Abstract

Optoacoustic imaging represents a new modality that allows noninvasive in vivo molecular imaging with optical contrast and acoustical resolution. Whereas structural or functional imaging applications such as imaging of vasculature do not require contrast enhancing agents, nanoprobes with defined biochemical binding behavior are needed for molecular imaging tasks. Since the contrast of this modality is based on the local optical absorption coefficient, all particle or molecule types that show significant absorption cross sections in the spectral range of the laser wavelength used for signal generation are suitable contrast agents. Currently, several particle types such as gold nanospheres, nanoshells, nanorods, or polymer particles are used as optoacoustic contrast agents. These particles have specific advantages with respect to their absorption properties, or in terms of biologically relevant features (biodegradability, binding to molecular markers). In the present study, a comparative analysis of the signal generation efficiency of gold nanorods, polymeric particles, and magnetite particles using a 1064 nm Nd:YAG laser for signal generation is described.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
    [CrossRef]
  2. M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007).
    [CrossRef]
  3. S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling, and S. Y. Emelianov, “Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques,” Opt. Express 16, 3362–3367 (2008).
    [CrossRef]
  4. M. Fournelle, W. Bost, I. H. Tarner, T. Lehmberg, E. Weiss, R. Lemor, and R. Dinser, “Antitumor necrosis factor-α antibody-coupled gold nanorods as nanoprobes for molecular optoacoustic imaging in arthritis,” Nanomed. Nanotechnol. Biol. Med. 8, 346–354 (2012).
    [CrossRef]
  5. D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25,875–882 (2011).
    [CrossRef]
  6. A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithiligam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
    [CrossRef]
  7. G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt. 12, 044020 (2007).
    [CrossRef]
  8. J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Molecular Imaging Biol. 6, 341–349 (2004).
    [CrossRef]
  9. M. L. Li, J. Chunjay Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14, 010507 (2009).
    [CrossRef]
  10. P. C. Li, C. R. C. Wang, D. B. Shieh, C. W. Wei, C. K. Liao, C. Poe, S. Jhan, A. A. Ding, and Y. N. Wu, “In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods,” Opt. Express 16, 18605–18615 (2008).
    [CrossRef]
  11. M. Pramanik, K. H. Song, M. Swierczewska, D. Green, B. Sitharaman, and L. V. Wang, “In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node,” Phys. Med. Biol. 54, 3291–3301 (2009).
    [CrossRef]
  12. M. P. Mienkina, C. S. Friedrich, K. Hensel, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, “Evaluation of Ferucarbotran (Resovist) as a photoacoustic contrast agent,” Biomed. Tech. 54, 83–88 (2009).
    [CrossRef]
  13. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  14. R. G. Rayavarapu, W. Petersen, L. Hartsuiker, P. Chinand, H. Janssen, F. W. van Leeuwen, C. Otto, S. Manohar, and T. G. van Leeuwen, “In vitro toxicity studies of polymer-coated gold nanorods,” Nanotechnology 21, 145101 (2010).
    [CrossRef]
  15. A. Kopwitthaya, K. T. Yong, R. Hu, I. Roy, H. Ding, L. A. Vathy, E. J. Bergey, and P. N. Prasad, “Biocompatible PEGylated gold nanorods as colored contrast agents for targeted in vivo cancer applications,” Nanotechnology 21, 315101 (2010).
    [CrossRef]
  16. T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Controlled Release 114, 343–347 (2006).
    [CrossRef]
  17. Y. Kohl, C. Kaiser, W. Bost, F. Stracke, M. Fournelle, H. Thielecke, C. Wischke, A. Lendlein, K. Kratz, and R. Lemor, “Preparation and biological evaluation of NIR-dye-loaded resorbable PLGA-nanoparticles designed for photoacoustic imaging,” Nanomedicine: Nanotechnol. Biol. Med. 7, 228–237 (2011).
    [CrossRef]
  18. S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The twente photoacoustic mammoscope: system overview and performance,” Phys. Med. Biol. 50, 2543–2557 (2005).
    [CrossRef]
  19. S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in-vivo non-invasive cancer imaging in the human breast using nearinfrared photoacoustics,” Opt. Express 15, 12277–12285 (2007).
    [CrossRef]
  20. J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. C. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Photons Plus Ultrasound: Imaging Sensing 8223, 82230A (2012).
    [CrossRef]
  21. T. Osaka, T. Nakanishi, S. Shanmugam, S. Takahama, and H. Zhang, “Effect of surface charge of magnetite nanoparticles on their internalization into breast cancer and umbilical vein endothelial cells,” Colloids Surfaces B: Biointerfaces 71, 325–330 (2009).
    [CrossRef]
  22. H. Zimmermann, D. Zimmermann, R. Reuss, P. J. Feilen, B. Manz, A. Katsen, M. Weber, F. R. Ihmig, F. Ehrhart, P. Gener, M. Behringer, A. Steinbach, L. H. Wegner, V. L. Sukhorukov, J. A. Vasquez, S. Schneider, M. M. Weber, F. Volke, R. Wolf, and U. Zimmermann, “Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation,” J. Mat. Sci. 16, 491–501 (2005).
    [CrossRef]
  23. H. Zimmermann, F. Waehlisch, C. Baier, M. Westhoff, R. Reuss, D. Zimmermann, M. Behringer, F. Ehrhart, A. Katsen-Globa, C. Giese, U. Marx, V. L. Sukhorukov, J. A. Vasquez, P. Jakob, S. G. Shirley, and Zimmermann, “Physical and biological properties of barium cross-linked alginate membranes,” Biomaterials 28, 1327–1345 (2007).
    [CrossRef]
  24. W. Bost, Y. Kohl, F. Stracke, M. Fournelle, and R. Lemor, “High resolution optoacoustic detection of nanoparticles on living cells,” in Proceedings of 2009 IEEE International Ultrasonics Symposium (IEEE, 2009), pp. 120–123.
  25. E. C. Weiss, P. Anastasiadis, G. Pilarczyk, R. M. Lemor, and P. V. Zinin, “Mechanical properties of single cells by high-frequency time-resolved acoustic microscopy,” IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control 54, 2257–2271 (2007).
    [CrossRef]

2012

M. Fournelle, W. Bost, I. H. Tarner, T. Lehmberg, E. Weiss, R. Lemor, and R. Dinser, “Antitumor necrosis factor-α antibody-coupled gold nanorods as nanoprobes for molecular optoacoustic imaging in arthritis,” Nanomed. Nanotechnol. Biol. Med. 8, 346–354 (2012).
[CrossRef]

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. C. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Photons Plus Ultrasound: Imaging Sensing 8223, 82230A (2012).
[CrossRef]

2011

Y. Kohl, C. Kaiser, W. Bost, F. Stracke, M. Fournelle, H. Thielecke, C. Wischke, A. Lendlein, K. Kratz, and R. Lemor, “Preparation and biological evaluation of NIR-dye-loaded resorbable PLGA-nanoparticles designed for photoacoustic imaging,” Nanomedicine: Nanotechnol. Biol. Med. 7, 228–237 (2011).
[CrossRef]

D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25,875–882 (2011).
[CrossRef]

2010

R. G. Rayavarapu, W. Petersen, L. Hartsuiker, P. Chinand, H. Janssen, F. W. van Leeuwen, C. Otto, S. Manohar, and T. G. van Leeuwen, “In vitro toxicity studies of polymer-coated gold nanorods,” Nanotechnology 21, 145101 (2010).
[CrossRef]

A. Kopwitthaya, K. T. Yong, R. Hu, I. Roy, H. Ding, L. A. Vathy, E. J. Bergey, and P. N. Prasad, “Biocompatible PEGylated gold nanorods as colored contrast agents for targeted in vivo cancer applications,” Nanotechnology 21, 315101 (2010).
[CrossRef]

2009

M. Pramanik, K. H. Song, M. Swierczewska, D. Green, B. Sitharaman, and L. V. Wang, “In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node,” Phys. Med. Biol. 54, 3291–3301 (2009).
[CrossRef]

M. P. Mienkina, C. S. Friedrich, K. Hensel, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, “Evaluation of Ferucarbotran (Resovist) as a photoacoustic contrast agent,” Biomed. Tech. 54, 83–88 (2009).
[CrossRef]

T. Osaka, T. Nakanishi, S. Shanmugam, S. Takahama, and H. Zhang, “Effect of surface charge of magnetite nanoparticles on their internalization into breast cancer and umbilical vein endothelial cells,” Colloids Surfaces B: Biointerfaces 71, 325–330 (2009).
[CrossRef]

M. L. Li, J. Chunjay Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14, 010507 (2009).
[CrossRef]

2008

2007

G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt. 12, 044020 (2007).
[CrossRef]

H. Zimmermann, F. Waehlisch, C. Baier, M. Westhoff, R. Reuss, D. Zimmermann, M. Behringer, F. Ehrhart, A. Katsen-Globa, C. Giese, U. Marx, V. L. Sukhorukov, J. A. Vasquez, P. Jakob, S. G. Shirley, and Zimmermann, “Physical and biological properties of barium cross-linked alginate membranes,” Biomaterials 28, 1327–1345 (2007).
[CrossRef]

E. C. Weiss, P. Anastasiadis, G. Pilarczyk, R. M. Lemor, and P. V. Zinin, “Mechanical properties of single cells by high-frequency time-resolved acoustic microscopy,” IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control 54, 2257–2271 (2007).
[CrossRef]

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007).
[CrossRef]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in-vivo non-invasive cancer imaging in the human breast using nearinfrared photoacoustics,” Opt. Express 15, 12277–12285 (2007).
[CrossRef]

2006

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Controlled Release 114, 343–347 (2006).
[CrossRef]

2005

H. Zimmermann, D. Zimmermann, R. Reuss, P. J. Feilen, B. Manz, A. Katsen, M. Weber, F. R. Ihmig, F. Ehrhart, P. Gener, M. Behringer, A. Steinbach, L. H. Wegner, V. L. Sukhorukov, J. A. Vasquez, S. Schneider, M. M. Weber, F. Volke, R. Wolf, and U. Zimmermann, “Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation,” J. Mat. Sci. 16, 491–501 (2005).
[CrossRef]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The twente photoacoustic mammoscope: system overview and performance,” Phys. Med. Biol. 50, 2543–2557 (2005).
[CrossRef]

2004

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Molecular Imaging Biol. 6, 341–349 (2004).
[CrossRef]

Agayan, R. R.

G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt. 12, 044020 (2007).
[CrossRef]

Akiyama, Y.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Controlled Release 114, 343–347 (2006).
[CrossRef]

Allen, J. S.

D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25,875–882 (2011).
[CrossRef]

Amirian, J. H.

Anastasiadis, P.

E. C. Weiss, P. Anastasiadis, G. Pilarczyk, R. M. Lemor, and P. V. Zinin, “Mechanical properties of single cells by high-frequency time-resolved acoustic microscopy,” IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control 54, 2257–2271 (2007).
[CrossRef]

Ashkenazi, S.

G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt. 12, 044020 (2007).
[CrossRef]

Baier, C.

H. Zimmermann, F. Waehlisch, C. Baier, M. Westhoff, R. Reuss, D. Zimmermann, M. Behringer, F. Ehrhart, A. Katsen-Globa, C. Giese, U. Marx, V. L. Sukhorukov, J. A. Vasquez, P. Jakob, S. G. Shirley, and Zimmermann, “Physical and biological properties of barium cross-linked alginate membranes,” Biomaterials 28, 1327–1345 (2007).
[CrossRef]

Behringer, M.

H. Zimmermann, F. Waehlisch, C. Baier, M. Westhoff, R. Reuss, D. Zimmermann, M. Behringer, F. Ehrhart, A. Katsen-Globa, C. Giese, U. Marx, V. L. Sukhorukov, J. A. Vasquez, P. Jakob, S. G. Shirley, and Zimmermann, “Physical and biological properties of barium cross-linked alginate membranes,” Biomaterials 28, 1327–1345 (2007).
[CrossRef]

H. Zimmermann, D. Zimmermann, R. Reuss, P. J. Feilen, B. Manz, A. Katsen, M. Weber, F. R. Ihmig, F. Ehrhart, P. Gener, M. Behringer, A. Steinbach, L. H. Wegner, V. L. Sukhorukov, J. A. Vasquez, S. Schneider, M. M. Weber, F. Volke, R. Wolf, and U. Zimmermann, “Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation,” J. Mat. Sci. 16, 491–501 (2005).
[CrossRef]

Bergey, E. J.

A. Kopwitthaya, K. T. Yong, R. Hu, I. Roy, H. Ding, L. A. Vathy, E. J. Bergey, and P. N. Prasad, “Biocompatible PEGylated gold nanorods as colored contrast agents for targeted in vivo cancer applications,” Nanotechnology 21, 315101 (2010).
[CrossRef]

Bodapati, S.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithiligam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Bost, W.

M. Fournelle, W. Bost, I. H. Tarner, T. Lehmberg, E. Weiss, R. Lemor, and R. Dinser, “Antitumor necrosis factor-α antibody-coupled gold nanorods as nanoprobes for molecular optoacoustic imaging in arthritis,” Nanomed. Nanotechnol. Biol. Med. 8, 346–354 (2012).
[CrossRef]

Y. Kohl, C. Kaiser, W. Bost, F. Stracke, M. Fournelle, H. Thielecke, C. Wischke, A. Lendlein, K. Kratz, and R. Lemor, “Preparation and biological evaluation of NIR-dye-loaded resorbable PLGA-nanoparticles designed for photoacoustic imaging,” Nanomedicine: Nanotechnol. Biol. Med. 7, 228–237 (2011).
[CrossRef]

W. Bost, Y. Kohl, F. Stracke, M. Fournelle, and R. Lemor, “High resolution optoacoustic detection of nanoparticles on living cells,” in Proceedings of 2009 IEEE International Ultrasonics Symposium (IEEE, 2009), pp. 120–123.

Chen, X.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithiligam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

Cheng, Z.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithiligam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

Chinand, P.

R. G. Rayavarapu, W. Petersen, L. Hartsuiker, P. Chinand, H. Janssen, F. W. van Leeuwen, C. Otto, S. Manohar, and T. G. van Leeuwen, “In vitro toxicity studies of polymer-coated gold nanorods,” Nanotechnology 21, 145101 (2010).
[CrossRef]

Clingman, B.

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. C. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Photons Plus Ultrasound: Imaging Sensing 8223, 82230A (2012).
[CrossRef]

Conjusteau, A.

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. C. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Photons Plus Ultrasound: Imaging Sensing 8223, 82230A (2012).
[CrossRef]

Copland, J. A.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Molecular Imaging Biol. 6, 341–349 (2004).
[CrossRef]

Dai, H.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithiligam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

Day, K. C.

G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt. 12, 044020 (2007).
[CrossRef]

Day, M. A.

G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt. 12, 044020 (2007).
[CrossRef]

De La Zerda, A.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithiligam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

Ding, A. A.

Ding, H.

A. Kopwitthaya, K. T. Yong, R. Hu, I. Roy, H. Ding, L. A. Vathy, E. J. Bergey, and P. N. Prasad, “Biocompatible PEGylated gold nanorods as colored contrast agents for targeted in vivo cancer applications,” Nanotechnology 21, 315101 (2010).
[CrossRef]

Dinser, R.

M. Fournelle, W. Bost, I. H. Tarner, T. Lehmberg, E. Weiss, R. Lemor, and R. Dinser, “Antitumor necrosis factor-α antibody-coupled gold nanorods as nanoprobes for molecular optoacoustic imaging in arthritis,” Nanomed. Nanotechnol. Biol. Med. 8, 346–354 (2012).
[CrossRef]

Dornbluth, N. C.

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. C. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Photons Plus Ultrasound: Imaging Sensing 8223, 82230A (2012).
[CrossRef]

Eghtedari, M.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Molecular Imaging Biol. 6, 341–349 (2004).
[CrossRef]

Ehrhart, F.

H. Zimmermann, F. Waehlisch, C. Baier, M. Westhoff, R. Reuss, D. Zimmermann, M. Behringer, F. Ehrhart, A. Katsen-Globa, C. Giese, U. Marx, V. L. Sukhorukov, J. A. Vasquez, P. Jakob, S. G. Shirley, and Zimmermann, “Physical and biological properties of barium cross-linked alginate membranes,” Biomaterials 28, 1327–1345 (2007).
[CrossRef]

H. Zimmermann, D. Zimmermann, R. Reuss, P. J. Feilen, B. Manz, A. Katsen, M. Weber, F. R. Ihmig, F. Ehrhart, P. Gener, M. Behringer, A. Steinbach, L. H. Wegner, V. L. Sukhorukov, J. A. Vasquez, S. Schneider, M. M. Weber, F. Volke, R. Wolf, and U. Zimmermann, “Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation,” J. Mat. Sci. 16, 491–501 (2005).
[CrossRef]

Emelianov, S. Y.

Ermilov, S.

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. C. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Photons Plus Ultrasound: Imaging Sensing 8223, 82230A (2012).
[CrossRef]

Feilen, P. J.

H. Zimmermann, D. Zimmermann, R. Reuss, P. J. Feilen, B. Manz, A. Katsen, M. Weber, F. R. Ihmig, F. Ehrhart, P. Gener, M. Behringer, A. Steinbach, L. H. Wegner, V. L. Sukhorukov, J. A. Vasquez, S. Schneider, M. M. Weber, F. Volke, R. Wolf, and U. Zimmermann, “Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation,” J. Mat. Sci. 16, 491–501 (2005).
[CrossRef]

Fournelle, M.

M. Fournelle, W. Bost, I. H. Tarner, T. Lehmberg, E. Weiss, R. Lemor, and R. Dinser, “Antitumor necrosis factor-α antibody-coupled gold nanorods as nanoprobes for molecular optoacoustic imaging in arthritis,” Nanomed. Nanotechnol. Biol. Med. 8, 346–354 (2012).
[CrossRef]

Y. Kohl, C. Kaiser, W. Bost, F. Stracke, M. Fournelle, H. Thielecke, C. Wischke, A. Lendlein, K. Kratz, and R. Lemor, “Preparation and biological evaluation of NIR-dye-loaded resorbable PLGA-nanoparticles designed for photoacoustic imaging,” Nanomedicine: Nanotechnol. Biol. Med. 7, 228–237 (2011).
[CrossRef]

W. Bost, Y. Kohl, F. Stracke, M. Fournelle, and R. Lemor, “High resolution optoacoustic detection of nanoparticles on living cells,” in Proceedings of 2009 IEEE International Ultrasonics Symposium (IEEE, 2009), pp. 120–123.

Friedrich, C. S.

M. P. Mienkina, C. S. Friedrich, K. Hensel, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, “Evaluation of Ferucarbotran (Resovist) as a photoacoustic contrast agent,” Biomed. Tech. 54, 83–88 (2009).
[CrossRef]

Gambhir, S. S.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithiligam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

Gener, P.

H. Zimmermann, D. Zimmermann, R. Reuss, P. J. Feilen, B. Manz, A. Katsen, M. Weber, F. R. Ihmig, F. Ehrhart, P. Gener, M. Behringer, A. Steinbach, L. H. Wegner, V. L. Sukhorukov, J. A. Vasquez, S. Schneider, M. M. Weber, F. Volke, R. Wolf, and U. Zimmermann, “Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation,” J. Mat. Sci. 16, 491–501 (2005).
[CrossRef]

Gerhardt, N. C.

M. P. Mienkina, C. S. Friedrich, K. Hensel, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, “Evaluation of Ferucarbotran (Resovist) as a photoacoustic contrast agent,” Biomed. Tech. 54, 83–88 (2009).
[CrossRef]

Giese, C.

H. Zimmermann, F. Waehlisch, C. Baier, M. Westhoff, R. Reuss, D. Zimmermann, M. Behringer, F. Ehrhart, A. Katsen-Globa, C. Giese, U. Marx, V. L. Sukhorukov, J. A. Vasquez, P. Jakob, S. G. Shirley, and Zimmermann, “Physical and biological properties of barium cross-linked alginate membranes,” Biomaterials 28, 1327–1345 (2007).
[CrossRef]

Gill-Sharp, K. L.

M. L. Li, J. Chunjay Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14, 010507 (2009).
[CrossRef]

Green, D.

M. Pramanik, K. H. Song, M. Swierczewska, D. Green, B. Sitharaman, and L. V. Wang, “In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node,” Phys. Med. Biol. 54, 3291–3301 (2009).
[CrossRef]

Hartsuiker, L.

R. G. Rayavarapu, W. Petersen, L. Hartsuiker, P. Chinand, H. Janssen, F. W. van Leeuwen, C. Otto, S. Manohar, and T. G. van Leeuwen, “In vitro toxicity studies of polymer-coated gold nanorods,” Nanotechnology 21, 145101 (2010).
[CrossRef]

Hensel, K.

M. P. Mienkina, C. S. Friedrich, K. Hensel, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, “Evaluation of Ferucarbotran (Resovist) as a photoacoustic contrast agent,” Biomed. Tech. 54, 83–88 (2009).
[CrossRef]

Herzog, D.

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. C. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Photons Plus Ultrasound: Imaging Sensing 8223, 82230A (2012).
[CrossRef]

Hofmann, M. R.

M. P. Mienkina, C. S. Friedrich, K. Hensel, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, “Evaluation of Ferucarbotran (Resovist) as a photoacoustic contrast agent,” Biomed. Tech. 54, 83–88 (2009).
[CrossRef]

Hu, R.

A. Kopwitthaya, K. T. Yong, R. Hu, I. Roy, H. Ding, L. A. Vathy, E. J. Bergey, and P. N. Prasad, “Biocompatible PEGylated gold nanorods as colored contrast agents for targeted in vivo cancer applications,” Nanotechnology 21, 315101 (2010).
[CrossRef]

Huang, S. W.

G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt. 12, 044020 (2007).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Ihmig, F. R.

H. Zimmermann, D. Zimmermann, R. Reuss, P. J. Feilen, B. Manz, A. Katsen, M. Weber, F. R. Ihmig, F. Ehrhart, P. Gener, M. Behringer, A. Steinbach, L. H. Wegner, V. L. Sukhorukov, J. A. Vasquez, S. Schneider, M. M. Weber, F. Volke, R. Wolf, and U. Zimmermann, “Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation,” J. Mat. Sci. 16, 491–501 (2005).
[CrossRef]

Jakob, P.

H. Zimmermann, F. Waehlisch, C. Baier, M. Westhoff, R. Reuss, D. Zimmermann, M. Behringer, F. Ehrhart, A. Katsen-Globa, C. Giese, U. Marx, V. L. Sukhorukov, J. A. Vasquez, P. Jakob, S. G. Shirley, and Zimmermann, “Physical and biological properties of barium cross-linked alginate membranes,” Biomaterials 28, 1327–1345 (2007).
[CrossRef]

Janssen, H.

R. G. Rayavarapu, W. Petersen, L. Hartsuiker, P. Chinand, H. Janssen, F. W. van Leeuwen, C. Otto, S. Manohar, and T. G. van Leeuwen, “In vitro toxicity studies of polymer-coated gold nanorods,” Nanotechnology 21, 145101 (2010).
[CrossRef]

Jhan, S.

Kaiser, C.

Y. Kohl, C. Kaiser, W. Bost, F. Stracke, M. Fournelle, H. Thielecke, C. Wischke, A. Lendlein, K. Kratz, and R. Lemor, “Preparation and biological evaluation of NIR-dye-loaded resorbable PLGA-nanoparticles designed for photoacoustic imaging,” Nanomedicine: Nanotechnol. Biol. Med. 7, 228–237 (2011).
[CrossRef]

Katayama, Y.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Controlled Release 114, 343–347 (2006).
[CrossRef]

Katsen, A.

H. Zimmermann, D. Zimmermann, R. Reuss, P. J. Feilen, B. Manz, A. Katsen, M. Weber, F. R. Ihmig, F. Ehrhart, P. Gener, M. Behringer, A. Steinbach, L. H. Wegner, V. L. Sukhorukov, J. A. Vasquez, S. Schneider, M. M. Weber, F. Volke, R. Wolf, and U. Zimmermann, “Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation,” J. Mat. Sci. 16, 491–501 (2005).
[CrossRef]

Katsen-Globa, A.

H. Zimmermann, F. Waehlisch, C. Baier, M. Westhoff, R. Reuss, D. Zimmermann, M. Behringer, F. Ehrhart, A. Katsen-Globa, C. Giese, U. Marx, V. L. Sukhorukov, J. A. Vasquez, P. Jakob, S. G. Shirley, and Zimmermann, “Physical and biological properties of barium cross-linked alginate membranes,” Biomaterials 28, 1327–1345 (2007).
[CrossRef]

Kawano, T.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Controlled Release 114, 343–347 (2006).
[CrossRef]

Keren, S.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithiligam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

Kharine, A.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in-vivo non-invasive cancer imaging in the human breast using nearinfrared photoacoustics,” Opt. Express 15, 12277–12285 (2007).
[CrossRef]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The twente photoacoustic mammoscope: system overview and performance,” Phys. Med. Biol. 50, 2543–2557 (2005).
[CrossRef]

Khuri-Yakub, B. T.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithiligam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

Kim, G.

G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt. 12, 044020 (2007).
[CrossRef]

Kist, K.

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. C. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Photons Plus Ultrasound: Imaging Sensing 8223, 82230A (2012).
[CrossRef]

Kohl, Y.

Y. Kohl, C. Kaiser, W. Bost, F. Stracke, M. Fournelle, H. Thielecke, C. Wischke, A. Lendlein, K. Kratz, and R. Lemor, “Preparation and biological evaluation of NIR-dye-loaded resorbable PLGA-nanoparticles designed for photoacoustic imaging,” Nanomedicine: Nanotechnol. Biol. Med. 7, 228–237 (2011).
[CrossRef]

W. Bost, Y. Kohl, F. Stracke, M. Fournelle, and R. Lemor, “High resolution optoacoustic detection of nanoparticles on living cells,” in Proceedings of 2009 IEEE International Ultrasonics Symposium (IEEE, 2009), pp. 120–123.

Kopelman, R.

G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt. 12, 044020 (2007).
[CrossRef]

Kopwitthaya, A.

A. Kopwitthaya, K. T. Yong, R. Hu, I. Roy, H. Ding, L. A. Vathy, E. J. Bergey, and P. N. Prasad, “Biocompatible PEGylated gold nanorods as colored contrast agents for targeted in vivo cancer applications,” Nanotechnology 21, 315101 (2010).
[CrossRef]

Kotov, N.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Molecular Imaging Biol. 6, 341–349 (2004).
[CrossRef]

Kratz, K.

Y. Kohl, C. Kaiser, W. Bost, F. Stracke, M. Fournelle, H. Thielecke, C. Wischke, A. Lendlein, K. Kratz, and R. Lemor, “Preparation and biological evaluation of NIR-dye-loaded resorbable PLGA-nanoparticles designed for photoacoustic imaging,” Nanomedicine: Nanotechnol. Biol. Med. 7, 228–237 (2011).
[CrossRef]

Lanza, G. M.

D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25,875–882 (2011).
[CrossRef]

Lehmberg, T.

M. Fournelle, W. Bost, I. H. Tarner, T. Lehmberg, E. Weiss, R. Lemor, and R. Dinser, “Antitumor necrosis factor-α antibody-coupled gold nanorods as nanoprobes for molecular optoacoustic imaging in arthritis,” Nanomed. Nanotechnol. Biol. Med. 8, 346–354 (2012).
[CrossRef]

Lemor, R.

M. Fournelle, W. Bost, I. H. Tarner, T. Lehmberg, E. Weiss, R. Lemor, and R. Dinser, “Antitumor necrosis factor-α antibody-coupled gold nanorods as nanoprobes for molecular optoacoustic imaging in arthritis,” Nanomed. Nanotechnol. Biol. Med. 8, 346–354 (2012).
[CrossRef]

Y. Kohl, C. Kaiser, W. Bost, F. Stracke, M. Fournelle, H. Thielecke, C. Wischke, A. Lendlein, K. Kratz, and R. Lemor, “Preparation and biological evaluation of NIR-dye-loaded resorbable PLGA-nanoparticles designed for photoacoustic imaging,” Nanomedicine: Nanotechnol. Biol. Med. 7, 228–237 (2011).
[CrossRef]

W. Bost, Y. Kohl, F. Stracke, M. Fournelle, and R. Lemor, “High resolution optoacoustic detection of nanoparticles on living cells,” in Proceedings of 2009 IEEE International Ultrasonics Symposium (IEEE, 2009), pp. 120–123.

Lemor, R. M.

E. C. Weiss, P. Anastasiadis, G. Pilarczyk, R. M. Lemor, and P. V. Zinin, “Mechanical properties of single cells by high-frequency time-resolved acoustic microscopy,” IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control 54, 2257–2271 (2007).
[CrossRef]

Lendlein, A.

Y. Kohl, C. Kaiser, W. Bost, F. Stracke, M. Fournelle, H. Thielecke, C. Wischke, A. Lendlein, K. Kratz, and R. Lemor, “Preparation and biological evaluation of NIR-dye-loaded resorbable PLGA-nanoparticles designed for photoacoustic imaging,” Nanomedicine: Nanotechnol. Biol. Med. 7, 228–237 (2011).
[CrossRef]

Levi, J.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithiligam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

Li, M. L.

M. L. Li, J. Chunjay Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14, 010507 (2009).
[CrossRef]

Li, P. C.

Liao, C. K.

Litovsky, S. H.

Liu, Z.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithiligam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

Ma, T. J.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithiligam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

Mamedova, N.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Molecular Imaging Biol. 6, 341–349 (2004).
[CrossRef]

Manohar, S.

R. G. Rayavarapu, W. Petersen, L. Hartsuiker, P. Chinand, H. Janssen, F. W. van Leeuwen, C. Otto, S. Manohar, and T. G. van Leeuwen, “In vitro toxicity studies of polymer-coated gold nanorods,” Nanotechnology 21, 145101 (2010).
[CrossRef]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in-vivo non-invasive cancer imaging in the human breast using nearinfrared photoacoustics,” Opt. Express 15, 12277–12285 (2007).
[CrossRef]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The twente photoacoustic mammoscope: system overview and performance,” Phys. Med. Biol. 50, 2543–2557 (2005).
[CrossRef]

Manz, B.

H. Zimmermann, D. Zimmermann, R. Reuss, P. J. Feilen, B. Manz, A. Katsen, M. Weber, F. R. Ihmig, F. Ehrhart, P. Gener, M. Behringer, A. Steinbach, L. H. Wegner, V. L. Sukhorukov, J. A. Vasquez, S. Schneider, M. M. Weber, F. Volke, R. Wolf, and U. Zimmermann, “Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation,” J. Mat. Sci. 16, 491–501 (2005).
[CrossRef]

Marx, U.

H. Zimmermann, F. Waehlisch, C. Baier, M. Westhoff, R. Reuss, D. Zimmermann, M. Behringer, F. Ehrhart, A. Katsen-Globa, C. Giese, U. Marx, V. L. Sukhorukov, J. A. Vasquez, P. Jakob, S. G. Shirley, and Zimmermann, “Physical and biological properties of barium cross-linked alginate membranes,” Biomaterials 28, 1327–1345 (2007).
[CrossRef]

Maslov, K.

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007).
[CrossRef]

McCorvey, B. M.

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. C. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Photons Plus Ultrasound: Imaging Sensing 8223, 82230A (2012).
[CrossRef]

Mienkina, M. P.

M. P. Mienkina, C. S. Friedrich, K. Hensel, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, “Evaluation of Ferucarbotran (Resovist) as a photoacoustic contrast agent,” Biomed. Tech. 54, 83–88 (2009).
[CrossRef]

Miller, T.

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. C. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Photons Plus Ultrasound: Imaging Sensing 8223, 82230A (2012).
[CrossRef]

Motamedi, M.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Molecular Imaging Biol. 6, 341–349 (2004).
[CrossRef]

Nadvoretsky, V.

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. C. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Photons Plus Ultrasound: Imaging Sensing 8223, 82230A (2012).
[CrossRef]

Nakanishi, T.

T. Osaka, T. Nakanishi, S. Shanmugam, S. Takahama, and H. Zhang, “Effect of surface charge of magnetite nanoparticles on their internalization into breast cancer and umbilical vein endothelial cells,” Colloids Surfaces B: Biointerfaces 71, 325–330 (2009).
[CrossRef]

Niidome, T.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Controlled Release 114, 343–347 (2006).
[CrossRef]

Niidome, Y.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Controlled Release 114, 343–347 (2006).
[CrossRef]

O’Donnell, M.

G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt. 12, 044020 (2007).
[CrossRef]

Okamoto, Y.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Controlled Release 114, 343–347 (2006).
[CrossRef]

Oraevsky, A.

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. C. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Photons Plus Ultrasound: Imaging Sensing 8223, 82230A (2012).
[CrossRef]

Oraevsky, A. A.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Molecular Imaging Biol. 6, 341–349 (2004).
[CrossRef]

Oralkan, O.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithiligam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

Osaka, T.

T. Osaka, T. Nakanishi, S. Shanmugam, S. Takahama, and H. Zhang, “Effect of surface charge of magnetite nanoparticles on their internalization into breast cancer and umbilical vein endothelial cells,” Colloids Surfaces B: Biointerfaces 71, 325–330 (2009).
[CrossRef]

Otto, C.

R. G. Rayavarapu, W. Petersen, L. Hartsuiker, P. Chinand, H. Janssen, F. W. van Leeuwen, C. Otto, S. Manohar, and T. G. van Leeuwen, “In vitro toxicity studies of polymer-coated gold nanorods,” Nanotechnology 21, 145101 (2010).
[CrossRef]

Otto, P.

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. C. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Photons Plus Ultrasound: Imaging Sensing 8223, 82230A (2012).
[CrossRef]

Pan, D.

D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25,875–882 (2011).
[CrossRef]

Petersen, W.

R. G. Rayavarapu, W. Petersen, L. Hartsuiker, P. Chinand, H. Janssen, F. W. van Leeuwen, C. Otto, S. Manohar, and T. G. van Leeuwen, “In vitro toxicity studies of polymer-coated gold nanorods,” Nanotechnology 21, 145101 (2010).
[CrossRef]

Pilarczyk, G.

E. C. Weiss, P. Anastasiadis, G. Pilarczyk, R. M. Lemor, and P. V. Zinin, “Mechanical properties of single cells by high-frequency time-resolved acoustic microscopy,” IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control 54, 2257–2271 (2007).
[CrossRef]

Poe, C.

Popov, V. L.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Molecular Imaging Biol. 6, 341–349 (2004).
[CrossRef]

Pramanik, M.

D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25,875–882 (2011).
[CrossRef]

M. Pramanik, K. H. Song, M. Swierczewska, D. Green, B. Sitharaman, and L. V. Wang, “In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node,” Phys. Med. Biol. 54, 3291–3301 (2009).
[CrossRef]

Prasad, P. N.

A. Kopwitthaya, K. T. Yong, R. Hu, I. Roy, H. Ding, L. A. Vathy, E. J. Bergey, and P. N. Prasad, “Biocompatible PEGylated gold nanorods as colored contrast agents for targeted in vivo cancer applications,” Nanotechnology 21, 315101 (2010).
[CrossRef]

Rayavarapu, R. G.

R. G. Rayavarapu, W. Petersen, L. Hartsuiker, P. Chinand, H. Janssen, F. W. van Leeuwen, C. Otto, S. Manohar, and T. G. van Leeuwen, “In vitro toxicity studies of polymer-coated gold nanorods,” Nanotechnology 21, 145101 (2010).
[CrossRef]

Reuss, R.

H. Zimmermann, F. Waehlisch, C. Baier, M. Westhoff, R. Reuss, D. Zimmermann, M. Behringer, F. Ehrhart, A. Katsen-Globa, C. Giese, U. Marx, V. L. Sukhorukov, J. A. Vasquez, P. Jakob, S. G. Shirley, and Zimmermann, “Physical and biological properties of barium cross-linked alginate membranes,” Biomaterials 28, 1327–1345 (2007).
[CrossRef]

H. Zimmermann, D. Zimmermann, R. Reuss, P. J. Feilen, B. Manz, A. Katsen, M. Weber, F. R. Ihmig, F. Ehrhart, P. Gener, M. Behringer, A. Steinbach, L. H. Wegner, V. L. Sukhorukov, J. A. Vasquez, S. Schneider, M. M. Weber, F. Volke, R. Wolf, and U. Zimmermann, “Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation,” J. Mat. Sci. 16, 491–501 (2005).
[CrossRef]

Roy, I.

A. Kopwitthaya, K. T. Yong, R. Hu, I. Roy, H. Ding, L. A. Vathy, E. J. Bergey, and P. N. Prasad, “Biocompatible PEGylated gold nanorods as colored contrast agents for targeted in vivo cancer applications,” Nanotechnology 21, 315101 (2010).
[CrossRef]

Schmitz, G.

M. P. Mienkina, C. S. Friedrich, K. Hensel, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, “Evaluation of Ferucarbotran (Resovist) as a photoacoustic contrast agent,” Biomed. Tech. 54, 83–88 (2009).
[CrossRef]

Schneider, S.

H. Zimmermann, D. Zimmermann, R. Reuss, P. J. Feilen, B. Manz, A. Katsen, M. Weber, F. R. Ihmig, F. Ehrhart, P. Gener, M. Behringer, A. Steinbach, L. H. Wegner, V. L. Sukhorukov, J. A. Vasquez, S. Schneider, M. M. Weber, F. Volke, R. Wolf, and U. Zimmermann, “Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation,” J. Mat. Sci. 16, 491–501 (2005).
[CrossRef]

Schwartz, J. A.

M. L. Li, J. Chunjay Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14, 010507 (2009).
[CrossRef]

Senpan, A.

D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25,875–882 (2011).
[CrossRef]

Sethuraman, S.

Shanmugam, S.

T. Osaka, T. Nakanishi, S. Shanmugam, S. Takahama, and H. Zhang, “Effect of surface charge of magnetite nanoparticles on their internalization into breast cancer and umbilical vein endothelial cells,” Colloids Surfaces B: Biointerfaces 71, 325–330 (2009).
[CrossRef]

Shieh, D. B.

Shirley, S. G.

H. Zimmermann, F. Waehlisch, C. Baier, M. Westhoff, R. Reuss, D. Zimmermann, M. Behringer, F. Ehrhart, A. Katsen-Globa, C. Giese, U. Marx, V. L. Sukhorukov, J. A. Vasquez, P. Jakob, S. G. Shirley, and Zimmermann, “Physical and biological properties of barium cross-linked alginate membranes,” Biomaterials 28, 1327–1345 (2007).
[CrossRef]

Sitharaman, B.

M. Pramanik, K. H. Song, M. Swierczewska, D. Green, B. Sitharaman, and L. V. Wang, “In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node,” Phys. Med. Biol. 54, 3291–3301 (2009).
[CrossRef]

Sivaramakrishnan, M.

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007).
[CrossRef]

Smalling, R. W.

Smith, B. R.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithiligam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

Song, K. H.

M. Pramanik, K. H. Song, M. Swierczewska, D. Green, B. Sitharaman, and L. V. Wang, “In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node,” Phys. Med. Biol. 54, 3291–3301 (2009).
[CrossRef]

Steenbergen, W.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in-vivo non-invasive cancer imaging in the human breast using nearinfrared photoacoustics,” Opt. Express 15, 12277–12285 (2007).
[CrossRef]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The twente photoacoustic mammoscope: system overview and performance,” Phys. Med. Biol. 50, 2543–2557 (2005).
[CrossRef]

Steinbach, A.

H. Zimmermann, D. Zimmermann, R. Reuss, P. J. Feilen, B. Manz, A. Katsen, M. Weber, F. R. Ihmig, F. Ehrhart, P. Gener, M. Behringer, A. Steinbach, L. H. Wegner, V. L. Sukhorukov, J. A. Vasquez, S. Schneider, M. M. Weber, F. Volke, R. Wolf, and U. Zimmermann, “Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation,” J. Mat. Sci. 16, 491–501 (2005).
[CrossRef]

Stoica, G.

M. L. Li, J. Chunjay Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14, 010507 (2009).
[CrossRef]

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007).
[CrossRef]

Stracke, F.

Y. Kohl, C. Kaiser, W. Bost, F. Stracke, M. Fournelle, H. Thielecke, C. Wischke, A. Lendlein, K. Kratz, and R. Lemor, “Preparation and biological evaluation of NIR-dye-loaded resorbable PLGA-nanoparticles designed for photoacoustic imaging,” Nanomedicine: Nanotechnol. Biol. Med. 7, 228–237 (2011).
[CrossRef]

W. Bost, Y. Kohl, F. Stracke, M. Fournelle, and R. Lemor, “High resolution optoacoustic detection of nanoparticles on living cells,” in Proceedings of 2009 IEEE International Ultrasonics Symposium (IEEE, 2009), pp. 120–123.

Su, R.

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. C. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Photons Plus Ultrasound: Imaging Sensing 8223, 82230A (2012).
[CrossRef]

Sukhorukov, V. L.

H. Zimmermann, F. Waehlisch, C. Baier, M. Westhoff, R. Reuss, D. Zimmermann, M. Behringer, F. Ehrhart, A. Katsen-Globa, C. Giese, U. Marx, V. L. Sukhorukov, J. A. Vasquez, P. Jakob, S. G. Shirley, and Zimmermann, “Physical and biological properties of barium cross-linked alginate membranes,” Biomaterials 28, 1327–1345 (2007).
[CrossRef]

H. Zimmermann, D. Zimmermann, R. Reuss, P. J. Feilen, B. Manz, A. Katsen, M. Weber, F. R. Ihmig, F. Ehrhart, P. Gener, M. Behringer, A. Steinbach, L. H. Wegner, V. L. Sukhorukov, J. A. Vasquez, S. Schneider, M. M. Weber, F. Volke, R. Wolf, and U. Zimmermann, “Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation,” J. Mat. Sci. 16, 491–501 (2005).
[CrossRef]

Swierczewska, M.

M. Pramanik, K. H. Song, M. Swierczewska, D. Green, B. Sitharaman, and L. V. Wang, “In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node,” Phys. Med. Biol. 54, 3291–3301 (2009).
[CrossRef]

Takahama, S.

T. Osaka, T. Nakanishi, S. Shanmugam, S. Takahama, and H. Zhang, “Effect of surface charge of magnetite nanoparticles on their internalization into breast cancer and umbilical vein endothelial cells,” Colloids Surfaces B: Biointerfaces 71, 325–330 (2009).
[CrossRef]

Takahashi, H.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Controlled Release 114, 343–347 (2006).
[CrossRef]

Tarner, I. H.

M. Fournelle, W. Bost, I. H. Tarner, T. Lehmberg, E. Weiss, R. Lemor, and R. Dinser, “Antitumor necrosis factor-α antibody-coupled gold nanorods as nanoprobes for molecular optoacoustic imaging in arthritis,” Nanomed. Nanotechnol. Biol. Med. 8, 346–354 (2012).
[CrossRef]

Thielecke, H.

Y. Kohl, C. Kaiser, W. Bost, F. Stracke, M. Fournelle, H. Thielecke, C. Wischke, A. Lendlein, K. Kratz, and R. Lemor, “Preparation and biological evaluation of NIR-dye-loaded resorbable PLGA-nanoparticles designed for photoacoustic imaging,” Nanomedicine: Nanotechnol. Biol. Med. 7, 228–237 (2011).
[CrossRef]

Tsyboulski, D.

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. C. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Photons Plus Ultrasound: Imaging Sensing 8223, 82230A (2012).
[CrossRef]

Vaithiligam, S.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithiligam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

van Hespen, J. C. G.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in-vivo non-invasive cancer imaging in the human breast using nearinfrared photoacoustics,” Opt. Express 15, 12277–12285 (2007).
[CrossRef]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The twente photoacoustic mammoscope: system overview and performance,” Phys. Med. Biol. 50, 2543–2557 (2005).
[CrossRef]

van Leeuwen, F. W.

R. G. Rayavarapu, W. Petersen, L. Hartsuiker, P. Chinand, H. Janssen, F. W. van Leeuwen, C. Otto, S. Manohar, and T. G. van Leeuwen, “In vitro toxicity studies of polymer-coated gold nanorods,” Nanotechnology 21, 145101 (2010).
[CrossRef]

van Leeuwen, T. G.

R. G. Rayavarapu, W. Petersen, L. Hartsuiker, P. Chinand, H. Janssen, F. W. van Leeuwen, C. Otto, S. Manohar, and T. G. van Leeuwen, “In vitro toxicity studies of polymer-coated gold nanorods,” Nanotechnology 21, 145101 (2010).
[CrossRef]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in-vivo non-invasive cancer imaging in the human breast using nearinfrared photoacoustics,” Opt. Express 15, 12277–12285 (2007).
[CrossRef]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The twente photoacoustic mammoscope: system overview and performance,” Phys. Med. Biol. 50, 2543–2557 (2005).
[CrossRef]

Vasquez, J. A.

H. Zimmermann, F. Waehlisch, C. Baier, M. Westhoff, R. Reuss, D. Zimmermann, M. Behringer, F. Ehrhart, A. Katsen-Globa, C. Giese, U. Marx, V. L. Sukhorukov, J. A. Vasquez, P. Jakob, S. G. Shirley, and Zimmermann, “Physical and biological properties of barium cross-linked alginate membranes,” Biomaterials 28, 1327–1345 (2007).
[CrossRef]

H. Zimmermann, D. Zimmermann, R. Reuss, P. J. Feilen, B. Manz, A. Katsen, M. Weber, F. R. Ihmig, F. Ehrhart, P. Gener, M. Behringer, A. Steinbach, L. H. Wegner, V. L. Sukhorukov, J. A. Vasquez, S. Schneider, M. M. Weber, F. Volke, R. Wolf, and U. Zimmermann, “Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation,” J. Mat. Sci. 16, 491–501 (2005).
[CrossRef]

Vathy, L. A.

A. Kopwitthaya, K. T. Yong, R. Hu, I. Roy, H. Ding, L. A. Vathy, E. J. Bergey, and P. N. Prasad, “Biocompatible PEGylated gold nanorods as colored contrast agents for targeted in vivo cancer applications,” Nanotechnology 21, 315101 (2010).
[CrossRef]

Volke, F.

H. Zimmermann, D. Zimmermann, R. Reuss, P. J. Feilen, B. Manz, A. Katsen, M. Weber, F. R. Ihmig, F. Ehrhart, P. Gener, M. Behringer, A. Steinbach, L. H. Wegner, V. L. Sukhorukov, J. A. Vasquez, S. Schneider, M. M. Weber, F. Volke, R. Wolf, and U. Zimmermann, “Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation,” J. Mat. Sci. 16, 491–501 (2005).
[CrossRef]

Waehlisch, F.

H. Zimmermann, F. Waehlisch, C. Baier, M. Westhoff, R. Reuss, D. Zimmermann, M. Behringer, F. Ehrhart, A. Katsen-Globa, C. Giese, U. Marx, V. L. Sukhorukov, J. A. Vasquez, P. Jakob, S. G. Shirley, and Zimmermann, “Physical and biological properties of barium cross-linked alginate membranes,” Biomaterials 28, 1327–1345 (2007).
[CrossRef]

Wang, C. R. C.

Wang, J. Chunjay

M. L. Li, J. Chunjay Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14, 010507 (2009).
[CrossRef]

Wang, L. V.

D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25,875–882 (2011).
[CrossRef]

M. L. Li, J. Chunjay Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14, 010507 (2009).
[CrossRef]

M. Pramanik, K. H. Song, M. Swierczewska, D. Green, B. Sitharaman, and L. V. Wang, “In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node,” Phys. Med. Biol. 54, 3291–3301 (2009).
[CrossRef]

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007).
[CrossRef]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

Weber, M.

H. Zimmermann, D. Zimmermann, R. Reuss, P. J. Feilen, B. Manz, A. Katsen, M. Weber, F. R. Ihmig, F. Ehrhart, P. Gener, M. Behringer, A. Steinbach, L. H. Wegner, V. L. Sukhorukov, J. A. Vasquez, S. Schneider, M. M. Weber, F. Volke, R. Wolf, and U. Zimmermann, “Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation,” J. Mat. Sci. 16, 491–501 (2005).
[CrossRef]

Weber, M. M.

H. Zimmermann, D. Zimmermann, R. Reuss, P. J. Feilen, B. Manz, A. Katsen, M. Weber, F. R. Ihmig, F. Ehrhart, P. Gener, M. Behringer, A. Steinbach, L. H. Wegner, V. L. Sukhorukov, J. A. Vasquez, S. Schneider, M. M. Weber, F. Volke, R. Wolf, and U. Zimmermann, “Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation,” J. Mat. Sci. 16, 491–501 (2005).
[CrossRef]

Wegner, L. H.

H. Zimmermann, D. Zimmermann, R. Reuss, P. J. Feilen, B. Manz, A. Katsen, M. Weber, F. R. Ihmig, F. Ehrhart, P. Gener, M. Behringer, A. Steinbach, L. H. Wegner, V. L. Sukhorukov, J. A. Vasquez, S. Schneider, M. M. Weber, F. Volke, R. Wolf, and U. Zimmermann, “Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation,” J. Mat. Sci. 16, 491–501 (2005).
[CrossRef]

Wei, C. W.

Weiss, E.

M. Fournelle, W. Bost, I. H. Tarner, T. Lehmberg, E. Weiss, R. Lemor, and R. Dinser, “Antitumor necrosis factor-α antibody-coupled gold nanorods as nanoprobes for molecular optoacoustic imaging in arthritis,” Nanomed. Nanotechnol. Biol. Med. 8, 346–354 (2012).
[CrossRef]

Weiss, E. C.

E. C. Weiss, P. Anastasiadis, G. Pilarczyk, R. M. Lemor, and P. V. Zinin, “Mechanical properties of single cells by high-frequency time-resolved acoustic microscopy,” IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control 54, 2257–2271 (2007).
[CrossRef]

Westhoff, M.

H. Zimmermann, F. Waehlisch, C. Baier, M. Westhoff, R. Reuss, D. Zimmermann, M. Behringer, F. Ehrhart, A. Katsen-Globa, C. Giese, U. Marx, V. L. Sukhorukov, J. A. Vasquez, P. Jakob, S. G. Shirley, and Zimmermann, “Physical and biological properties of barium cross-linked alginate membranes,” Biomaterials 28, 1327–1345 (2007).
[CrossRef]

Wickline, S. A.

D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25,875–882 (2011).
[CrossRef]

Wischke, C.

Y. Kohl, C. Kaiser, W. Bost, F. Stracke, M. Fournelle, H. Thielecke, C. Wischke, A. Lendlein, K. Kratz, and R. Lemor, “Preparation and biological evaluation of NIR-dye-loaded resorbable PLGA-nanoparticles designed for photoacoustic imaging,” Nanomedicine: Nanotechnol. Biol. Med. 7, 228–237 (2011).
[CrossRef]

Wolf, R.

H. Zimmermann, D. Zimmermann, R. Reuss, P. J. Feilen, B. Manz, A. Katsen, M. Weber, F. R. Ihmig, F. Ehrhart, P. Gener, M. Behringer, A. Steinbach, L. H. Wegner, V. L. Sukhorukov, J. A. Vasquez, S. Schneider, M. M. Weber, F. Volke, R. Wolf, and U. Zimmermann, “Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation,” J. Mat. Sci. 16, 491–501 (2005).
[CrossRef]

Wu, Y. N.

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

Yamagata, M.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Controlled Release 114, 343–347 (2006).
[CrossRef]

Yong, K. T.

A. Kopwitthaya, K. T. Yong, R. Hu, I. Roy, H. Ding, L. A. Vathy, E. J. Bergey, and P. N. Prasad, “Biocompatible PEGylated gold nanorods as colored contrast agents for targeted in vivo cancer applications,” Nanotechnology 21, 315101 (2010).
[CrossRef]

Zalev, J.

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. C. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Photons Plus Ultrasound: Imaging Sensing 8223, 82230A (2012).
[CrossRef]

Zavaleta, C.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithiligam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

Zhang, H.

D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25,875–882 (2011).
[CrossRef]

T. Osaka, T. Nakanishi, S. Shanmugam, S. Takahama, and H. Zhang, “Effect of surface charge of magnetite nanoparticles on their internalization into breast cancer and umbilical vein endothelial cells,” Colloids Surfaces B: Biointerfaces 71, 325–330 (2009).
[CrossRef]

Zhang, H. F.

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007).
[CrossRef]

Zimmermann,

H. Zimmermann, F. Waehlisch, C. Baier, M. Westhoff, R. Reuss, D. Zimmermann, M. Behringer, F. Ehrhart, A. Katsen-Globa, C. Giese, U. Marx, V. L. Sukhorukov, J. A. Vasquez, P. Jakob, S. G. Shirley, and Zimmermann, “Physical and biological properties of barium cross-linked alginate membranes,” Biomaterials 28, 1327–1345 (2007).
[CrossRef]

Zimmermann, D.

H. Zimmermann, F. Waehlisch, C. Baier, M. Westhoff, R. Reuss, D. Zimmermann, M. Behringer, F. Ehrhart, A. Katsen-Globa, C. Giese, U. Marx, V. L. Sukhorukov, J. A. Vasquez, P. Jakob, S. G. Shirley, and Zimmermann, “Physical and biological properties of barium cross-linked alginate membranes,” Biomaterials 28, 1327–1345 (2007).
[CrossRef]

H. Zimmermann, D. Zimmermann, R. Reuss, P. J. Feilen, B. Manz, A. Katsen, M. Weber, F. R. Ihmig, F. Ehrhart, P. Gener, M. Behringer, A. Steinbach, L. H. Wegner, V. L. Sukhorukov, J. A. Vasquez, S. Schneider, M. M. Weber, F. Volke, R. Wolf, and U. Zimmermann, “Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation,” J. Mat. Sci. 16, 491–501 (2005).
[CrossRef]

Zimmermann, H.

H. Zimmermann, F. Waehlisch, C. Baier, M. Westhoff, R. Reuss, D. Zimmermann, M. Behringer, F. Ehrhart, A. Katsen-Globa, C. Giese, U. Marx, V. L. Sukhorukov, J. A. Vasquez, P. Jakob, S. G. Shirley, and Zimmermann, “Physical and biological properties of barium cross-linked alginate membranes,” Biomaterials 28, 1327–1345 (2007).
[CrossRef]

H. Zimmermann, D. Zimmermann, R. Reuss, P. J. Feilen, B. Manz, A. Katsen, M. Weber, F. R. Ihmig, F. Ehrhart, P. Gener, M. Behringer, A. Steinbach, L. H. Wegner, V. L. Sukhorukov, J. A. Vasquez, S. Schneider, M. M. Weber, F. Volke, R. Wolf, and U. Zimmermann, “Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation,” J. Mat. Sci. 16, 491–501 (2005).
[CrossRef]

Zimmermann, U.

H. Zimmermann, D. Zimmermann, R. Reuss, P. J. Feilen, B. Manz, A. Katsen, M. Weber, F. R. Ihmig, F. Ehrhart, P. Gener, M. Behringer, A. Steinbach, L. H. Wegner, V. L. Sukhorukov, J. A. Vasquez, S. Schneider, M. M. Weber, F. Volke, R. Wolf, and U. Zimmermann, “Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation,” J. Mat. Sci. 16, 491–501 (2005).
[CrossRef]

Zinin, P. V.

E. C. Weiss, P. Anastasiadis, G. Pilarczyk, R. M. Lemor, and P. V. Zinin, “Mechanical properties of single cells by high-frequency time-resolved acoustic microscopy,” IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control 54, 2257–2271 (2007).
[CrossRef]

Biomaterials

H. Zimmermann, F. Waehlisch, C. Baier, M. Westhoff, R. Reuss, D. Zimmermann, M. Behringer, F. Ehrhart, A. Katsen-Globa, C. Giese, U. Marx, V. L. Sukhorukov, J. A. Vasquez, P. Jakob, S. G. Shirley, and Zimmermann, “Physical and biological properties of barium cross-linked alginate membranes,” Biomaterials 28, 1327–1345 (2007).
[CrossRef]

Biomed. Tech.

M. P. Mienkina, C. S. Friedrich, K. Hensel, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, “Evaluation of Ferucarbotran (Resovist) as a photoacoustic contrast agent,” Biomed. Tech. 54, 83–88 (2009).
[CrossRef]

Colloids Surfaces B: Biointerfaces

T. Osaka, T. Nakanishi, S. Shanmugam, S. Takahama, and H. Zhang, “Effect of surface charge of magnetite nanoparticles on their internalization into breast cancer and umbilical vein endothelial cells,” Colloids Surfaces B: Biointerfaces 71, 325–330 (2009).
[CrossRef]

FASEB J.

D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25,875–882 (2011).
[CrossRef]

IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control

E. C. Weiss, P. Anastasiadis, G. Pilarczyk, R. M. Lemor, and P. V. Zinin, “Mechanical properties of single cells by high-frequency time-resolved acoustic microscopy,” IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control 54, 2257–2271 (2007).
[CrossRef]

J. Biomed. Opt.

G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt. 12, 044020 (2007).
[CrossRef]

M. L. Li, J. Chunjay Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14, 010507 (2009).
[CrossRef]

J. Controlled Release

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Controlled Release 114, 343–347 (2006).
[CrossRef]

J. Mat. Sci.

H. Zimmermann, D. Zimmermann, R. Reuss, P. J. Feilen, B. Manz, A. Katsen, M. Weber, F. R. Ihmig, F. Ehrhart, P. Gener, M. Behringer, A. Steinbach, L. H. Wegner, V. L. Sukhorukov, J. A. Vasquez, S. Schneider, M. M. Weber, F. Volke, R. Wolf, and U. Zimmermann, “Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation,” J. Mat. Sci. 16, 491–501 (2005).
[CrossRef]

Molecular Imaging Biol.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Molecular Imaging Biol. 6, 341–349 (2004).
[CrossRef]

Nanomed. Nanotechnol. Biol. Med.

M. Fournelle, W. Bost, I. H. Tarner, T. Lehmberg, E. Weiss, R. Lemor, and R. Dinser, “Antitumor necrosis factor-α antibody-coupled gold nanorods as nanoprobes for molecular optoacoustic imaging in arthritis,” Nanomed. Nanotechnol. Biol. Med. 8, 346–354 (2012).
[CrossRef]

Nanomedicine: Nanotechnol. Biol. Med.

Y. Kohl, C. Kaiser, W. Bost, F. Stracke, M. Fournelle, H. Thielecke, C. Wischke, A. Lendlein, K. Kratz, and R. Lemor, “Preparation and biological evaluation of NIR-dye-loaded resorbable PLGA-nanoparticles designed for photoacoustic imaging,” Nanomedicine: Nanotechnol. Biol. Med. 7, 228–237 (2011).
[CrossRef]

Nanotechnology

R. G. Rayavarapu, W. Petersen, L. Hartsuiker, P. Chinand, H. Janssen, F. W. van Leeuwen, C. Otto, S. Manohar, and T. G. van Leeuwen, “In vitro toxicity studies of polymer-coated gold nanorods,” Nanotechnology 21, 145101 (2010).
[CrossRef]

A. Kopwitthaya, K. T. Yong, R. Hu, I. Roy, H. Ding, L. A. Vathy, E. J. Bergey, and P. N. Prasad, “Biocompatible PEGylated gold nanorods as colored contrast agents for targeted in vivo cancer applications,” Nanotechnology 21, 315101 (2010).
[CrossRef]

Nat. Nanotechnol.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithiligam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

Opt. Express

Photons Plus Ultrasound: Imaging Sensing

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. C. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Photons Plus Ultrasound: Imaging Sensing 8223, 82230A (2012).
[CrossRef]

Phys. Med. Biol.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The twente photoacoustic mammoscope: system overview and performance,” Phys. Med. Biol. 50, 2543–2557 (2005).
[CrossRef]

M. Pramanik, K. H. Song, M. Swierczewska, D. Green, B. Sitharaman, and L. V. Wang, “In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node,” Phys. Med. Biol. 54, 3291–3301 (2009).
[CrossRef]

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007).
[CrossRef]

Rev. Sci. Instrum.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

Other

W. Bost, Y. Kohl, F. Stracke, M. Fournelle, and R. Lemor, “High resolution optoacoustic detection of nanoparticles on living cells,” in Proceedings of 2009 IEEE International Ultrasonics Symposium (IEEE, 2009), pp. 120–123.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

NIR-VIS absorption spectra of the different nanoparticle types. Gold nanorods and magnetite (Fe3O4) were synthesized at Fraunhofer Institut für Biomedizinische Technik (IBMT). PLGA-IR5 was supplied by GKSS Forschungszentrum. The spectral absorption measurement was limited to NIR-VIS with regard to the later application as an optoacoustic contrast agent.

Fig. 2.
Fig. 2.

Particle size distribution of the investigated particles measured by dynamic light scattering. The average size diameter of the magnetite particles is 130 and 310 nm in the case of polymer particles.

Fig. 3.
Fig. 3.

Setup of the confocal optoacoustic microscope showing the path of the laser pulse when directed onto the sample. The components are arranged so that the acoustical focus of the transducer overlaps with the optical focus of the objective.

Fig. 4.
Fig. 4.

Point-spread function (PSF) of the optoacoustic microscope. The PSF was measured by imaging of an 1,6 μm spherical gold particle. The left image is a maximum amplitude projection image along the z-axis. It shows that the PSF is isotropic in x- and y-directions. The right graphic further gives a one-dimensional cross section of the PSF allowing us to assess the full width at half-maximum (FWHM), which defines the lateral resolution of the system.

Fig. 5.
Fig. 5.

The optoacoustic maximum amplitude projection (MAP) image of the droplet phantom containing gold nanorods is shown. For statistical analysis, all droplets in one column have the same nanorod concentration. Particle concentration decreases from 0.8mg/ml to pure alginate containing no particles as a reference (from left to right). A linear grayscale was used for representation.

Fig. 6.
Fig. 6.

Relationship between particle concentration and optoacoustic signal amplitude for the different particle types. For gold nanorods and the polymer particles, the pulse energy was set to 160 nJ and to 800 nJ for the magnetite particles.

Tables (1)

Tables Icon

Table 1. Linear Relationship Between Particle Concentration and Signal Amplitudea

Metrics