R. A. Aspey, “First-year operation of a new water vapor Raman lidar at the JPL Table Mountain Facility, California,” J. Atmos. Ocean. Technol. 25, 1454–1462 (2008).
[CrossRef]

Baumgart, R.

Begbie, R.

M. Wirth, A. Fix, G. Ehret, J. Reichardt, R. Begbie, D. Engelbart, H. Vömel, B. Calpini, G. Romanens, A. Apituley, K. M. Wilson, H. Vogelmann, and T. Trickl, “Intercomparison of airborne water vapour DIAL measurements with ground based remote sensing and radiosondes within the framework of LUAMI 2008,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S07-P01.

J. Reichardt, R. Begbie, U. Wandinger, V. Klein, B. Hilber, and D. Engelbart, “First water vapor and cloud measurements with the new far-range receiver of the German Meteorological Service Raman lidar RAMSES,” in Proceedings of the 25th International Laser Radar Conference, G. Matvienko and A. Zemlyanov, eds. (2010), pp. 1179–1182.

Behrendt, A.

Beljaars, A.

F. H. Berger, J. Reichardt, A. Beljaars, J. Güldner, and C. Heret, “Evaluation of modeled water vapour profiles using Raman lidar data,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S07-O05.

Berger, F. H.

D. J. Seidel, F. H. Berger, H. J. Diamond, J. Dykema, D. Goodrich, F. Immler, W. Murray, T. Peterson, D. Sisterson, M. Sommer, P. Thorne, H. Vömel, and J. Wang, “Reference upper-air observations for climate: rationale, progress, and plans,” Bull. Am. Meteorol. Soc. 90, 361–369 (2009).
[CrossRef]

F. H. Berger, J. Reichardt, A. Beljaars, J. Güldner, and C. Heret, “Evaluation of modeled water vapour profiles using Raman lidar data,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S07-O05.

Bisson, S. E.

Blair, F. H.

Blavier, J.-F.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

Bobrovnikov, S.

T. Dinoev, P. Ristori, Y. Arshinov, S. Bobrovnikov, I. Serikov, B. Calpini, H. van den Bergh, and V. Simeonov, “Meteorological water vapor Raman lidar—advances,” Proc. SPIE 6367, U98 (2006).

Braun, J.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

Cadirola, M.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801 (2010).
[CrossRef]

D. N. Whiteman, I. Veselovskii, M. Cadirola, K. Rush, J. Comer, J. R. Potter, and R. Tola, “Demonstration measurements of water vapor, cirrus clouds, and carbon dioxide using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 24, 1377–1388 (2007).
[CrossRef]

Calhoun, M.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

Calpini, B.

T. Dinoev, P. Ristori, Y. Arshinov, S. Bobrovnikov, I. Serikov, B. Calpini, H. van den Bergh, and V. Simeonov, “Meteorological water vapor Raman lidar—advances,” Proc. SPIE 6367, U98 (2006).

V. Simeonov, G. Larcheveque, P. Quaglia, H. van den Bergh, and B. Calpini, “Influence of the photomultiplier tube spatial uniformity on lidar signals,” Appl. Opt. 38, 5186–5190 (1999).
[CrossRef]

M. Wirth, A. Fix, G. Ehret, J. Reichardt, R. Begbie, D. Engelbart, H. Vömel, B. Calpini, G. Romanens, A. Apituley, K. M. Wilson, H. Vogelmann, and T. Trickl, “Intercomparison of airborne water vapour DIAL measurements with ground based remote sensing and radiosondes within the framework of LUAMI 2008,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S07-P01.

Clauder, E.

D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zörner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Ocean. Technol. 17, 1469–1482 (2000).
[CrossRef]

Clayton, M.

Comer, J.

D. N. Whiteman, I. Veselovskii, M. Cadirola, K. Rush, J. Comer, J. R. Potter, and R. Tola, “Demonstration measurements of water vapor, cirrus clouds, and carbon dioxide using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 24, 1377–1388 (2007).
[CrossRef]

Connell, R.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801 (2010).
[CrossRef]

David, D. E.

H. Vömel, D. E. David, and K. Smith, “Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: Instrumental details and observations,” J. Geophys. Res. 112, D08305 (2007).
[CrossRef]

de Graaf, M.

A. Apituley, K. M. Wilson, C. Potma, H. Volten, and M. de Graaf, “Performance assessment and application of Caeli—a high-performance Raman lidar for diurnal profiling of water vapour, aerosols and clouds,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S06-O10.

Dewitte, S.

H. Woick, S. Dewitte, A. Feijt, A. Gratzki, P. Hechler, R. Hollmann, K.-G. Karlsson, V. Laine, P. Löwe, H. Nitsche, M. Werscheck, and G. Wollenweber, “The Satellite Application Facility on climate monitoring,” Adv. Space Res. 30, 2405–2410 (2002).
[CrossRef]

Di Girolamo, P.

P. Di Girolamo, D. Summa, and R. Ferretti, “Multiparameter Raman lidar measurements for the characterization of a dry stratospheric intrusion event,” J. Atmos. Ocean. Technol. 26, 1742–1762 (2009).
[CrossRef]

Diamond, H. J.

D. J. Seidel, F. H. Berger, H. J. Diamond, J. Dykema, D. Goodrich, F. Immler, W. Murray, T. Peterson, D. Sisterson, M. Sommer, P. Thorne, H. Vömel, and J. Wang, “Reference upper-air observations for climate: rationale, progress, and plans,” Bull. Am. Meteorol. Soc. 90, 361–369 (2009).
[CrossRef]

Dinoev, T.

T. Dinoev, P. Ristori, Y. Arshinov, S. Bobrovnikov, I. Serikov, B. Calpini, H. van den Bergh, and V. Simeonov, “Meteorological water vapor Raman lidar—advances,” Proc. SPIE 6367, U98 (2006).

Dirisu, A.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

Dykema, J.

D. J. Seidel, F. H. Berger, H. J. Diamond, J. Dykema, D. Goodrich, F. Immler, W. Murray, T. Peterson, D. Sisterson, M. Sommer, P. Thorne, H. Vömel, and J. Wang, “Reference upper-air observations for climate: rationale, progress, and plans,” Bull. Am. Meteorol. Soc. 90, 361–369 (2009).
[CrossRef]

Ehret, G.

M. Wirth, A. Fix, G. Ehret, J. Reichardt, R. Begbie, D. Engelbart, H. Vömel, B. Calpini, G. Romanens, A. Apituley, K. M. Wilson, H. Vogelmann, and T. Trickl, “Intercomparison of airborne water vapour DIAL measurements with ground based remote sensing and radiosondes within the framework of LUAMI 2008,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S07-P01.

Elterman, L.

L. Elterman, “UV, visible, and IR attenuation for altitudes to 50 km, 1968,” environmental research papers AFCRL-68-0153, Air Force Cambridge Research Laboratories, L. G. Hanscom Field, Bedford, Massachusetts (1968).

Engelbart, D.

M. Wirth, A. Fix, G. Ehret, J. Reichardt, R. Begbie, D. Engelbart, H. Vömel, B. Calpini, G. Romanens, A. Apituley, K. M. Wilson, H. Vogelmann, and T. Trickl, “Intercomparison of airborne water vapour DIAL measurements with ground based remote sensing and radiosondes within the framework of LUAMI 2008,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S07-P01.

J. Reichardt, D. Engelbart, U. Wandinger, I. Mattis, V. Klein, and B. Hilber, “Expansion of the German Meteorological Service Raman Lidar RAMSES,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S06-P06.

J. Reichardt, R. Begbie, U. Wandinger, V. Klein, B. Hilber, and D. Engelbart, “First water vapor and cloud measurements with the new far-range receiver of the German Meteorological Service Raman lidar RAMSES,” in Proceedings of the 25th International Laser Radar Conference, G. Matvienko and A. Zemlyanov, eds. (2010), pp. 1179–1182.

D. Engelbart, J. Reichardt, I. Mattis, U. Wandinger, V. Klein, A. Meister, B. Hilber, and V. Jaenisch, “RAMSES—German Meteorological Service Raman lidar for atmospheric moisture sensing,” in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 683–686.

Feijt, A.

H. Woick, S. Dewitte, A. Feijt, A. Gratzki, P. Hechler, R. Hollmann, K.-G. Karlsson, V. Laine, P. Löwe, H. Nitsche, M. Werscheck, and G. Wollenweber, “The Satellite Application Facility on climate monitoring,” Adv. Space Res. 30, 2405–2410 (2002).
[CrossRef]

Ferrare, R.

Ferrare, R. A.

Ferretti, R.

P. Di Girolamo, D. Summa, and R. Ferretti, “Multiparameter Raman lidar measurements for the characterization of a dry stratospheric intrusion event,” J. Atmos. Ocean. Technol. 26, 1742–1762 (2009).
[CrossRef]

Fetzer, E.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

Fix, A.

M. Wirth, A. Fix, G. Ehret, J. Reichardt, R. Begbie, D. Engelbart, H. Vömel, B. Calpini, G. Romanens, A. Apituley, K. M. Wilson, H. Vogelmann, and T. Trickl, “Intercomparison of airborne water vapour DIAL measurements with ground based remote sensing and radiosondes within the framework of LUAMI 2008,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S07-P01.

Forno, R.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801 (2010).
[CrossRef]

Freudenthaler, V.

V. Freudenthaler, “Effects of spatially inhomogeneous photomultiplier sensitivity on lidar signals and remedies,” in Proceedings of the 22nd International Laser Radar Conference (ESA Publications Division, 2004), SP-561, pp. 37–40.

Garnier, A.

Goldsmith, J. E. M.

Gomez, R. M.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

Goodrich, D.

D. J. Seidel, F. H. Berger, H. J. Diamond, J. Dykema, D. Goodrich, F. Immler, W. Murray, T. Peterson, D. Sisterson, M. Sommer, P. Thorne, H. Vömel, and J. Wang, “Reference upper-air observations for climate: rationale, progress, and plans,” Bull. Am. Meteorol. Soc. 90, 361–369 (2009).
[CrossRef]

Gratzki, A.

H. Woick, S. Dewitte, A. Feijt, A. Gratzki, P. Hechler, R. Hollmann, K.-G. Karlsson, V. Laine, P. Löwe, H. Nitsche, M. Werscheck, and G. Wollenweber, “The Satellite Application Facility on climate monitoring,” Adv. Space Res. 30, 2405–2410 (2002).
[CrossRef]

Güldner, J.

F. H. Berger, J. Reichardt, A. Beljaars, J. Güldner, and C. Heret, “Evaluation of modeled water vapour profiles using Raman lidar data,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S07-O05.

Gutman, S.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

Haines, B.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

Hall, E.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

Hauchecorne, A.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

V. Sherlock, A. Garnier, A. Hauchecorne, and P. Keckhut, “Implementation and validation of a Raman lidar measurement of middle and upper tropospheric water vapor,” Appl. Opt. 38, 5838–5850 (1999).
[CrossRef]

Hechler, P.

H. Woick, S. Dewitte, A. Feijt, A. Gratzki, P. Hechler, R. Hollmann, K.-G. Karlsson, V. Laine, P. Löwe, H. Nitsche, M. Werscheck, and G. Wollenweber, “The Satellite Application Facility on climate monitoring,” Adv. Space Res. 30, 2405–2410 (2002).
[CrossRef]

Heret, C.

F. H. Berger, J. Reichardt, A. Beljaars, J. Güldner, and C. Heret, “Evaluation of modeled water vapour profiles using Raman lidar data,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S07-O05.

Herman, B.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

Hess, M.

J. Reichardt, S. Reichardt, R.-F. Lin, M. Hess, T. J. McGee, and D. O. Starr, “Optical-microphysical cirrus model,” J. Geophys. Res. 113, D22201 (2008).
[CrossRef]

J. Reichardt, M. Hess, and A. Macke, “Lidar inelastic multiple-scattering parameters of cirrus particle ensembles determined with geometrical-optics crystal phase functions,” Appl. Opt. 39, 1895–1910 (2000).
[CrossRef]

Hilber, B.

D. Engelbart, J. Reichardt, I. Mattis, U. Wandinger, V. Klein, A. Meister, B. Hilber, and V. Jaenisch, “RAMSES—German Meteorological Service Raman lidar for atmospheric moisture sensing,” in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 683–686.

J. Reichardt, D. Engelbart, U. Wandinger, I. Mattis, V. Klein, and B. Hilber, “Expansion of the German Meteorological Service Raman Lidar RAMSES,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S06-P06.

J. Reichardt, R. Begbie, U. Wandinger, V. Klein, B. Hilber, and D. Engelbart, “First water vapor and cloud measurements with the new far-range receiver of the German Meteorological Service Raman lidar RAMSES,” in Proceedings of the 25th International Laser Radar Conference, G. Matvienko and A. Zemlyanov, eds. (2010), pp. 1179–1182.

Hollmann, R.

H. Woick, S. Dewitte, A. Feijt, A. Gratzki, P. Hechler, R. Hollmann, K.-G. Karlsson, V. Laine, P. Löwe, H. Nitsche, M. Werscheck, and G. Wollenweber, “The Satellite Application Facility on climate monitoring,” Adv. Space Res. 30, 2405–2410 (2002).
[CrossRef]

Holub, K.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

Hostetler, C. A.

J. M. Alvarez, M. A. Vaughan, C. A. Hostetler, W. H. Hunt, and D. M. Winker, “Calibration technique for polarization-sensitive lidars,” J. Atmos. Ocean. Technol. 23, 683–699 (2006).
[CrossRef]

Hube, H.

D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zörner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Ocean. Technol. 17, 1469–1482 (2000).
[CrossRef]

Hunt, W. H.

J. M. Alvarez, M. A. Vaughan, C. A. Hostetler, W. H. Hunt, and D. M. Winker, “Calibration technique for polarization-sensitive lidars,” J. Atmos. Ocean. Technol. 23, 683–699 (2006).
[CrossRef]

Hurst, D.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

Immler, F.

D. J. Seidel, F. H. Berger, H. J. Diamond, J. Dykema, D. Goodrich, F. Immler, W. Murray, T. Peterson, D. Sisterson, M. Sommer, P. Thorne, H. Vömel, and J. Wang, “Reference upper-air observations for climate: rationale, progress, and plans,” Bull. Am. Meteorol. Soc. 90, 361–369 (2009).
[CrossRef]

Jaenisch, V.

D. Engelbart, J. Reichardt, I. Mattis, U. Wandinger, V. Klein, A. Meister, B. Hilber, and V. Jaenisch, “RAMSES—German Meteorological Service Raman lidar for atmospheric moisture sensing,” in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 683–686.

I. Mattis and V. Jaenisch, “Automated Lidar Data Analyzer (ALDA) for RAMSES—the autonomously operating German Meteorological Service Raman lidar for atmospheric moisture sensing,” in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 215–218.

Jordan, A.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

Kampfer, N.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

Karlsson, K.-G.

H. Woick, S. Dewitte, A. Feijt, A. Gratzki, P. Hechler, R. Hollmann, K.-G. Karlsson, V. Laine, P. Löwe, H. Nitsche, M. Werscheck, and G. Wollenweber, “The Satellite Application Facility on climate monitoring,” Adv. Space Res. 30, 2405–2410 (2002).
[CrossRef]

Keckhut, P.

Klein, V.

D. Engelbart, J. Reichardt, I. Mattis, U. Wandinger, V. Klein, A. Meister, B. Hilber, and V. Jaenisch, “RAMSES—German Meteorological Service Raman lidar for atmospheric moisture sensing,” in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 683–686.

J. Reichardt, D. Engelbart, U. Wandinger, I. Mattis, V. Klein, and B. Hilber, “Expansion of the German Meteorological Service Raman Lidar RAMSES,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S06-P06.

J. Reichardt, R. Begbie, U. Wandinger, V. Klein, B. Hilber, and D. Engelbart, “First water vapor and cloud measurements with the new far-range receiver of the German Meteorological Service Raman lidar RAMSES,” in Proceedings of the 25th International Laser Radar Conference, G. Matvienko and A. Zemlyanov, eds. (2010), pp. 1179–1182.

Lahmann, W.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, and W. Michealis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Laine, V.

H. Woick, S. Dewitte, A. Feijt, A. Gratzki, P. Hechler, R. Hollmann, K.-G. Karlsson, V. Laine, P. Löwe, H. Nitsche, M. Werscheck, and G. Wollenweber, “The Satellite Application Facility on climate monitoring,” Adv. Space Res. 30, 2405–2410 (2002).
[CrossRef]

Lajas, D.

Larcheveque, G.

Le Rille, O.

Leblanc, T.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801 (2010).
[CrossRef]

T. Leblanc, I. S. McDermid, and R. A. Aspey, “First-year operation of a new water vapor Raman lidar at the JPL Table Mountain Facility, California,” J. Atmos. Ocean. Technol. 25, 1454–1462 (2008).
[CrossRef]

Lin, R.-F.

J. Reichardt, S. Reichardt, R.-F. Lin, M. Hess, T. J. McGee, and D. O. Starr, “Optical-microphysical cirrus model,” J. Geophys. Res. 113, D22201 (2008).
[CrossRef]

Löwe, P.

H. Woick, S. Dewitte, A. Feijt, A. Gratzki, P. Hechler, R. Hollmann, K.-G. Karlsson, V. Laine, P. Löwe, H. Nitsche, M. Werscheck, and G. Wollenweber, “The Satellite Application Facility on climate monitoring,” Adv. Space Res. 30, 2405–2410 (2002).
[CrossRef]

Macke, A.

Mattis, I.

I. Mattis and V. Jaenisch, “Automated Lidar Data Analyzer (ALDA) for RAMSES—the autonomously operating German Meteorological Service Raman lidar for atmospheric moisture sensing,” in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 215–218.

D. Engelbart, J. Reichardt, I. Mattis, U. Wandinger, V. Klein, A. Meister, B. Hilber, and V. Jaenisch, “RAMSES—German Meteorological Service Raman lidar for atmospheric moisture sensing,” in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 683–686.

J. Reichardt, D. Engelbart, U. Wandinger, I. Mattis, V. Klein, and B. Hilber, “Expansion of the German Meteorological Service Raman Lidar RAMSES,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S06-P06.

McDermid, I. S.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

T. Leblanc, I. S. McDermid, and R. A. Aspey, “First-year operation of a new water vapor Raman lidar at the JPL Table Mountain Facility, California,” J. Atmos. Ocean. Technol. 25, 1454–1462 (2008).
[CrossRef]

McDermid, S.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801 (2010).
[CrossRef]

McGee, T. G.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

McGee, T. J.

J. Reichardt, S. Reichardt, R.-F. Lin, M. Hess, T. J. McGee, and D. O. Starr, “Optical-microphysical cirrus model,” J. Geophys. Res. 113, D22201 (2008).
[CrossRef]

J. Reichardt, R. Baumgart, and T. J. McGee, “Three-signal method for accurate measurements of depolarization ratio with lidar,” Appl. Opt. 42, 4909–4913 (2003).
[CrossRef]

McIntire, G.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801 (2010).
[CrossRef]

Meister, A.

D. Engelbart, J. Reichardt, I. Mattis, U. Wandinger, V. Klein, A. Meister, B. Hilber, and V. Jaenisch, “RAMSES—German Meteorological Service Raman lidar for atmospheric moisture sensing,” in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 683–686.

Melfi, S. H.

Michealis, W.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, and W. Michealis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Mielke, B.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801 (2010).
[CrossRef]

R. K. Newsom, D. D. Turner, B. Mielke, M. Clayton, R. Ferrare, and C. Sivaraman, “Simultaneous analog and photon counting detection for Raman lidar,” Appl. Opt. 48, 3903–3914 (2009).
[CrossRef]

Miloshevich, L.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

Müller, D.

D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zörner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Ocean. Technol. 17, 1469–1482 (2000).
[CrossRef]

A. Ansmann and D. Müller, “Lidar and atmospheric aerosol particles,” in Lidar: Range–Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 105–141.

Murray, W.

D. J. Seidel, F. H. Berger, H. J. Diamond, J. Dykema, D. Goodrich, F. Immler, W. Murray, T. Peterson, D. Sisterson, M. Sommer, P. Thorne, H. Vömel, and J. Wang, “Reference upper-air observations for climate: rationale, progress, and plans,” Bull. Am. Meteorol. Soc. 90, 361–369 (2009).
[CrossRef]

Nedoluha, G. E.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

Newsom, R. K.

Nitsche, H.

H. Woick, S. Dewitte, A. Feijt, A. Gratzki, P. Hechler, R. Hollmann, K.-G. Karlsson, V. Laine, P. Löwe, H. Nitsche, M. Werscheck, and G. Wollenweber, “The Satellite Application Facility on climate monitoring,” Adv. Space Res. 30, 2405–2410 (2002).
[CrossRef]

Peterson, T.

D. J. Seidel, F. H. Berger, H. J. Diamond, J. Dykema, D. Goodrich, F. Immler, W. Murray, T. Peterson, D. Sisterson, M. Sommer, P. Thorne, H. Vömel, and J. Wang, “Reference upper-air observations for climate: rationale, progress, and plans,” Bull. Am. Meteorol. Soc. 90, 361–369 (2009).
[CrossRef]

Pongetti, T.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

Potma, C.

A. Apituley, K. M. Wilson, C. Potma, H. Volten, and M. de Graaf, “Performance assessment and application of Caeli—a high-performance Raman lidar for diurnal profiling of water vapour, aerosols and clouds,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S06-O10.

Potter, J. R.

D. N. Whiteman, I. Veselovskii, M. Cadirola, K. Rush, J. Comer, J. R. Potter, and R. Tola, “Demonstration measurements of water vapor, cirrus clouds, and carbon dioxide using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 24, 1377–1388 (2007).
[CrossRef]

Quaglia, P.

Rabenhorst, S.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801 (2010).
[CrossRef]

Read, W. G.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

Reichardt, J.

J. Reichardt, S. Reichardt, R.-F. Lin, M. Hess, T. J. McGee, and D. O. Starr, “Optical-microphysical cirrus model,” J. Geophys. Res. 113, D22201 (2008).
[CrossRef]

J. Reichardt and S. Reichardt, “Determination of cloud effective particle size from the multiple-scattering effect on lidar integration-method temperature measurements,” Appl. Opt. 45, 2796–2804 (2006).
[CrossRef]

J. Reichardt, R. Baumgart, and T. J. McGee, “Three-signal method for accurate measurements of depolarization ratio with lidar,” Appl. Opt. 42, 4909–4913 (2003).
[CrossRef]

A. Behrendt and J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39, 1372–1378 (2000).
[CrossRef]

J. Reichardt, M. Hess, and A. Macke, “Lidar inelastic multiple-scattering parameters of cirrus particle ensembles determined with geometrical-optics crystal phase functions,” Appl. Opt. 39, 1895–1910 (2000).
[CrossRef]

J. Reichardt, U. Wandinger, M. Serwazi, and C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996).
[CrossRef]

J. Reichardt, R. Begbie, U. Wandinger, V. Klein, B. Hilber, and D. Engelbart, “First water vapor and cloud measurements with the new far-range receiver of the German Meteorological Service Raman lidar RAMSES,” in Proceedings of the 25th International Laser Radar Conference, G. Matvienko and A. Zemlyanov, eds. (2010), pp. 1179–1182.

J. Reichardt, D. Engelbart, U. Wandinger, I. Mattis, V. Klein, and B. Hilber, “Expansion of the German Meteorological Service Raman Lidar RAMSES,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S06-P06.

F. H. Berger, J. Reichardt, A. Beljaars, J. Güldner, and C. Heret, “Evaluation of modeled water vapour profiles using Raman lidar data,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S07-O05.

D. Engelbart, J. Reichardt, I. Mattis, U. Wandinger, V. Klein, A. Meister, B. Hilber, and V. Jaenisch, “RAMSES—German Meteorological Service Raman lidar for atmospheric moisture sensing,” in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 683–686.

M. Wirth, A. Fix, G. Ehret, J. Reichardt, R. Begbie, D. Engelbart, H. Vömel, B. Calpini, G. Romanens, A. Apituley, K. M. Wilson, H. Vogelmann, and T. Trickl, “Intercomparison of airborne water vapour DIAL measurements with ground based remote sensing and radiosondes within the framework of LUAMI 2008,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S07-P01.

J. Reichardt, “Raman backscatter-coefficient spectra of cirrus ice,” in Reviewed and Revised Papers of the 26th International Laser Radar Conference, A. Papayannis, D. Balis, and V. Amiridis, eds. (2012), pp. 387–390.

Reichardt, S.

J. Reichardt, S. Reichardt, R.-F. Lin, M. Hess, T. J. McGee, and D. O. Starr, “Optical-microphysical cirrus model,” J. Geophys. Res. 113, D22201 (2008).
[CrossRef]

J. Reichardt and S. Reichardt, “Determination of cloud effective particle size from the multiple-scattering effect on lidar integration-method temperature measurements,” Appl. Opt. 45, 2796–2804 (2006).
[CrossRef]

Riebesell, M.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, and W. Michealis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Ristori, P.

T. Dinoev, P. Ristori, Y. Arshinov, S. Bobrovnikov, I. Serikov, B. Calpini, H. van den Bergh, and V. Simeonov, “Meteorological water vapor Raman lidar—advances,” Proc. SPIE 6367, U98 (2006).

Romanens, G.

M. Wirth, A. Fix, G. Ehret, J. Reichardt, R. Begbie, D. Engelbart, H. Vömel, B. Calpini, G. Romanens, A. Apituley, K. M. Wilson, H. Vogelmann, and T. Trickl, “Intercomparison of airborne water vapour DIAL measurements with ground based remote sensing and radiosondes within the framework of LUAMI 2008,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S07-P01.

Rush, K.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801 (2010).
[CrossRef]

D. N. Whiteman, I. Veselovskii, M. Cadirola, K. Rush, J. Comer, J. R. Potter, and R. Tola, “Demonstration measurements of water vapor, cirrus clouds, and carbon dioxide using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 24, 1377–1388 (2007).
[CrossRef]

Russo, F.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801 (2010).
[CrossRef]

Sander, S.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

Seidel, D. J.

D. J. Seidel, F. H. Berger, H. J. Diamond, J. Dykema, D. Goodrich, F. Immler, W. Murray, T. Peterson, D. Sisterson, M. Sommer, P. Thorne, H. Vömel, and J. Wang, “Reference upper-air observations for climate: rationale, progress, and plans,” Bull. Am. Meteorol. Soc. 90, 361–369 (2009).
[CrossRef]

Serikov, I.

T. Dinoev, P. Ristori, Y. Arshinov, S. Bobrovnikov, I. Serikov, B. Calpini, H. van den Bergh, and V. Simeonov, “Meteorological water vapor Raman lidar—advances,” Proc. SPIE 6367, U98 (2006).

Serwazi, M.

J. Reichardt, U. Wandinger, M. Serwazi, and C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996).
[CrossRef]

Sherlock, V.

Simeonov, V.

T. Dinoev, P. Ristori, Y. Arshinov, S. Bobrovnikov, I. Serikov, B. Calpini, H. van den Bergh, and V. Simeonov, “Meteorological water vapor Raman lidar—advances,” Proc. SPIE 6367, U98 (2006).

V. Simeonov, G. Larcheveque, P. Quaglia, H. van den Bergh, and B. Calpini, “Influence of the photomultiplier tube spatial uniformity on lidar signals,” Appl. Opt. 38, 5186–5190 (1999).
[CrossRef]

Sisterson, D.

D. J. Seidel, F. H. Berger, H. J. Diamond, J. Dykema, D. Goodrich, F. Immler, W. Murray, T. Peterson, D. Sisterson, M. Sommer, P. Thorne, H. Vömel, and J. Wang, “Reference upper-air observations for climate: rationale, progress, and plans,” Bull. Am. Meteorol. Soc. 90, 361–369 (2009).
[CrossRef]

Sivaraman, C.

Smith, K.

H. Vömel, D. E. David, and K. Smith, “Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: Instrumental details and observations,” J. Geophys. Res. 112, D08305 (2007).
[CrossRef]

Sommer, M.

D. J. Seidel, F. H. Berger, H. J. Diamond, J. Dykema, D. Goodrich, F. Immler, W. Murray, T. Peterson, D. Sisterson, M. Sommer, P. Thorne, H. Vömel, and J. Wang, “Reference upper-air observations for climate: rationale, progress, and plans,” Bull. Am. Meteorol. Soc. 90, 361–369 (2009).
[CrossRef]

Starr, D. O.

J. Reichardt, S. Reichardt, R.-F. Lin, M. Hess, T. J. McGee, and D. O. Starr, “Optical-microphysical cirrus model,” J. Geophys. Res. 113, D22201 (2008).
[CrossRef]

Stein, B.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801 (2010).
[CrossRef]

Stiller, G.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

Straub, C.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

Straume, A.

Summa, D.

P. Di Girolamo, D. Summa, and R. Ferretti, “Multiparameter Raman lidar measurements for the characterization of a dry stratospheric intrusion event,” J. Atmos. Ocean. Technol. 26, 1742–1762 (2009).
[CrossRef]

Sumnicht, G.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

Teillet, P. M.

Thorne, P.

D. J. Seidel, F. H. Berger, H. J. Diamond, J. Dykema, D. Goodrich, F. Immler, W. Murray, T. Peterson, D. Sisterson, M. Sommer, P. Thorne, H. Vömel, and J. Wang, “Reference upper-air observations for climate: rationale, progress, and plans,” Bull. Am. Meteorol. Soc. 90, 361–369 (2009).
[CrossRef]

Tola, R.

D. N. Whiteman, I. Veselovskii, M. Cadirola, K. Rush, J. Comer, J. R. Potter, and R. Tola, “Demonstration measurements of water vapor, cirrus clouds, and carbon dioxide using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 24, 1377–1388 (2007).
[CrossRef]

Toon, G. C.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

Trickl, T.

M. Wirth, A. Fix, G. Ehret, J. Reichardt, R. Begbie, D. Engelbart, H. Vömel, B. Calpini, G. Romanens, A. Apituley, K. M. Wilson, H. Vogelmann, and T. Trickl, “Intercomparison of airborne water vapour DIAL measurements with ground based remote sensing and radiosondes within the framework of LUAMI 2008,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S07-P01.

Turner, D. D.

Twigg, L.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

van den Bergh, H.

T. Dinoev, P. Ristori, Y. Arshinov, S. Bobrovnikov, I. Serikov, B. Calpini, H. van den Bergh, and V. Simeonov, “Meteorological water vapor Raman lidar—advances,” Proc. SPIE 6367, U98 (2006).

V. Simeonov, G. Larcheveque, P. Quaglia, H. van den Bergh, and B. Calpini, “Influence of the photomultiplier tube spatial uniformity on lidar signals,” Appl. Opt. 38, 5186–5190 (1999).
[CrossRef]

Vanhove, T.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

Vaughan, M. A.

J. M. Alvarez, M. A. Vaughan, C. A. Hostetler, W. H. Hunt, and D. M. Winker, “Calibration technique for polarization-sensitive lidars,” J. Atmos. Ocean. Technol. 23, 683–699 (2006).
[CrossRef]

Venable, D.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801 (2010).
[CrossRef]

Veselovskii, I.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801 (2010).
[CrossRef]

D. N. Whiteman, I. Veselovskii, M. Cadirola, K. Rush, J. Comer, J. R. Potter, and R. Tola, “Demonstration measurements of water vapor, cirrus clouds, and carbon dioxide using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 24, 1377–1388 (2007).
[CrossRef]

Vogelmann, H.

M. Wirth, A. Fix, G. Ehret, J. Reichardt, R. Begbie, D. Engelbart, H. Vömel, B. Calpini, G. Romanens, A. Apituley, K. M. Wilson, H. Vogelmann, and T. Trickl, “Intercomparison of airborne water vapour DIAL measurements with ground based remote sensing and radiosondes within the framework of LUAMI 2008,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S07-P01.

Volten, H.

A. Apituley, K. M. Wilson, C. Potma, H. Volten, and M. de Graaf, “Performance assessment and application of Caeli—a high-performance Raman lidar for diurnal profiling of water vapour, aerosols and clouds,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S06-O10.

Vömel, H.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801 (2010).
[CrossRef]

D. J. Seidel, F. H. Berger, H. J. Diamond, J. Dykema, D. Goodrich, F. Immler, W. Murray, T. Peterson, D. Sisterson, M. Sommer, P. Thorne, H. Vömel, and J. Wang, “Reference upper-air observations for climate: rationale, progress, and plans,” Bull. Am. Meteorol. Soc. 90, 361–369 (2009).
[CrossRef]

H. Vömel, D. E. David, and K. Smith, “Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: Instrumental details and observations,” J. Geophys. Res. 112, D08305 (2007).
[CrossRef]

M. Wirth, A. Fix, G. Ehret, J. Reichardt, R. Begbie, D. Engelbart, H. Vömel, B. Calpini, G. Romanens, A. Apituley, K. M. Wilson, H. Vogelmann, and T. Trickl, “Intercomparison of airborne water vapour DIAL measurements with ground based remote sensing and radiosondes within the framework of LUAMI 2008,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S07-P01.

Voss, E.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, and W. Michealis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Walsh, T. D.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

Wandinger, U.

A. Ansmann, U. Wandinger, O. Le Rille, D. Lajas, and A. Straume, “Particle backscatter and extinction profiling with the spaceborne HSR Doppler lidar ALADIN: methodology and simulations,” Appl. Opt. 46, 6606–6622 (2007).
[CrossRef]

D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zörner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Ocean. Technol. 17, 1469–1482 (2000).
[CrossRef]

U. Wandinger, “Multiple-scattering influence on extinction- and backscatter-coefficient measurements with Raman and high-spectral-resolution lidars,” Appl. Opt. 37, 417–427 (1998).
[CrossRef]

J. Reichardt, U. Wandinger, M. Serwazi, and C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996).
[CrossRef]

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, and W. Michealis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

U. Wandinger, “Raman lidar,” in Lidar: Range–Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 241–271.

J. Reichardt, D. Engelbart, U. Wandinger, I. Mattis, V. Klein, and B. Hilber, “Expansion of the German Meteorological Service Raman Lidar RAMSES,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S06-P06.

J. Reichardt, R. Begbie, U. Wandinger, V. Klein, B. Hilber, and D. Engelbart, “First water vapor and cloud measurements with the new far-range receiver of the German Meteorological Service Raman lidar RAMSES,” in Proceedings of the 25th International Laser Radar Conference, G. Matvienko and A. Zemlyanov, eds. (2010), pp. 1179–1182.

D. Engelbart, J. Reichardt, I. Mattis, U. Wandinger, V. Klein, A. Meister, B. Hilber, and V. Jaenisch, “RAMSES—German Meteorological Service Raman lidar for atmospheric moisture sensing,” in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 683–686.

Wang, J.

D. J. Seidel, F. H. Berger, H. J. Diamond, J. Dykema, D. Goodrich, F. Immler, W. Murray, T. Peterson, D. Sisterson, M. Sommer, P. Thorne, H. Vömel, and J. Wang, “Reference upper-air observations for climate: rationale, progress, and plans,” Bull. Am. Meteorol. Soc. 90, 361–369 (2009).
[CrossRef]

Weitkamp, C.

J. Reichardt, U. Wandinger, M. Serwazi, and C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996).
[CrossRef]

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, and W. Michealis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Welch, W.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801 (2010).
[CrossRef]

Werscheck, M.

H. Woick, S. Dewitte, A. Feijt, A. Gratzki, P. Hechler, R. Hollmann, K.-G. Karlsson, V. Laine, P. Löwe, H. Nitsche, M. Werscheck, and G. Wollenweber, “The Satellite Application Facility on climate monitoring,” Adv. Space Res. 30, 2405–2410 (2002).
[CrossRef]

Whiteman, D.

Whiteman, D. N.

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801 (2010).
[CrossRef]

D. N. Whiteman, I. Veselovskii, M. Cadirola, K. Rush, J. Comer, J. R. Potter, and R. Tola, “Demonstration measurements of water vapor, cirrus clouds, and carbon dioxide using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 24, 1377–1388 (2007).
[CrossRef]

D. N. Whiteman, S. H. Melfi, and R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earths atmosphere,” Appl. Opt. 31, 3068–3082(1992).
[CrossRef]

Wilson, K. M.

A. Apituley, K. M. Wilson, C. Potma, H. Volten, and M. de Graaf, “Performance assessment and application of Caeli—a high-performance Raman lidar for diurnal profiling of water vapour, aerosols and clouds,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S06-O10.

M. Wirth, A. Fix, G. Ehret, J. Reichardt, R. Begbie, D. Engelbart, H. Vömel, B. Calpini, G. Romanens, A. Apituley, K. M. Wilson, H. Vogelmann, and T. Trickl, “Intercomparison of airborne water vapour DIAL measurements with ground based remote sensing and radiosondes within the framework of LUAMI 2008,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S07-P01.

Winker, D. M.

J. M. Alvarez, M. A. Vaughan, C. A. Hostetler, W. H. Hunt, and D. M. Winker, “Calibration technique for polarization-sensitive lidars,” J. Atmos. Ocean. Technol. 23, 683–699 (2006).
[CrossRef]

Wirth, M.

M. Wirth, DLR Oberpfaffenhofen, Weßling, Germany, personal communication (2012).

M. Wirth, A. Fix, G. Ehret, J. Reichardt, R. Begbie, D. Engelbart, H. Vömel, B. Calpini, G. Romanens, A. Apituley, K. M. Wilson, H. Vogelmann, and T. Trickl, “Intercomparison of airborne water vapour DIAL measurements with ground based remote sensing and radiosondes within the framework of LUAMI 2008,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S07-P01.

Woick, H.

H. Woick, S. Dewitte, A. Feijt, A. Gratzki, P. Hechler, R. Hollmann, K.-G. Karlsson, V. Laine, P. Löwe, H. Nitsche, M. Werscheck, and G. Wollenweber, “The Satellite Application Facility on climate monitoring,” Adv. Space Res. 30, 2405–2410 (2002).
[CrossRef]

Wollenweber, G.

H. Woick, S. Dewitte, A. Feijt, A. Gratzki, P. Hechler, R. Hollmann, K.-G. Karlsson, V. Laine, P. Löwe, H. Nitsche, M. Werscheck, and G. Wollenweber, “The Satellite Application Facility on climate monitoring,” Adv. Space Res. 30, 2405–2410 (2002).
[CrossRef]

Zörner, S.

D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zörner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Ocean. Technol. 17, 1469–1482 (2000).
[CrossRef]

Adv. Space Res. (1)

H. Woick, S. Dewitte, A. Feijt, A. Gratzki, P. Hechler, R. Hollmann, K.-G. Karlsson, V. Laine, P. Löwe, H. Nitsche, M. Werscheck, and G. Wollenweber, “The Satellite Application Facility on climate monitoring,” Adv. Space Res. 30, 2405–2410 (2002).
[CrossRef]

Appl. Opt. (13)

D. N. Whiteman, S. H. Melfi, and R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earths atmosphere,” Appl. Opt. 31, 3068–3082(1992).
[CrossRef]

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, and D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
[CrossRef]

V. Sherlock, A. Garnier, A. Hauchecorne, and P. Keckhut, “Implementation and validation of a Raman lidar measurement of middle and upper tropospheric water vapor,” Appl. Opt. 38, 5838–5850 (1999).
[CrossRef]

R. K. Newsom, D. D. Turner, B. Mielke, M. Clayton, R. Ferrare, and C. Sivaraman, “Simultaneous analog and photon counting detection for Raman lidar,” Appl. Opt. 48, 3903–3914 (2009).
[CrossRef]

V. Simeonov, G. Larcheveque, P. Quaglia, H. van den Bergh, and B. Calpini, “Influence of the photomultiplier tube spatial uniformity on lidar signals,” Appl. Opt. 38, 5186–5190 (1999).
[CrossRef]

J. Reichardt, R. Baumgart, and T. J. McGee, “Three-signal method for accurate measurements of depolarization ratio with lidar,” Appl. Opt. 42, 4909–4913 (2003).
[CrossRef]

D. Whiteman, “Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations,” Appl. Opt. 42, 2571–2592 (2003).
[CrossRef]

A. Ansmann, U. Wandinger, O. Le Rille, D. Lajas, and A. Straume, “Particle backscatter and extinction profiling with the spaceborne HSR Doppler lidar ALADIN: methodology and simulations,” Appl. Opt. 46, 6606–6622 (2007).
[CrossRef]

J. Reichardt and S. Reichardt, “Determination of cloud effective particle size from the multiple-scattering effect on lidar integration-method temperature measurements,” Appl. Opt. 45, 2796–2804 (2006).
[CrossRef]

J. Reichardt, M. Hess, and A. Macke, “Lidar inelastic multiple-scattering parameters of cirrus particle ensembles determined with geometrical-optics crystal phase functions,” Appl. Opt. 39, 1895–1910 (2000).
[CrossRef]

U. Wandinger, “Multiple-scattering influence on extinction- and backscatter-coefficient measurements with Raman and high-spectral-resolution lidars,” Appl. Opt. 37, 417–427 (1998).
[CrossRef]

P. M. Teillet, “Rayleigh optical depth comparisons from various sources,” Appl. Opt. 29, 1897–1900 (1990).
[CrossRef]

A. Behrendt and J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39, 1372–1378 (2000).
[CrossRef]

Appl. Phys. B (1)

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, and W. Michealis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Atmos. Meas. Tech. (1)

T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011).
[CrossRef]

Bull. Am. Meteorol. Soc. (1)

D. J. Seidel, F. H. Berger, H. J. Diamond, J. Dykema, D. Goodrich, F. Immler, W. Murray, T. Peterson, D. Sisterson, M. Sommer, P. Thorne, H. Vömel, and J. Wang, “Reference upper-air observations for climate: rationale, progress, and plans,” Bull. Am. Meteorol. Soc. 90, 361–369 (2009).
[CrossRef]

J. Atmos. Ocean. Technol. (6)

D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zörner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Ocean. Technol. 17, 1469–1482 (2000).
[CrossRef]

T. Leblanc, I. S. McDermid, and R. A. Aspey, “First-year operation of a new water vapor Raman lidar at the JPL Table Mountain Facility, California,” J. Atmos. Ocean. Technol. 25, 1454–1462 (2008).
[CrossRef]

P. Di Girolamo, D. Summa, and R. Ferretti, “Multiparameter Raman lidar measurements for the characterization of a dry stratospheric intrusion event,” J. Atmos. Ocean. Technol. 26, 1742–1762 (2009).
[CrossRef]

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801 (2010).
[CrossRef]

D. N. Whiteman, I. Veselovskii, M. Cadirola, K. Rush, J. Comer, J. R. Potter, and R. Tola, “Demonstration measurements of water vapor, cirrus clouds, and carbon dioxide using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 24, 1377–1388 (2007).
[CrossRef]

J. M. Alvarez, M. A. Vaughan, C. A. Hostetler, W. H. Hunt, and D. M. Winker, “Calibration technique for polarization-sensitive lidars,” J. Atmos. Ocean. Technol. 23, 683–699 (2006).
[CrossRef]

J. Geophys. Res. (2)

H. Vömel, D. E. David, and K. Smith, “Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: Instrumental details and observations,” J. Geophys. Res. 112, D08305 (2007).
[CrossRef]

J. Reichardt, S. Reichardt, R.-F. Lin, M. Hess, T. J. McGee, and D. O. Starr, “Optical-microphysical cirrus model,” J. Geophys. Res. 113, D22201 (2008).
[CrossRef]

Opt. Eng. (1)

J. Reichardt, U. Wandinger, M. Serwazi, and C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996).
[CrossRef]

Proc. SPIE (1)

T. Dinoev, P. Ristori, Y. Arshinov, S. Bobrovnikov, I. Serikov, B. Calpini, H. van den Bergh, and V. Simeonov, “Meteorological water vapor Raman lidar—advances,” Proc. SPIE 6367, U98 (2006).

Other (13)

D. Engelbart, J. Reichardt, I. Mattis, U. Wandinger, V. Klein, A. Meister, B. Hilber, and V. Jaenisch, “RAMSES—German Meteorological Service Raman lidar for atmospheric moisture sensing,” in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 683–686.

F. H. Berger, J. Reichardt, A. Beljaars, J. Güldner, and C. Heret, “Evaluation of modeled water vapour profiles using Raman lidar data,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S07-O05.

J. Reichardt, D. Engelbart, U. Wandinger, I. Mattis, V. Klein, and B. Hilber, “Expansion of the German Meteorological Service Raman Lidar RAMSES,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S06-P06.

J. Reichardt, R. Begbie, U. Wandinger, V. Klein, B. Hilber, and D. Engelbart, “First water vapor and cloud measurements with the new far-range receiver of the German Meteorological Service Raman lidar RAMSES,” in Proceedings of the 25th International Laser Radar Conference, G. Matvienko and A. Zemlyanov, eds. (2010), pp. 1179–1182.

U. Wandinger, “Raman lidar,” in Lidar: Range–Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 241–271.

A. Apituley, K. M. Wilson, C. Potma, H. Volten, and M. de Graaf, “Performance assessment and application of Caeli—a high-performance Raman lidar for diurnal profiling of water vapour, aerosols and clouds,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S06-O10.

M. Wirth, A. Fix, G. Ehret, J. Reichardt, R. Begbie, D. Engelbart, H. Vömel, B. Calpini, G. Romanens, A. Apituley, K. M. Wilson, H. Vogelmann, and T. Trickl, “Intercomparison of airborne water vapour DIAL measurements with ground based remote sensing and radiosondes within the framework of LUAMI 2008,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S07-P01.

M. Wirth, DLR Oberpfaffenhofen, Weßling, Germany, personal communication (2012).

V. Freudenthaler, “Effects of spatially inhomogeneous photomultiplier sensitivity on lidar signals and remedies,” in Proceedings of the 22nd International Laser Radar Conference (ESA Publications Division, 2004), SP-561, pp. 37–40.

L. Elterman, “UV, visible, and IR attenuation for altitudes to 50 km, 1968,” environmental research papers AFCRL-68-0153, Air Force Cambridge Research Laboratories, L. G. Hanscom Field, Bedford, Massachusetts (1968).

J. Reichardt, “Raman backscatter-coefficient spectra of cirrus ice,” in Reviewed and Revised Papers of the 26th International Laser Radar Conference, A. Papayannis, D. Balis, and V. Amiridis, eds. (2012), pp. 387–390.

I. Mattis and V. Jaenisch, “Automated Lidar Data Analyzer (ALDA) for RAMSES—the autonomously operating German Meteorological Service Raman lidar for atmospheric moisture sensing,” in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 215–218.

A. Ansmann and D. Müller, “Lidar and atmospheric aerosol particles,” in Lidar: Range–Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 105–141.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1.
Fig. 1.

Overview of the RAMSES lidar setup. a, laser head; b, beam expander; c, motorized beam-steering mirror; d, transmitter mirror mounted on holder of telescope secondary mirror; e, outcoupling window; f, telescope primary mirror; g, deflection mirror; h, near-range telescope; i, far-range polychromator, lower level; j, far-range polychromator, upper level. The fiber-coupled near-range polychromator and the tilted telescope glass shield are not shown.

Fig. 2.
Fig. 2.

Overlap functions and resulting N2 signals in a pure molecular atmosphere simulated for near-range (blue) and far-range detection channels. The FOV of the far-range telescope is 0.2 (green), 0.4 (black), and 1.0 mrad (red). Thick and thin lines show the results including and neglecting shadow effects of obstructions within the telescope’s aperture, respectively. An overall system efficiency of 0.5% is assumed. The gray-shaded area indicates signal intensities to which the photon-counting technique can be applied.

Fig. 3.
Fig. 3.

Concept of optical imaging in the far-range polychromator unit. (a) Behind the field stop (right) the beam is collimated and passes the individual beam-separation optics of each channel. Afterwards, an objective–eyepiece setup in front of the PMT (left) produces an image of the telescope’s primary mirror. (b) Distance between the eyepiece and the PMT is optimized such that the image is formed exactly on the photocathode. (c) Angle-of-incidence distribution in the collimated beam for rays arriving from heights between 1 and 50 km.

Fig. 4.
Fig. 4.

Schematic view of the far-range polychromator unit with (a) six detection channels (A–F) in the lower level and (b) three detection channels (G–I) in the upper level. Colors indicate the function of the optical elements: beamsplitters (dark green, BS); interference filters (orange, IF); edge filters (light green, EF); mirrors (cyan, M); polarizing elements (red, PBS, polarizing beamsplitter; HWP, half-wave plate; LP, linear polarizer); lenses (blue, L, La, collimator/objective; Lb, eyepiece; see Fig. 3).

Fig. 5.
Fig. 5.

Schematic view of the near-range polychromator unit with three detection channels (K–M). Colors indicate the function of the optical elements: beamsplitters (dark green, BS); interference filters (orange, IF); edge filters (light green, EF); lens (blue, L).

Fig. 6.
Fig. 6.

Transmission of the interference filters (thick curves) and of the beamsplitter assemblies [thin curves, cross-polarized (cr) and co-polarized (co) components with respect to the laser polarization vector] of the low-quantum-number rotational Raman channel (blue) and the high-quantum-number rotational Raman channel (red) as a function of wavelength. The rotational Raman spectra of molecular nitrogen (▴) and molecular oxygen (▪) are shown for comparison. The laser line is also indicated (λL).

Fig. 7.
Fig. 7.

Rotational-Raman temperature measurement in the presence of a cirrus cloud (backscatter ratio, solid curve; volume depolarization ratio, dashed curve) around 00:20 UTC on 6 June 2010. 1200 s of lidar data are integrated. The resolution of the raw data is 30 m, profiles are smoothed with a sliding-average length of five height bins. Bars indicate statistical errors.

Fig. 8.
Fig. 8.

Temperature dependence of the transmission of the low-quantum-number rotational Raman channel (blue curve), the high-quantum-number rotational Raman channel (red curve), and term RdT/dR of Eq. (2) defining the statistical measurement error (black curve). The transmission curves are normalized to their values at 0°C.

Fig. 9.
Fig. 9.

Overview of the RAMSES control system. A network of three computers controls data acquisition and measurement setup (measurement-execution computer, MEC), environmental conditions and safe operation (systems-control computer, SCC), and NRT data evaluation (data-evaluation computer, DEC).

Fig. 10.
Fig. 10.

Comparison of measured and simulated water-vapor (left) and molecular-nitrogen Raman signals (right) in the far-range (upper) and near-range channels (lower). The measurement was performed from 22:54 to 23:14 UTC on 24 May 2011. The simulations are based on water-vapor, temperature, and pressure profiles measured with a radiosonde launched at the lidar site at 22:54 UTC on 24 May 2011. The FOV of the far-range telescope was 0.75 mrad. Details are explained in the text. OLF, overlap function; agl, above ground level.

Fig. 11.
Fig. 11.

Calibration constants of near- and far-range water-vapor MR and backscatter ratio (BSR) profiles over time. The results of linear fits to the data sets are also shown (dashed curves).

Fig. 12.
Fig. 12.

Temporal evolution of water-vapor MR, particle backscatter coefficient, and particle depolarization ratio as measured with RAMSES on 2–5 September 2011, starting at 20:00 UTC. For each profile, 1200 s of lidar data are integrated; the calculation step width is 120 s. The resolution of the raw data is 60 m, signal profiles are smoothed with a sliding-average length of 3, 5, 7, 9, and 11 height bins from 1–2.5, 2.5–5, 5–7, 7–9, and 9–11 km, respectively. M1 and M2 indicate measurement segments that are presented in Fig. 15 in more detail.

Fig. 13.
Fig. 13.

Profiles of water-vapor MR measured with RAMSES (blue curves) and the midnight radiosondes (black curves) of 3, 4, and 5 September 2011. For each comparison, 1200 s of lidar data are integrated beginning with the launch times of the Lindenberg sondes. Orange bars indicate statistical errors of the lidar measurement. The resolution of the raw data and the sliding-average lengths used for signal smoothing are the same as those of Fig. 12. Above 11 km, sliding-average length increases by two height bins every kilometer. Only data obtained with the far-range receiver are used. Profiles of volume depolarization ratio are presented as indicators of clouds (thin black curves).

Fig. 14.
Fig. 14.

Profiles of water-vapor MR measured with RAMSES (blue curves) and the three radiosondes launched during daylight (black curves) on 3 September 2011. Clouds were absent below 8 km. For each comparison, 1200 s of lidar data are integrated beginning with the sonde launch times as indicated. Orange bars show statistical errors of the lidar measurement. The resolution of the raw data and the sliding-average lengths used for signal smoothing are the same as those of Fig. 12. Only data obtained with the far-range receiver are used.

Fig. 15.
Fig. 15.

Water-vapor MR (solid curve) and relative humidity with respect to ice (RHI, dashed curve), particle backscatter coefficient (βpar, solid curve), volume and particle depolarization ratios, and lidar ratio as measured with RAMSES during measurement segments M1 (top) and M2 (bottom) of Fig. 12. Bars indicate statistical errors of the lidar measurement. Data integration time is 1200 s. The resolution of the raw data and the sliding-average lengths used for signal smoothing are the same as those of Fig. 12. Molecular backscatter coefficient (βmol, dotted curve) is shown for comparison. Note the different abscissa ranges for the backscatter coefficient.

Fig. 16.
Fig. 16.

Differences between the Rayleigh-integration temperature profiles measured during measurement segment M1 and shortly before (00:00–00:20 UTC) under nearly cloud-free conditions. The M1 temperature measurement is either corrected for multiple scattering assuming different effective particle diameters of the cirrus cloud at 8–12 km (colored curves), or not corrected for multiple scattering (black curve). The sliding-average length used for signal smoothing is 1500 m; the starting height for the downward integration is 65 km.

Fig. 17.
Fig. 17.

RAMSES composite profiles of stratospheric temperature (rotational-Raman method, dark cyan curves; Rayleigh-integration method, blue curves) measured during the nights of 2–3, 3–4, and 4–5 September 2011. Starting at 20:50 UTC, 4 h of lidar data are integrated. The sliding-average length is 900 m. Orange bars indicate statistical errors of the rotational-Raman temperature measurement. Start height of the downward integration is 70 km. Temperature profiles of the corresponding midnight radiosondes are shown for comparison (thick black curves). Above the balloon burst heights around 30–35 km, model temperatures are used to extend the profiles upward. Particle backscatter coefficients are presented as indicators of cirrus clouds and stratospheric aerosol (thin black curves). Note the logarithmic height scale.

Fig. 18.
Fig. 18.

Statistical comparison between profiles of water-vapor MR measured with RAMSES (MRRA) and routine radiosondes (MRRS) in November 2011 at night. Mean profiles are shown in red. For each lidar profile, 1800 s of data are integrated beginning with the launch times of the Lindenberg sondes. The resolution of the raw data and the sliding-average lengths used for signal smoothing are the same as those of Fig. 12.

Fig. 19.
Fig. 19.

RAMSES water-vapor and rotational-Raman temperature measurements in the upper troposphere and lower stratosphere in the night of 15–16 March 2012 (solid blue curves). Starting at 19:00 UTC, 8.5 h of lidar data unaffected by astronomical twilight are integrated. The sliding-average length is 900 m below 13 km; above that height it increases by 120 m every kilometer. Orange bars indicate statistical errors. For comparison, profiles measured in situ with a CFH (green curve) and a RS92 radiosonde (black curves, corrected for time lag) are shown. Both sensors (along with others) were attached to a single frame and balloon-launched at 22:52 UTC. Concurrent tropospheric RAMSES profiles are also shown (dotted blue curves, 1200 s integration time).

Tables (2)

Tables Icon

Table 1. Parameters of the RAMSES Laser Transmitter and Receiving Telescopes

Tables Icon

Table 2. Optical Characteristics of the RAMSES Receiver Channelsa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R=SHRR/SLRR,
ΔT=dTdRR1SLRR+1SHRR.
R(T)=exp(a/T2+b/T+c),

Metrics