Abstract

An interferometric optical fiber sensor relies on the coherent mixing of the optical signals, which is strongly polarization dependent. Random fluctuations in the input state of polarization and the polarization properties of the optical fiber sensor can result in the variation of the visibility and signal fading. Polarization scrambling is an important method to eliminate the input-polarization-induced fading. In this paper, the principles of the polarization scrambling are introduced. The influences of the perturbation to the input fiber and interferometer on the visibility are analyzed in two cases and the visibility properties in an interferometric optical fiber sensor are theoretically and experimentally demonstrated.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Dakin and B. Culshaw, Optical Fiber Sensors: Principles and Components (Artech House, 1988).
  2. B. Culshaw and A. Kersey, “Fiber-optic sensing: A historical perspective,” J. Lightwave Technol. 26, 1064–1078 (2008).
    [CrossRef]
  3. S. J. Maas and I. Buchan, “Fiber optic 4C seabed cable for permanent reservoir monitoring,” in Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies (IEEE, 2007), pp. 411–414.
  4. H. Nakstad and J. T. Kringlebotn, “Realization of a full-scale fibre optic ocean bottom seismic system,” Proc. SPIE 7004, 700436 (2008).
    [CrossRef]
  5. T. G. Giallorenzi, “Optical technology in naval applications,” Opt. Photon. News 11, 23–36 (1999).
  6. W. Lin, C. Zhang, L. Li, and S. Liang, “Review on development and applications of fiber optic sensors,” in 2012 Symposium on Photonics and Optoelectronics (IEEE, 2012), pp. 1–4.
  7. D. W. Stowe, D. R. Moore, and R. G. Priest, “Polarization fading in fiber interferometric sensor,” IEEE J. Quantum Electron. 18, 1644–1647 (1982).
    [CrossRef]
  8. A. D. Kersey, M. J. Marrone, A. Dandridge, and A. B. Tveten, “Optimization and stabilization of visibility in interferometric fiber-optic sensors using input-polarization control,” J. Lightwave Technol. 6, 1599–1609 (1988).
    [CrossRef]
  9. A. D. Kersey, M. J. Marrone, and A. Dandridge, “Experimental investigation of polarization induced fading in interferometric fiber optic sensor array,” Electron. Lett. 27, 562–563 (1991).
    [CrossRef]
  10. A. D. Kersey, M. J. Marrone, and A. Dandridge, “Analysis of input-polarization-induced phase noise in interferometric fiber-optic sensors and its reduction using polarization scrambling,” J. Lightwave Technol. 8, 838–845 (1989).
    [CrossRef]
  11. A. D. Kersey and M. J. Marrone, “Apparatus and method for minimizing polarization-induced signal fading in an interferometric fiber,” U.S. patent 4,932,783 (12June1990).
  12. Y.-M. Hu, Z. Chen, Z. Meng, X. Zhang, and Z. Song, “An all polarization-maintaining fiber michelson interferometer,” Chinese J. Lasers 24, 891–894 (1997).
  13. A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarization-insensitive fibre optic Michelson interferometer,” Electron. Lett. 27, 518–520 (1991).
    [CrossRef]
  14. M. J. Marrone, A. D. Kersey, and A. Dandridge, “Fiber optic Michelson array with passive elimination of polarization fading and source feedback isolation,” in Proceedings of the 8th Optical Fiber Sensors Conference (IEEE, 1991), pp. 69–72.
  15. J. T. Ahn and B. Y. Kim, “Polarization switching approach to the suppression of polarization-induced signal fading in fiber-optic sensor array,” in Proceedings of the 10th Optical Fiber Sensor Conference (IEEE, 1994), p. 502.
  16. F. T. S. Yu and S. Yin, in Fiber Optic Sensors (Marcel Dekker, 2002), pp. 445–447.
  17. N. J. Frigo, A. Dandridge, and A. B. Tveten, “Technique for elimination of polarization fading in fibre interferometers,” Electron. Lett. 20, 319–320 (1984).
    [CrossRef]
  18. M. Ni, H.-Y. Yang, S.-D. Xiong, and Y.-M. Hu, “Investigation of polarization-induced fading in fiber-optic interferometers with polarizer-based polarization diversity receivers,” Appl. Opt. 45, 2387–2390 (2006).
    [CrossRef]
  19. C. K. Kirkendall and A. Dandridge, “Polarization induced phase noise in fiber optic interferometers with polarizer based polarization diversity receivers,” in 15th Optical Fiber Sensors Conference (IEEE, 2002), Vol. 1, pp. 375–378.
    [CrossRef]
  20. S.-C. Huang, “Automatic polarization compensation tracking method for maximum visibility of fiber interferometric sensors,” J. Lightwave Technol. 27, 4040–4048 (2009).
    [CrossRef]
  21. K. Saijyou, C. Okawara, and T. Okuyama, “Fiber Bragg grating hydrophone with polarization-maintaining fiber for mitigation of polarization-induced fading,” Acoust. Sci. Tech. 33, 239–246 (2012).
  22. S. Pullteap and H. C. Seat, “Investigation and compensation of polarization-induced signal fading in an extrinsic fiber-based Fabry–Perot interferometric vibrometer,” in IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications (IEEE, 2012), pp. 12–17.
  23. E. H. W. Chan, “Robust and environmental insensitive fiber optic Sagnac interferometer for microwave photonic applications,” Appl. Opt. 51, 2075–2080 (2012).
    [CrossRef]
  24. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, 2005), pp. 619–628.

2012 (2)

K. Saijyou, C. Okawara, and T. Okuyama, “Fiber Bragg grating hydrophone with polarization-maintaining fiber for mitigation of polarization-induced fading,” Acoust. Sci. Tech. 33, 239–246 (2012).

E. H. W. Chan, “Robust and environmental insensitive fiber optic Sagnac interferometer for microwave photonic applications,” Appl. Opt. 51, 2075–2080 (2012).
[CrossRef]

2009 (1)

2008 (2)

B. Culshaw and A. Kersey, “Fiber-optic sensing: A historical perspective,” J. Lightwave Technol. 26, 1064–1078 (2008).
[CrossRef]

H. Nakstad and J. T. Kringlebotn, “Realization of a full-scale fibre optic ocean bottom seismic system,” Proc. SPIE 7004, 700436 (2008).
[CrossRef]

2006 (1)

1999 (1)

T. G. Giallorenzi, “Optical technology in naval applications,” Opt. Photon. News 11, 23–36 (1999).

1997 (1)

Y.-M. Hu, Z. Chen, Z. Meng, X. Zhang, and Z. Song, “An all polarization-maintaining fiber michelson interferometer,” Chinese J. Lasers 24, 891–894 (1997).

1991 (2)

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarization-insensitive fibre optic Michelson interferometer,” Electron. Lett. 27, 518–520 (1991).
[CrossRef]

A. D. Kersey, M. J. Marrone, and A. Dandridge, “Experimental investigation of polarization induced fading in interferometric fiber optic sensor array,” Electron. Lett. 27, 562–563 (1991).
[CrossRef]

1989 (1)

A. D. Kersey, M. J. Marrone, and A. Dandridge, “Analysis of input-polarization-induced phase noise in interferometric fiber-optic sensors and its reduction using polarization scrambling,” J. Lightwave Technol. 8, 838–845 (1989).
[CrossRef]

1988 (1)

A. D. Kersey, M. J. Marrone, A. Dandridge, and A. B. Tveten, “Optimization and stabilization of visibility in interferometric fiber-optic sensors using input-polarization control,” J. Lightwave Technol. 6, 1599–1609 (1988).
[CrossRef]

1984 (1)

N. J. Frigo, A. Dandridge, and A. B. Tveten, “Technique for elimination of polarization fading in fibre interferometers,” Electron. Lett. 20, 319–320 (1984).
[CrossRef]

1982 (1)

D. W. Stowe, D. R. Moore, and R. G. Priest, “Polarization fading in fiber interferometric sensor,” IEEE J. Quantum Electron. 18, 1644–1647 (1982).
[CrossRef]

Ahn, J. T.

J. T. Ahn and B. Y. Kim, “Polarization switching approach to the suppression of polarization-induced signal fading in fiber-optic sensor array,” in Proceedings of the 10th Optical Fiber Sensor Conference (IEEE, 1994), p. 502.

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, 2005), pp. 619–628.

Buchan, I.

S. J. Maas and I. Buchan, “Fiber optic 4C seabed cable for permanent reservoir monitoring,” in Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies (IEEE, 2007), pp. 411–414.

Chan, E. H. W.

Chen, Z.

Y.-M. Hu, Z. Chen, Z. Meng, X. Zhang, and Z. Song, “An all polarization-maintaining fiber michelson interferometer,” Chinese J. Lasers 24, 891–894 (1997).

Culshaw, B.

B. Culshaw and A. Kersey, “Fiber-optic sensing: A historical perspective,” J. Lightwave Technol. 26, 1064–1078 (2008).
[CrossRef]

J. P. Dakin and B. Culshaw, Optical Fiber Sensors: Principles and Components (Artech House, 1988).

Dakin, J. P.

J. P. Dakin and B. Culshaw, Optical Fiber Sensors: Principles and Components (Artech House, 1988).

Dandridge, A.

A. D. Kersey, M. J. Marrone, and A. Dandridge, “Experimental investigation of polarization induced fading in interferometric fiber optic sensor array,” Electron. Lett. 27, 562–563 (1991).
[CrossRef]

A. D. Kersey, M. J. Marrone, and A. Dandridge, “Analysis of input-polarization-induced phase noise in interferometric fiber-optic sensors and its reduction using polarization scrambling,” J. Lightwave Technol. 8, 838–845 (1989).
[CrossRef]

A. D. Kersey, M. J. Marrone, A. Dandridge, and A. B. Tveten, “Optimization and stabilization of visibility in interferometric fiber-optic sensors using input-polarization control,” J. Lightwave Technol. 6, 1599–1609 (1988).
[CrossRef]

N. J. Frigo, A. Dandridge, and A. B. Tveten, “Technique for elimination of polarization fading in fibre interferometers,” Electron. Lett. 20, 319–320 (1984).
[CrossRef]

M. J. Marrone, A. D. Kersey, and A. Dandridge, “Fiber optic Michelson array with passive elimination of polarization fading and source feedback isolation,” in Proceedings of the 8th Optical Fiber Sensors Conference (IEEE, 1991), pp. 69–72.

C. K. Kirkendall and A. Dandridge, “Polarization induced phase noise in fiber optic interferometers with polarizer based polarization diversity receivers,” in 15th Optical Fiber Sensors Conference (IEEE, 2002), Vol. 1, pp. 375–378.
[CrossRef]

Davis, M. A.

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarization-insensitive fibre optic Michelson interferometer,” Electron. Lett. 27, 518–520 (1991).
[CrossRef]

Frigo, N. J.

N. J. Frigo, A. Dandridge, and A. B. Tveten, “Technique for elimination of polarization fading in fibre interferometers,” Electron. Lett. 20, 319–320 (1984).
[CrossRef]

Giallorenzi, T. G.

T. G. Giallorenzi, “Optical technology in naval applications,” Opt. Photon. News 11, 23–36 (1999).

Hu, Y.-M.

M. Ni, H.-Y. Yang, S.-D. Xiong, and Y.-M. Hu, “Investigation of polarization-induced fading in fiber-optic interferometers with polarizer-based polarization diversity receivers,” Appl. Opt. 45, 2387–2390 (2006).
[CrossRef]

Y.-M. Hu, Z. Chen, Z. Meng, X. Zhang, and Z. Song, “An all polarization-maintaining fiber michelson interferometer,” Chinese J. Lasers 24, 891–894 (1997).

Huang, S.-C.

Kersey, A.

Kersey, A. D.

A. D. Kersey, M. J. Marrone, and A. Dandridge, “Experimental investigation of polarization induced fading in interferometric fiber optic sensor array,” Electron. Lett. 27, 562–563 (1991).
[CrossRef]

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarization-insensitive fibre optic Michelson interferometer,” Electron. Lett. 27, 518–520 (1991).
[CrossRef]

A. D. Kersey, M. J. Marrone, and A. Dandridge, “Analysis of input-polarization-induced phase noise in interferometric fiber-optic sensors and its reduction using polarization scrambling,” J. Lightwave Technol. 8, 838–845 (1989).
[CrossRef]

A. D. Kersey, M. J. Marrone, A. Dandridge, and A. B. Tveten, “Optimization and stabilization of visibility in interferometric fiber-optic sensors using input-polarization control,” J. Lightwave Technol. 6, 1599–1609 (1988).
[CrossRef]

A. D. Kersey and M. J. Marrone, “Apparatus and method for minimizing polarization-induced signal fading in an interferometric fiber,” U.S. patent 4,932,783 (12June1990).

M. J. Marrone, A. D. Kersey, and A. Dandridge, “Fiber optic Michelson array with passive elimination of polarization fading and source feedback isolation,” in Proceedings of the 8th Optical Fiber Sensors Conference (IEEE, 1991), pp. 69–72.

Kim, B. Y.

J. T. Ahn and B. Y. Kim, “Polarization switching approach to the suppression of polarization-induced signal fading in fiber-optic sensor array,” in Proceedings of the 10th Optical Fiber Sensor Conference (IEEE, 1994), p. 502.

Kirkendall, C. K.

C. K. Kirkendall and A. Dandridge, “Polarization induced phase noise in fiber optic interferometers with polarizer based polarization diversity receivers,” in 15th Optical Fiber Sensors Conference (IEEE, 2002), Vol. 1, pp. 375–378.
[CrossRef]

Kringlebotn, J. T.

H. Nakstad and J. T. Kringlebotn, “Realization of a full-scale fibre optic ocean bottom seismic system,” Proc. SPIE 7004, 700436 (2008).
[CrossRef]

Li, L.

W. Lin, C. Zhang, L. Li, and S. Liang, “Review on development and applications of fiber optic sensors,” in 2012 Symposium on Photonics and Optoelectronics (IEEE, 2012), pp. 1–4.

Liang, S.

W. Lin, C. Zhang, L. Li, and S. Liang, “Review on development and applications of fiber optic sensors,” in 2012 Symposium on Photonics and Optoelectronics (IEEE, 2012), pp. 1–4.

Lin, W.

W. Lin, C. Zhang, L. Li, and S. Liang, “Review on development and applications of fiber optic sensors,” in 2012 Symposium on Photonics and Optoelectronics (IEEE, 2012), pp. 1–4.

Maas, S. J.

S. J. Maas and I. Buchan, “Fiber optic 4C seabed cable for permanent reservoir monitoring,” in Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies (IEEE, 2007), pp. 411–414.

Marrone, M. J.

A. D. Kersey, M. J. Marrone, and A. Dandridge, “Experimental investigation of polarization induced fading in interferometric fiber optic sensor array,” Electron. Lett. 27, 562–563 (1991).
[CrossRef]

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarization-insensitive fibre optic Michelson interferometer,” Electron. Lett. 27, 518–520 (1991).
[CrossRef]

A. D. Kersey, M. J. Marrone, and A. Dandridge, “Analysis of input-polarization-induced phase noise in interferometric fiber-optic sensors and its reduction using polarization scrambling,” J. Lightwave Technol. 8, 838–845 (1989).
[CrossRef]

A. D. Kersey, M. J. Marrone, A. Dandridge, and A. B. Tveten, “Optimization and stabilization of visibility in interferometric fiber-optic sensors using input-polarization control,” J. Lightwave Technol. 6, 1599–1609 (1988).
[CrossRef]

A. D. Kersey and M. J. Marrone, “Apparatus and method for minimizing polarization-induced signal fading in an interferometric fiber,” U.S. patent 4,932,783 (12June1990).

M. J. Marrone, A. D. Kersey, and A. Dandridge, “Fiber optic Michelson array with passive elimination of polarization fading and source feedback isolation,” in Proceedings of the 8th Optical Fiber Sensors Conference (IEEE, 1991), pp. 69–72.

Meng, Z.

Y.-M. Hu, Z. Chen, Z. Meng, X. Zhang, and Z. Song, “An all polarization-maintaining fiber michelson interferometer,” Chinese J. Lasers 24, 891–894 (1997).

Moore, D. R.

D. W. Stowe, D. R. Moore, and R. G. Priest, “Polarization fading in fiber interferometric sensor,” IEEE J. Quantum Electron. 18, 1644–1647 (1982).
[CrossRef]

Nakstad, H.

H. Nakstad and J. T. Kringlebotn, “Realization of a full-scale fibre optic ocean bottom seismic system,” Proc. SPIE 7004, 700436 (2008).
[CrossRef]

Ni, M.

Okawara, C.

K. Saijyou, C. Okawara, and T. Okuyama, “Fiber Bragg grating hydrophone with polarization-maintaining fiber for mitigation of polarization-induced fading,” Acoust. Sci. Tech. 33, 239–246 (2012).

Okuyama, T.

K. Saijyou, C. Okawara, and T. Okuyama, “Fiber Bragg grating hydrophone with polarization-maintaining fiber for mitigation of polarization-induced fading,” Acoust. Sci. Tech. 33, 239–246 (2012).

Priest, R. G.

D. W. Stowe, D. R. Moore, and R. G. Priest, “Polarization fading in fiber interferometric sensor,” IEEE J. Quantum Electron. 18, 1644–1647 (1982).
[CrossRef]

Pullteap, S.

S. Pullteap and H. C. Seat, “Investigation and compensation of polarization-induced signal fading in an extrinsic fiber-based Fabry–Perot interferometric vibrometer,” in IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications (IEEE, 2012), pp. 12–17.

Saijyou, K.

K. Saijyou, C. Okawara, and T. Okuyama, “Fiber Bragg grating hydrophone with polarization-maintaining fiber for mitigation of polarization-induced fading,” Acoust. Sci. Tech. 33, 239–246 (2012).

Seat, H. C.

S. Pullteap and H. C. Seat, “Investigation and compensation of polarization-induced signal fading in an extrinsic fiber-based Fabry–Perot interferometric vibrometer,” in IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications (IEEE, 2012), pp. 12–17.

Song, Z.

Y.-M. Hu, Z. Chen, Z. Meng, X. Zhang, and Z. Song, “An all polarization-maintaining fiber michelson interferometer,” Chinese J. Lasers 24, 891–894 (1997).

Stowe, D. W.

D. W. Stowe, D. R. Moore, and R. G. Priest, “Polarization fading in fiber interferometric sensor,” IEEE J. Quantum Electron. 18, 1644–1647 (1982).
[CrossRef]

Tveten, A. B.

A. D. Kersey, M. J. Marrone, A. Dandridge, and A. B. Tveten, “Optimization and stabilization of visibility in interferometric fiber-optic sensors using input-polarization control,” J. Lightwave Technol. 6, 1599–1609 (1988).
[CrossRef]

N. J. Frigo, A. Dandridge, and A. B. Tveten, “Technique for elimination of polarization fading in fibre interferometers,” Electron. Lett. 20, 319–320 (1984).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, 2005), pp. 619–628.

Xiong, S.-D.

Yang, H.-Y.

Yin, S.

F. T. S. Yu and S. Yin, in Fiber Optic Sensors (Marcel Dekker, 2002), pp. 445–447.

Yu, F. T. S.

F. T. S. Yu and S. Yin, in Fiber Optic Sensors (Marcel Dekker, 2002), pp. 445–447.

Zhang, C.

W. Lin, C. Zhang, L. Li, and S. Liang, “Review on development and applications of fiber optic sensors,” in 2012 Symposium on Photonics and Optoelectronics (IEEE, 2012), pp. 1–4.

Zhang, X.

Y.-M. Hu, Z. Chen, Z. Meng, X. Zhang, and Z. Song, “An all polarization-maintaining fiber michelson interferometer,” Chinese J. Lasers 24, 891–894 (1997).

Acoust. Sci. Tech. (1)

K. Saijyou, C. Okawara, and T. Okuyama, “Fiber Bragg grating hydrophone with polarization-maintaining fiber for mitigation of polarization-induced fading,” Acoust. Sci. Tech. 33, 239–246 (2012).

Appl. Opt. (2)

Chinese J. Lasers (1)

Y.-M. Hu, Z. Chen, Z. Meng, X. Zhang, and Z. Song, “An all polarization-maintaining fiber michelson interferometer,” Chinese J. Lasers 24, 891–894 (1997).

Electron. Lett. (3)

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarization-insensitive fibre optic Michelson interferometer,” Electron. Lett. 27, 518–520 (1991).
[CrossRef]

A. D. Kersey, M. J. Marrone, and A. Dandridge, “Experimental investigation of polarization induced fading in interferometric fiber optic sensor array,” Electron. Lett. 27, 562–563 (1991).
[CrossRef]

N. J. Frigo, A. Dandridge, and A. B. Tveten, “Technique for elimination of polarization fading in fibre interferometers,” Electron. Lett. 20, 319–320 (1984).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. W. Stowe, D. R. Moore, and R. G. Priest, “Polarization fading in fiber interferometric sensor,” IEEE J. Quantum Electron. 18, 1644–1647 (1982).
[CrossRef]

J. Lightwave Technol. (4)

A. D. Kersey, M. J. Marrone, A. Dandridge, and A. B. Tveten, “Optimization and stabilization of visibility in interferometric fiber-optic sensors using input-polarization control,” J. Lightwave Technol. 6, 1599–1609 (1988).
[CrossRef]

B. Culshaw and A. Kersey, “Fiber-optic sensing: A historical perspective,” J. Lightwave Technol. 26, 1064–1078 (2008).
[CrossRef]

A. D. Kersey, M. J. Marrone, and A. Dandridge, “Analysis of input-polarization-induced phase noise in interferometric fiber-optic sensors and its reduction using polarization scrambling,” J. Lightwave Technol. 8, 838–845 (1989).
[CrossRef]

S.-C. Huang, “Automatic polarization compensation tracking method for maximum visibility of fiber interferometric sensors,” J. Lightwave Technol. 27, 4040–4048 (2009).
[CrossRef]

Opt. Photon. News (1)

T. G. Giallorenzi, “Optical technology in naval applications,” Opt. Photon. News 11, 23–36 (1999).

Proc. SPIE (1)

H. Nakstad and J. T. Kringlebotn, “Realization of a full-scale fibre optic ocean bottom seismic system,” Proc. SPIE 7004, 700436 (2008).
[CrossRef]

Other (10)

J. P. Dakin and B. Culshaw, Optical Fiber Sensors: Principles and Components (Artech House, 1988).

S. J. Maas and I. Buchan, “Fiber optic 4C seabed cable for permanent reservoir monitoring,” in Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies (IEEE, 2007), pp. 411–414.

W. Lin, C. Zhang, L. Li, and S. Liang, “Review on development and applications of fiber optic sensors,” in 2012 Symposium on Photonics and Optoelectronics (IEEE, 2012), pp. 1–4.

A. D. Kersey and M. J. Marrone, “Apparatus and method for minimizing polarization-induced signal fading in an interferometric fiber,” U.S. patent 4,932,783 (12June1990).

C. K. Kirkendall and A. Dandridge, “Polarization induced phase noise in fiber optic interferometers with polarizer based polarization diversity receivers,” in 15th Optical Fiber Sensors Conference (IEEE, 2002), Vol. 1, pp. 375–378.
[CrossRef]

M. J. Marrone, A. D. Kersey, and A. Dandridge, “Fiber optic Michelson array with passive elimination of polarization fading and source feedback isolation,” in Proceedings of the 8th Optical Fiber Sensors Conference (IEEE, 1991), pp. 69–72.

J. T. Ahn and B. Y. Kim, “Polarization switching approach to the suppression of polarization-induced signal fading in fiber-optic sensor array,” in Proceedings of the 10th Optical Fiber Sensor Conference (IEEE, 1994), p. 502.

F. T. S. Yu and S. Yin, in Fiber Optic Sensors (Marcel Dekker, 2002), pp. 445–447.

S. Pullteap and H. C. Seat, “Investigation and compensation of polarization-induced signal fading in an extrinsic fiber-based Fabry–Perot interferometric vibrometer,” in IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications (IEEE, 2012), pp. 12–17.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, 2005), pp. 619–628.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Schematic of a fiber Mach–Zehnder interferometer and the evolution of the input SOP on the Poincare sphere. (b) Poincare sphere representation of the differential eigenmode R r s .

Fig. 2.
Fig. 2.

Theoretical curves of the visibility as a function of θ for various values of Ω r s .

Fig. 3.
Fig. 3.

Output SOP of the beam issued from the polarization rotator.

Fig. 4.
Fig. 4.

Schematic of the experimental setup to demonstrate the result of the polarization scrambling.

Fig. 5.
Fig. 5.

Experimental results (a) without and (b) with the polarization rotator.

Fig. 6.
Fig. 6.

Schematic diagram of the testing system.

Fig. 7.
Fig. 7.

Visibility of the interferometer without polarization scrambling. (a)  V min = 0.47 . (b)  V min = 0.17 .

Fig. 8.
Fig. 8.

Visibility of the interferometer using polarization scrambling.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

V = cos η = { 1 sin 2 ( θ ) sin 2 ( Ω r s / 2 ) } 1 / 2 ,
V = cos ( Ω r s / 2 ) .
φ = φ 0 + φ m cos ω m t ,
J = ( J x x J x y J y x J y y ) = 1 2 I 0 ( 1 exp ( i φ ) exp ( i φ ) 1 ) ,
exp ( i φ ) = cos φ + i sin φ = cos φ + i sin φ ,
cos φ = cos φ 0 cos ( φ m cos ω m t ) sin φ 0 sin ( φ m cos ω m t ) ,
cos ( φ m cos ω m t ) = J 0 ( φ m ) , sin ( φ m cos ω m t ) = 0 .
cos φ = cos φ 0 J 0 ( φ m ) , sin φ = sin φ 0 J 0 ( φ m ) .
exp ( i φ ) = J 0 ( φ m ) exp ( i φ 0 ) .
exp ( i φ ) = J 0 ( φ m ) exp ( i φ 0 ) .
| J | = 1 4 I 0 2 ( 1 J 0 2 ( φ m ) ) .
P = I p I 0 = ( J x x + J y y ) 2 4 | J | J x x + J y y = 1 4 | J | ( J x x + J y y ) 2 = | J 0 ( φ m ) | ,
V m = V π π φ m = 4.507 V .
I = I ( cos α ) 2 ,
PER = 10 lg ( I min I max ) .
P eff = 1 10 PER 10 = 0.0362 .

Metrics