Abstract

Femtosecond pulse propagation at λ=802nm; in microstructured fiber (MF) with zero-dispersion wavelength at 780 nm is studied experimentally and numerically. The temporal and spectral distributions of the femtosecond pulse in MF are demonstrated by using a grating-eliminated no-nonsense observation of ultrafast incident laser light e-fields technique. Soliton fission is directly observed in the experimental results. The simulation of soliton evolution with the propagation distance in time and frequency domain is conducted.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Husakou and J. Herrmann, “Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers,” J. Opt. Soc. Am. B 19, 2171–2182 (2002).
    [CrossRef]
  2. A. Proulx, J. M. Ménard, N. Hô, J. Laniel, R. Vallée, and C. Paré, “Intensity and polarization dependences of the supercontinuum generation in birefringent and highly nonlinear microstructured fibers,” Opt. Express 11, 3338–3345 (2003).
    [CrossRef]
  3. G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola, “Enhanced bandwidth of supercontinuum generated in microstructured fibers,” Opt. Express 12, 3471–3480 (2004).
    [CrossRef]
  4. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
    [CrossRef]
  5. J. T. Moeser, N. A. Wolchover, J. C. Knight, and F. G. Omenetto, “Initial dynamics of supercontinuum generation in highly nonlinear photonic crystal fiber,” Opt. Lett. 32, 952–954 (2007).
    [CrossRef]
  6. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
    [CrossRef]
  7. A. Bétourné, A. Kudlinski, G. Bouwmans, O. Vanvincq, A. Mussot, and Y. Quiquempois, “Control of supercontinuum generation and soliton self-frequency shift in solid-core photonic bandgap fibers,” Opt. Lett. 34, 3083–3085 (2009).
    [CrossRef]
  8. M. Erkintalo, J. M. Dudley, and G. Genty, “Pump-soliton nonlinear wave mixing in noise-driven fiber supercontinuum generation,” Opt. Lett. 36, 3870–3872 (2011).
    [CrossRef]
  9. S. P. Stark, A. Podlipensky, N. Y. Joly, and P. St. J. Russell, “Ultraviolet-enhanced supercontinuum generation in tapered photonic crystal fiber,” J. Opt. Soc. Am. B 27, 592–598(2010).
    [CrossRef]
  10. B. Schenkel, R. Paschotta, and U. Keller, “Pulse compression with supercontinuum generation in microstructure fibers,” J. Opt. Soc. Am. B 22, 687–693 (2005).
    [CrossRef]
  11. S. P. Stark, J. C. Travers, and P. S. J. Russell, “Extreme supercontinuum generation to the deep UV,” Opt. Lett. 37, 770–772 (2012).
    [CrossRef]
  12. P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, “Solitons at the zero-group-dispersion wavelength of a single-mode fiber,” Opt. Lett. 12, 628–630 (1987).
    [CrossRef]
  13. B. Gross and J. T. Manassah, “Supercontinuum in the anomalous group-velocity dispersion region,” J. Opt. Soc. Am. B 9, 1813–1818 (1992).
    [CrossRef]
  14. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  15. P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental solitons formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
    [CrossRef]
  16. K. Tai, A. Hasegawa, and N. Bekki, “Fission of optical solitons induced by stimulated Raman effect,” Opt. Lett. 13, 392–394 (1988).
    [CrossRef]
  17. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  18. J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, and R. Windeler, “Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments,” Opt. Express 10, 1215–1221 (2002).
    [CrossRef]
  19. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, and R. Trebino, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174–1176 (2002).
    [CrossRef]
  20. J. Ratner, G. Steinmeyer, T. C. Wong, R. Bartels, and R. Trebino, “Coherent artifact in modern pulse measurements,” Opt. Lett. 37, 2874–2876 (2012).
    [CrossRef]
  21. P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26, 932–934 (2001).
    [CrossRef]
  22. B. Khubchandani, A. Silva, P. Guzdar, and R. Roy, “Using GRENOUILLE to characterize asymmetric femtosecond pulses undergoing self- and cross-phase modulation in a polarization-maintaining optical fiber,” Opt. Express 11, 3063–3073 (2003).
    [CrossRef]
  23. S. Akturk, M. Kimmel, P. O’Shea, and R. Trebino, “Measuring pulse-front tilt in ultrashort pulses using GRENOUILLE,” Opt. Express 11, 491–501 (2003).
    [CrossRef]
  24. R. Trebino, P. Bowlan, P. Gabolde, X. Gu, S. Akturk, and M. Kimmel, “Simple devices for measuring complex ultrashort pulses,” Laser Photon. Rev. 3, 314–342 (2009).
    [CrossRef]
  25. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers, 1st ed. (Cambridge University, 2010).
  26. S. Roy, S. K. Bhadra, and G. P. Agrawal, “Dispersive wave generation in supercontinuum process inside nonlinear microstructured fiber,” Curr. Sci. 100, 321–342 (2011).

2012 (2)

2011 (2)

M. Erkintalo, J. M. Dudley, and G. Genty, “Pump-soliton nonlinear wave mixing in noise-driven fiber supercontinuum generation,” Opt. Lett. 36, 3870–3872 (2011).
[CrossRef]

S. Roy, S. K. Bhadra, and G. P. Agrawal, “Dispersive wave generation in supercontinuum process inside nonlinear microstructured fiber,” Curr. Sci. 100, 321–342 (2011).

2010 (1)

2009 (2)

A. Bétourné, A. Kudlinski, G. Bouwmans, O. Vanvincq, A. Mussot, and Y. Quiquempois, “Control of supercontinuum generation and soliton self-frequency shift in solid-core photonic bandgap fibers,” Opt. Lett. 34, 3083–3085 (2009).
[CrossRef]

R. Trebino, P. Bowlan, P. Gabolde, X. Gu, S. Akturk, and M. Kimmel, “Simple devices for measuring complex ultrashort pulses,” Laser Photon. Rev. 3, 314–342 (2009).
[CrossRef]

2007 (1)

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

2005 (1)

2004 (1)

2003 (3)

2002 (4)

2001 (2)

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef]

P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26, 932–934 (2001).
[CrossRef]

1992 (1)

1988 (1)

1987 (2)

P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, “Solitons at the zero-group-dispersion wavelength of a single-mode fiber,” Opt. Lett. 12, 628–630 (1987).
[CrossRef]

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental solitons formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

Agrawal, G. P.

S. Roy, S. K. Bhadra, and G. P. Agrawal, “Dispersive wave generation in supercontinuum process inside nonlinear microstructured fiber,” Curr. Sci. 100, 321–342 (2011).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Akturk, S.

R. Trebino, P. Bowlan, P. Gabolde, X. Gu, S. Akturk, and M. Kimmel, “Simple devices for measuring complex ultrashort pulses,” Laser Photon. Rev. 3, 314–342 (2009).
[CrossRef]

S. Akturk, M. Kimmel, P. O’Shea, and R. Trebino, “Measuring pulse-front tilt in ultrashort pulses using GRENOUILLE,” Opt. Express 11, 491–501 (2003).
[CrossRef]

Bartels, R.

Beaud, P.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental solitons formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

Bekki, N.

Bétourné, A.

Bhadra, S. K.

S. Roy, S. K. Bhadra, and G. P. Agrawal, “Dispersive wave generation in supercontinuum process inside nonlinear microstructured fiber,” Curr. Sci. 100, 321–342 (2011).

Bouwmans, G.

Bowlan, P.

R. Trebino, P. Bowlan, P. Gabolde, X. Gu, S. Akturk, and M. Kimmel, “Simple devices for measuring complex ultrashort pulses,” Laser Photon. Rev. 3, 314–342 (2009).
[CrossRef]

Chen, H. H.

Coen, S.

Dudley, J. M.

Erkintalo, M.

Gabolde, P.

R. Trebino, P. Bowlan, P. Gabolde, X. Gu, S. Akturk, and M. Kimmel, “Simple devices for measuring complex ultrashort pulses,” Laser Photon. Rev. 3, 314–342 (2009).
[CrossRef]

Genty, G.

Griebner, U.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Gross, B.

Gu, X.

Guzdar, P.

Hasegawa, A.

Herrmann, J.

A. V. Husakou and J. Herrmann, “Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers,” J. Opt. Soc. Am. B 19, 2171–2182 (2002).
[CrossRef]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef]

Hô, N.

Hodel, W.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental solitons formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

Husakou, A.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Husakou, A. V.

A. V. Husakou and J. Herrmann, “Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers,” J. Opt. Soc. Am. B 19, 2171–2182 (2002).
[CrossRef]

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef]

Joly, N. Y.

Kaivola, M.

Keller, U.

Khubchandani, B.

Kimmel, M.

Knight, J. C.

J. T. Moeser, N. A. Wolchover, J. C. Knight, and F. G. Omenetto, “Initial dynamics of supercontinuum generation in highly nonlinear photonic crystal fiber,” Opt. Lett. 32, 952–954 (2007).
[CrossRef]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Korn, G.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Kudlinski, A.

Laniel, J.

Lee, Y. C.

Lehtonen, M.

Ludvigsen, H.

Manassah, J. T.

Ménard, J. M.

Menyuk, C. R.

Moeser, J. T.

Mussot, A.

Nickel, D.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

O’Shea, P.

Omenetto, F. G.

Paré, C.

Paschotta, R.

Podlipensky, A.

Proulx, A.

Quiquempois, Y.

Ratner, J.

Roy, R.

Roy, S.

S. Roy, S. K. Bhadra, and G. P. Agrawal, “Dispersive wave generation in supercontinuum process inside nonlinear microstructured fiber,” Curr. Sci. 100, 321–342 (2011).

Russell, P. S. J.

Russell, P. St. J.

S. P. Stark, A. Podlipensky, N. Y. Joly, and P. St. J. Russell, “Ultraviolet-enhanced supercontinuum generation in tapered photonic crystal fiber,” J. Opt. Soc. Am. B 27, 592–598(2010).
[CrossRef]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Schenkel, B.

Shreenath, A. P.

Silva, A.

Stark, S. P.

Steinmeyer, G.

Tai, K.

Taylor, J. R.

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers, 1st ed. (Cambridge University, 2010).

Travers, J. C.

Trebino, R.

Vallée, R.

Vanvincq, O.

Wadsworth, W. J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Wai, P. K. A.

Weber, H. P.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental solitons formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

Windeler, R.

Wolchover, N. A.

Wong, T. C.

Xu, L.

Zeek, E.

Zhavoronkov, N.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Zysset, B.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental solitons formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

Curr. Sci. (1)

S. Roy, S. K. Bhadra, and G. P. Agrawal, “Dispersive wave generation in supercontinuum process inside nonlinear microstructured fiber,” Curr. Sci. 100, 321–342 (2011).

IEEE J. Quantum Electron. (1)

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental solitons formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

J. Opt. Soc. Am. B (4)

Laser Photon. Rev. (1)

R. Trebino, P. Bowlan, P. Gabolde, X. Gu, S. Akturk, and M. Kimmel, “Simple devices for measuring complex ultrashort pulses,” Laser Photon. Rev. 3, 314–342 (2009).
[CrossRef]

Opt. Express (5)

Opt. Lett. (9)

J. T. Moeser, N. A. Wolchover, J. C. Knight, and F. G. Omenetto, “Initial dynamics of supercontinuum generation in highly nonlinear photonic crystal fiber,” Opt. Lett. 32, 952–954 (2007).
[CrossRef]

A. Bétourné, A. Kudlinski, G. Bouwmans, O. Vanvincq, A. Mussot, and Y. Quiquempois, “Control of supercontinuum generation and soliton self-frequency shift in solid-core photonic bandgap fibers,” Opt. Lett. 34, 3083–3085 (2009).
[CrossRef]

P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, “Solitons at the zero-group-dispersion wavelength of a single-mode fiber,” Opt. Lett. 12, 628–630 (1987).
[CrossRef]

K. Tai, A. Hasegawa, and N. Bekki, “Fission of optical solitons induced by stimulated Raman effect,” Opt. Lett. 13, 392–394 (1988).
[CrossRef]

P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26, 932–934 (2001).
[CrossRef]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, and R. Trebino, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174–1176 (2002).
[CrossRef]

M. Erkintalo, J. M. Dudley, and G. Genty, “Pump-soliton nonlinear wave mixing in noise-driven fiber supercontinuum generation,” Opt. Lett. 36, 3870–3872 (2011).
[CrossRef]

S. P. Stark, J. C. Travers, and P. S. J. Russell, “Extreme supercontinuum generation to the deep UV,” Opt. Lett. 37, 770–772 (2012).
[CrossRef]

J. Ratner, G. Steinmeyer, T. C. Wong, R. Bartels, and R. Trebino, “Coherent artifact in modern pulse measurements,” Opt. Lett. 37, 2874–2876 (2012).
[CrossRef]

Phys. Rev. Lett. (2)

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers, 1st ed. (Cambridge University, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Diagram of the experimental setup. M1 and M2, reflective mirrors.

Fig. 2.
Fig. 2.

(a) Measured trace, (b) retrieved trace, (c) temporal intensity and phase, and (d) spectrum and phase of the Ti:sapphire laser output pulse. SH, second harmonic generation.

Fig. 3.
Fig. 3.

Dispersion of the fiber as functions of wavelength and scanning electron micrograph of the fiber transverse section.

Fig. 4.
Fig. 4.

(a) Measured trace, (b) retrieved trace, (c) temporal intensity and trace, and (d) spectrum and phase at the output of 100 cm long fiber pumped at 3 mW. SH, second harmonic generation.

Fig. 5.
Fig. 5.

(a) Measured trace, (b) retrieved trace, (c) temporal intensity and phase, and (d) spectrum and phase at the output of 100 cm long fiber pumped at 4 mW. SH, second harmonic generation.

Fig. 6.
Fig. 6.

(a) Experimental trace, (b) retrieved trace, (c) temporal intensity and phase, and (d) spectrum and phase at the output of 100 cm long fiber pumped at 5 mW. SH, second harmonic generation.

Fig. 7.
Fig. 7.

(a), (c), (e) Simulated temporal spectral and (b), (d), (f) spectral evolution of a soliton launched in the anomalous-dispersion domain with average power of (a), (b) 3 mW, (c), (d) 4 mW, and (e), (f) 5 mW.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Az+α2A=im=1imβmm!mAtm+iγ(1+iω0t)×(A(z,t)0R(t)|A(z,tt)|2dt),
R(t)=(1fR)δ(t)+fRhR(t),
hR(τ)=(fa+fc)ha(τ)+fbhb(τ),
ha(τ)=τ12+τ22τ1τ22exp(ττ2)sin(ττ1),hb(τ)=(2τbττb2)exp(ττb),

Metrics