Abstract

Accurate measurement of polarization in spectral lines is important for the reliable inference of magnetic fields on the Sun. For ground-based observations, polarimetric precision is severely limited by the presence of Earth’s atmosphere. Atmospheric turbulence (seeing) produces signal fluctuations, which combined with the nonsimultaneous nature of the measurement process cause intermixing of the Stokes parameters known as seeing-induced polarization cross talk. Previous analysis of this effect [Appl. Opt. 43, 3817 (2004)] suggests that cross talk is reduced not only with increase in modulation frequency but also by compensating the seeing-induced image aberrations by an adaptive optics (AO) system. However, in those studies the effect of higher-order image aberrations than those corrected by the AO system was not taken into account. We present in this paper an analysis of seeing-induced cross talk in the presence of higher-order image aberrations through numerical simulation. In this analysis we find that the amount of cross talk among Stokes parameters is practically independent of the degree of image aberration corrected by an AO system. However, higher-order AO corrections increase the signal-to-noise ratio by reducing the seeing caused image smearing. Further we find, in agreement with the earlier results, that cross talk is reduced considerably by increasing the modulation frequency.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. W. Lites, “Rotating waveplates as polarization modulators for Stokes polarimetry of the sun—Evaluation of seeing-induced crosstalk errors,” Appl. Opt. 26, 3838–3845 (1987).
    [CrossRef]
  2. P. G. Judge, D. F. Elmore, B. W. Lites, C. U. Keller, and T. Rimmele, “Evaluation of seeing-induced cross talk in tip-tilt-corrected solar polarimetry,” Appl. Opt. 43, 3817–3828 (2004).
    [CrossRef]
  3. K. Nagaraju, A. Feller, S. Ihle, and H. Soltau, “Atmospheric turbulence and high-precision ground-based solar polarimetry,” Proc. SPIE 8148, 81480S (2011).
    [CrossRef]
  4. F. Roddier, Adaptive Optics in Astronomy (Cambridge University, 1999).
  5. B. L. McGlamery, “Computer simulation studies of compensation of turbulence degraded images,” Proc. SPIE 74, 225–233 (1976).
    [CrossRef]
  6. R. G. Lane, A. Glindemann, and J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992).
    [CrossRef]
  7. A. Glindemann, R. G. Lane, and J. C. Dainty, “Simulation of time-evolving speckle patterns using Kolmogorov statistics,” J. Mod. Opt. 40, 2381–2388 (1993).
    [CrossRef]
  8. F. Roddier, M. J. Northcott, J. E. Graves, D. L. McKenna, and D. Roddier, “One-dimensional spectra of turbulence-induced Zernike aberrations: time-delay and isoplanicity error in partial adaptive compensation,” J. Opt. Soc. Am. A 10, 957–965 (1993).
    [CrossRef]
  9. H. Socas-Navarro, “Stokes inversion techniques: recent achievements and future horizons,” in Advanced Solar Polarimetry—Theory, Observation, and Instrumentation, M. Sigwarth, ed., Vol. 236 of Astronomical Society of the Pacific Conference Series (Astronomical Society of the Pacific, 2001), pp. 487–501.
  10. A. Vögler and M. Schüssler, “Studying magneto-convection by numerical simulation,” Astron. Nachr. 324, 399–404 (2003).
    [CrossRef]
  11. A. Vögler, “Effects of non-grey radiative transfer on 3D simulations of solar magneto-convection,” Astron. Astrophys. 421, 755–762 (2004).
    [CrossRef]
  12. A. Vögler, S. Shelyag, M. Schüssler, F. Cattaneo, T. Emonet, and T. Linde, “Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code,” Astron. Astrophys. 429, 335–351 (2005).
    [CrossRef]
  13. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
    [CrossRef]
  14. A. H. Stroud, Approximate Calculation of Multiple Integrals (Prentice-Hall, 1971).
  15. F. Roddier, Adaptive Optics in Astronomy (Cambridge University, 1999).
  16. P. Holoborodko, www.holoborodko.com .
  17. M. Northcott, Performance Estimation and System Modeling in Adaptive Optics in Astronomy (Cambridge University, 1999), p. 155.
  18. C. U. Keller, J. W. Harvey, and M. S. Giampapa, “SOLIS: an innovative suite of synoptic instruments,” Proc. SPIE 4853, 194–204 (2003).
    [CrossRef]
  19. J. O. Stenflo, “Solar magnetic and velocity-field measurements: new instrument concepts,” Appl. Opt. 23, 1267–1278 (1984).
    [CrossRef]
  20. C. Beck, W. Schmidt, T. Kentischer, and D. Elmore, “Polarimetric Littrow spectrograph—instrument calibration and first measurements,” Astron. Astrophys. 437, 1159–1167 (2005).
    [CrossRef]
  21. K. Nagaraju, K. B. Ramesh, K. Sankarasubramanian, and K. E. Rangarajan, “An efficient modulation scheme for dual beam polarimetry,” Bull. Astron. Soc. India 35, 307–318 (2007).
  22. D. P. Greenwood, “Bandwidth specification for adaptive optics systems,” J. Opt. Soc. Am. 67, 390–393 (1977).
    [CrossRef]
  23. J. W. Hardy, Adaptive Optics for Astronomical Telescopes(Oxford University, 1998).
  24. T. R. Rimmele, S. L. Keil, C. U. Keller, F. Hill, J. Briggs, N. E. Dalrymple, B. D. Goodrich, S. L. Hegwer, R. Hubbard, J. M. Oschmann, R. R. Radick, D. Ren, J. Wagner, S. Wampler, and M. Warner, “Technical challenges of the advanced technology solar telescope,” Proc. SPIE 4837, 94–109 (2003).
    [CrossRef]

2011 (1)

K. Nagaraju, A. Feller, S. Ihle, and H. Soltau, “Atmospheric turbulence and high-precision ground-based solar polarimetry,” Proc. SPIE 8148, 81480S (2011).
[CrossRef]

2007 (1)

K. Nagaraju, K. B. Ramesh, K. Sankarasubramanian, and K. E. Rangarajan, “An efficient modulation scheme for dual beam polarimetry,” Bull. Astron. Soc. India 35, 307–318 (2007).

2005 (2)

C. Beck, W. Schmidt, T. Kentischer, and D. Elmore, “Polarimetric Littrow spectrograph—instrument calibration and first measurements,” Astron. Astrophys. 437, 1159–1167 (2005).
[CrossRef]

A. Vögler, S. Shelyag, M. Schüssler, F. Cattaneo, T. Emonet, and T. Linde, “Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code,” Astron. Astrophys. 429, 335–351 (2005).
[CrossRef]

2004 (2)

A. Vögler, “Effects of non-grey radiative transfer on 3D simulations of solar magneto-convection,” Astron. Astrophys. 421, 755–762 (2004).
[CrossRef]

P. G. Judge, D. F. Elmore, B. W. Lites, C. U. Keller, and T. Rimmele, “Evaluation of seeing-induced cross talk in tip-tilt-corrected solar polarimetry,” Appl. Opt. 43, 3817–3828 (2004).
[CrossRef]

2003 (3)

T. R. Rimmele, S. L. Keil, C. U. Keller, F. Hill, J. Briggs, N. E. Dalrymple, B. D. Goodrich, S. L. Hegwer, R. Hubbard, J. M. Oschmann, R. R. Radick, D. Ren, J. Wagner, S. Wampler, and M. Warner, “Technical challenges of the advanced technology solar telescope,” Proc. SPIE 4837, 94–109 (2003).
[CrossRef]

A. Vögler and M. Schüssler, “Studying magneto-convection by numerical simulation,” Astron. Nachr. 324, 399–404 (2003).
[CrossRef]

C. U. Keller, J. W. Harvey, and M. S. Giampapa, “SOLIS: an innovative suite of synoptic instruments,” Proc. SPIE 4853, 194–204 (2003).
[CrossRef]

1993 (2)

1992 (1)

R. G. Lane, A. Glindemann, and J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992).
[CrossRef]

1987 (1)

1984 (1)

1977 (1)

1976 (2)

R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
[CrossRef]

B. L. McGlamery, “Computer simulation studies of compensation of turbulence degraded images,” Proc. SPIE 74, 225–233 (1976).
[CrossRef]

Beck, C.

C. Beck, W. Schmidt, T. Kentischer, and D. Elmore, “Polarimetric Littrow spectrograph—instrument calibration and first measurements,” Astron. Astrophys. 437, 1159–1167 (2005).
[CrossRef]

Briggs, J.

T. R. Rimmele, S. L. Keil, C. U. Keller, F. Hill, J. Briggs, N. E. Dalrymple, B. D. Goodrich, S. L. Hegwer, R. Hubbard, J. M. Oschmann, R. R. Radick, D. Ren, J. Wagner, S. Wampler, and M. Warner, “Technical challenges of the advanced technology solar telescope,” Proc. SPIE 4837, 94–109 (2003).
[CrossRef]

Cattaneo, F.

A. Vögler, S. Shelyag, M. Schüssler, F. Cattaneo, T. Emonet, and T. Linde, “Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code,” Astron. Astrophys. 429, 335–351 (2005).
[CrossRef]

Dainty, J. C.

A. Glindemann, R. G. Lane, and J. C. Dainty, “Simulation of time-evolving speckle patterns using Kolmogorov statistics,” J. Mod. Opt. 40, 2381–2388 (1993).
[CrossRef]

R. G. Lane, A. Glindemann, and J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992).
[CrossRef]

Dalrymple, N. E.

T. R. Rimmele, S. L. Keil, C. U. Keller, F. Hill, J. Briggs, N. E. Dalrymple, B. D. Goodrich, S. L. Hegwer, R. Hubbard, J. M. Oschmann, R. R. Radick, D. Ren, J. Wagner, S. Wampler, and M. Warner, “Technical challenges of the advanced technology solar telescope,” Proc. SPIE 4837, 94–109 (2003).
[CrossRef]

Elmore, D.

C. Beck, W. Schmidt, T. Kentischer, and D. Elmore, “Polarimetric Littrow spectrograph—instrument calibration and first measurements,” Astron. Astrophys. 437, 1159–1167 (2005).
[CrossRef]

Elmore, D. F.

Emonet, T.

A. Vögler, S. Shelyag, M. Schüssler, F. Cattaneo, T. Emonet, and T. Linde, “Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code,” Astron. Astrophys. 429, 335–351 (2005).
[CrossRef]

Feller, A.

K. Nagaraju, A. Feller, S. Ihle, and H. Soltau, “Atmospheric turbulence and high-precision ground-based solar polarimetry,” Proc. SPIE 8148, 81480S (2011).
[CrossRef]

Giampapa, M. S.

C. U. Keller, J. W. Harvey, and M. S. Giampapa, “SOLIS: an innovative suite of synoptic instruments,” Proc. SPIE 4853, 194–204 (2003).
[CrossRef]

Glindemann, A.

A. Glindemann, R. G. Lane, and J. C. Dainty, “Simulation of time-evolving speckle patterns using Kolmogorov statistics,” J. Mod. Opt. 40, 2381–2388 (1993).
[CrossRef]

R. G. Lane, A. Glindemann, and J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992).
[CrossRef]

Goodrich, B. D.

T. R. Rimmele, S. L. Keil, C. U. Keller, F. Hill, J. Briggs, N. E. Dalrymple, B. D. Goodrich, S. L. Hegwer, R. Hubbard, J. M. Oschmann, R. R. Radick, D. Ren, J. Wagner, S. Wampler, and M. Warner, “Technical challenges of the advanced technology solar telescope,” Proc. SPIE 4837, 94–109 (2003).
[CrossRef]

Graves, J. E.

Greenwood, D. P.

Hardy, J. W.

J. W. Hardy, Adaptive Optics for Astronomical Telescopes(Oxford University, 1998).

Harvey, J. W.

C. U. Keller, J. W. Harvey, and M. S. Giampapa, “SOLIS: an innovative suite of synoptic instruments,” Proc. SPIE 4853, 194–204 (2003).
[CrossRef]

Hegwer, S. L.

T. R. Rimmele, S. L. Keil, C. U. Keller, F. Hill, J. Briggs, N. E. Dalrymple, B. D. Goodrich, S. L. Hegwer, R. Hubbard, J. M. Oschmann, R. R. Radick, D. Ren, J. Wagner, S. Wampler, and M. Warner, “Technical challenges of the advanced technology solar telescope,” Proc. SPIE 4837, 94–109 (2003).
[CrossRef]

Hill, F.

T. R. Rimmele, S. L. Keil, C. U. Keller, F. Hill, J. Briggs, N. E. Dalrymple, B. D. Goodrich, S. L. Hegwer, R. Hubbard, J. M. Oschmann, R. R. Radick, D. Ren, J. Wagner, S. Wampler, and M. Warner, “Technical challenges of the advanced technology solar telescope,” Proc. SPIE 4837, 94–109 (2003).
[CrossRef]

Hubbard, R.

T. R. Rimmele, S. L. Keil, C. U. Keller, F. Hill, J. Briggs, N. E. Dalrymple, B. D. Goodrich, S. L. Hegwer, R. Hubbard, J. M. Oschmann, R. R. Radick, D. Ren, J. Wagner, S. Wampler, and M. Warner, “Technical challenges of the advanced technology solar telescope,” Proc. SPIE 4837, 94–109 (2003).
[CrossRef]

Ihle, S.

K. Nagaraju, A. Feller, S. Ihle, and H. Soltau, “Atmospheric turbulence and high-precision ground-based solar polarimetry,” Proc. SPIE 8148, 81480S (2011).
[CrossRef]

Judge, P. G.

Keil, S. L.

T. R. Rimmele, S. L. Keil, C. U. Keller, F. Hill, J. Briggs, N. E. Dalrymple, B. D. Goodrich, S. L. Hegwer, R. Hubbard, J. M. Oschmann, R. R. Radick, D. Ren, J. Wagner, S. Wampler, and M. Warner, “Technical challenges of the advanced technology solar telescope,” Proc. SPIE 4837, 94–109 (2003).
[CrossRef]

Keller, C. U.

P. G. Judge, D. F. Elmore, B. W. Lites, C. U. Keller, and T. Rimmele, “Evaluation of seeing-induced cross talk in tip-tilt-corrected solar polarimetry,” Appl. Opt. 43, 3817–3828 (2004).
[CrossRef]

T. R. Rimmele, S. L. Keil, C. U. Keller, F. Hill, J. Briggs, N. E. Dalrymple, B. D. Goodrich, S. L. Hegwer, R. Hubbard, J. M. Oschmann, R. R. Radick, D. Ren, J. Wagner, S. Wampler, and M. Warner, “Technical challenges of the advanced technology solar telescope,” Proc. SPIE 4837, 94–109 (2003).
[CrossRef]

C. U. Keller, J. W. Harvey, and M. S. Giampapa, “SOLIS: an innovative suite of synoptic instruments,” Proc. SPIE 4853, 194–204 (2003).
[CrossRef]

Kentischer, T.

C. Beck, W. Schmidt, T. Kentischer, and D. Elmore, “Polarimetric Littrow spectrograph—instrument calibration and first measurements,” Astron. Astrophys. 437, 1159–1167 (2005).
[CrossRef]

Lane, R. G.

A. Glindemann, R. G. Lane, and J. C. Dainty, “Simulation of time-evolving speckle patterns using Kolmogorov statistics,” J. Mod. Opt. 40, 2381–2388 (1993).
[CrossRef]

R. G. Lane, A. Glindemann, and J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992).
[CrossRef]

Linde, T.

A. Vögler, S. Shelyag, M. Schüssler, F. Cattaneo, T. Emonet, and T. Linde, “Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code,” Astron. Astrophys. 429, 335–351 (2005).
[CrossRef]

Lites, B. W.

McGlamery, B. L.

B. L. McGlamery, “Computer simulation studies of compensation of turbulence degraded images,” Proc. SPIE 74, 225–233 (1976).
[CrossRef]

McKenna, D. L.

Nagaraju, K.

K. Nagaraju, A. Feller, S. Ihle, and H. Soltau, “Atmospheric turbulence and high-precision ground-based solar polarimetry,” Proc. SPIE 8148, 81480S (2011).
[CrossRef]

K. Nagaraju, K. B. Ramesh, K. Sankarasubramanian, and K. E. Rangarajan, “An efficient modulation scheme for dual beam polarimetry,” Bull. Astron. Soc. India 35, 307–318 (2007).

Noll, R. J.

Northcott, M.

M. Northcott, Performance Estimation and System Modeling in Adaptive Optics in Astronomy (Cambridge University, 1999), p. 155.

Northcott, M. J.

Oschmann, J. M.

T. R. Rimmele, S. L. Keil, C. U. Keller, F. Hill, J. Briggs, N. E. Dalrymple, B. D. Goodrich, S. L. Hegwer, R. Hubbard, J. M. Oschmann, R. R. Radick, D. Ren, J. Wagner, S. Wampler, and M. Warner, “Technical challenges of the advanced technology solar telescope,” Proc. SPIE 4837, 94–109 (2003).
[CrossRef]

Radick, R. R.

T. R. Rimmele, S. L. Keil, C. U. Keller, F. Hill, J. Briggs, N. E. Dalrymple, B. D. Goodrich, S. L. Hegwer, R. Hubbard, J. M. Oschmann, R. R. Radick, D. Ren, J. Wagner, S. Wampler, and M. Warner, “Technical challenges of the advanced technology solar telescope,” Proc. SPIE 4837, 94–109 (2003).
[CrossRef]

Ramesh, K. B.

K. Nagaraju, K. B. Ramesh, K. Sankarasubramanian, and K. E. Rangarajan, “An efficient modulation scheme for dual beam polarimetry,” Bull. Astron. Soc. India 35, 307–318 (2007).

Rangarajan, K. E.

K. Nagaraju, K. B. Ramesh, K. Sankarasubramanian, and K. E. Rangarajan, “An efficient modulation scheme for dual beam polarimetry,” Bull. Astron. Soc. India 35, 307–318 (2007).

Ren, D.

T. R. Rimmele, S. L. Keil, C. U. Keller, F. Hill, J. Briggs, N. E. Dalrymple, B. D. Goodrich, S. L. Hegwer, R. Hubbard, J. M. Oschmann, R. R. Radick, D. Ren, J. Wagner, S. Wampler, and M. Warner, “Technical challenges of the advanced technology solar telescope,” Proc. SPIE 4837, 94–109 (2003).
[CrossRef]

Rimmele, T.

Rimmele, T. R.

T. R. Rimmele, S. L. Keil, C. U. Keller, F. Hill, J. Briggs, N. E. Dalrymple, B. D. Goodrich, S. L. Hegwer, R. Hubbard, J. M. Oschmann, R. R. Radick, D. Ren, J. Wagner, S. Wampler, and M. Warner, “Technical challenges of the advanced technology solar telescope,” Proc. SPIE 4837, 94–109 (2003).
[CrossRef]

Roddier, D.

Roddier, F.

Sankarasubramanian, K.

K. Nagaraju, K. B. Ramesh, K. Sankarasubramanian, and K. E. Rangarajan, “An efficient modulation scheme for dual beam polarimetry,” Bull. Astron. Soc. India 35, 307–318 (2007).

Schmidt, W.

C. Beck, W. Schmidt, T. Kentischer, and D. Elmore, “Polarimetric Littrow spectrograph—instrument calibration and first measurements,” Astron. Astrophys. 437, 1159–1167 (2005).
[CrossRef]

Schüssler, M.

A. Vögler, S. Shelyag, M. Schüssler, F. Cattaneo, T. Emonet, and T. Linde, “Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code,” Astron. Astrophys. 429, 335–351 (2005).
[CrossRef]

A. Vögler and M. Schüssler, “Studying magneto-convection by numerical simulation,” Astron. Nachr. 324, 399–404 (2003).
[CrossRef]

Shelyag, S.

A. Vögler, S. Shelyag, M. Schüssler, F. Cattaneo, T. Emonet, and T. Linde, “Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code,” Astron. Astrophys. 429, 335–351 (2005).
[CrossRef]

Socas-Navarro, H.

H. Socas-Navarro, “Stokes inversion techniques: recent achievements and future horizons,” in Advanced Solar Polarimetry—Theory, Observation, and Instrumentation, M. Sigwarth, ed., Vol. 236 of Astronomical Society of the Pacific Conference Series (Astronomical Society of the Pacific, 2001), pp. 487–501.

Soltau, H.

K. Nagaraju, A. Feller, S. Ihle, and H. Soltau, “Atmospheric turbulence and high-precision ground-based solar polarimetry,” Proc. SPIE 8148, 81480S (2011).
[CrossRef]

Stenflo, J. O.

Stroud, A. H.

A. H. Stroud, Approximate Calculation of Multiple Integrals (Prentice-Hall, 1971).

Vögler, A.

A. Vögler, S. Shelyag, M. Schüssler, F. Cattaneo, T. Emonet, and T. Linde, “Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code,” Astron. Astrophys. 429, 335–351 (2005).
[CrossRef]

A. Vögler, “Effects of non-grey radiative transfer on 3D simulations of solar magneto-convection,” Astron. Astrophys. 421, 755–762 (2004).
[CrossRef]

A. Vögler and M. Schüssler, “Studying magneto-convection by numerical simulation,” Astron. Nachr. 324, 399–404 (2003).
[CrossRef]

Wagner, J.

T. R. Rimmele, S. L. Keil, C. U. Keller, F. Hill, J. Briggs, N. E. Dalrymple, B. D. Goodrich, S. L. Hegwer, R. Hubbard, J. M. Oschmann, R. R. Radick, D. Ren, J. Wagner, S. Wampler, and M. Warner, “Technical challenges of the advanced technology solar telescope,” Proc. SPIE 4837, 94–109 (2003).
[CrossRef]

Wampler, S.

T. R. Rimmele, S. L. Keil, C. U. Keller, F. Hill, J. Briggs, N. E. Dalrymple, B. D. Goodrich, S. L. Hegwer, R. Hubbard, J. M. Oschmann, R. R. Radick, D. Ren, J. Wagner, S. Wampler, and M. Warner, “Technical challenges of the advanced technology solar telescope,” Proc. SPIE 4837, 94–109 (2003).
[CrossRef]

Warner, M.

T. R. Rimmele, S. L. Keil, C. U. Keller, F. Hill, J. Briggs, N. E. Dalrymple, B. D. Goodrich, S. L. Hegwer, R. Hubbard, J. M. Oschmann, R. R. Radick, D. Ren, J. Wagner, S. Wampler, and M. Warner, “Technical challenges of the advanced technology solar telescope,” Proc. SPIE 4837, 94–109 (2003).
[CrossRef]

Appl. Opt. (3)

Astron. Astrophys. (3)

C. Beck, W. Schmidt, T. Kentischer, and D. Elmore, “Polarimetric Littrow spectrograph—instrument calibration and first measurements,” Astron. Astrophys. 437, 1159–1167 (2005).
[CrossRef]

A. Vögler, “Effects of non-grey radiative transfer on 3D simulations of solar magneto-convection,” Astron. Astrophys. 421, 755–762 (2004).
[CrossRef]

A. Vögler, S. Shelyag, M. Schüssler, F. Cattaneo, T. Emonet, and T. Linde, “Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code,” Astron. Astrophys. 429, 335–351 (2005).
[CrossRef]

Astron. Nachr. (1)

A. Vögler and M. Schüssler, “Studying magneto-convection by numerical simulation,” Astron. Nachr. 324, 399–404 (2003).
[CrossRef]

Bull. Astron. Soc. India (1)

K. Nagaraju, K. B. Ramesh, K. Sankarasubramanian, and K. E. Rangarajan, “An efficient modulation scheme for dual beam polarimetry,” Bull. Astron. Soc. India 35, 307–318 (2007).

J. Mod. Opt. (1)

A. Glindemann, R. G. Lane, and J. C. Dainty, “Simulation of time-evolving speckle patterns using Kolmogorov statistics,” J. Mod. Opt. 40, 2381–2388 (1993).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

Proc. SPIE (4)

C. U. Keller, J. W. Harvey, and M. S. Giampapa, “SOLIS: an innovative suite of synoptic instruments,” Proc. SPIE 4853, 194–204 (2003).
[CrossRef]

K. Nagaraju, A. Feller, S. Ihle, and H. Soltau, “Atmospheric turbulence and high-precision ground-based solar polarimetry,” Proc. SPIE 8148, 81480S (2011).
[CrossRef]

B. L. McGlamery, “Computer simulation studies of compensation of turbulence degraded images,” Proc. SPIE 74, 225–233 (1976).
[CrossRef]

T. R. Rimmele, S. L. Keil, C. U. Keller, F. Hill, J. Briggs, N. E. Dalrymple, B. D. Goodrich, S. L. Hegwer, R. Hubbard, J. M. Oschmann, R. R. Radick, D. Ren, J. Wagner, S. Wampler, and M. Warner, “Technical challenges of the advanced technology solar telescope,” Proc. SPIE 4837, 94–109 (2003).
[CrossRef]

Waves Random Media (1)

R. G. Lane, A. Glindemann, and J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992).
[CrossRef]

Other (7)

F. Roddier, Adaptive Optics in Astronomy (Cambridge University, 1999).

A. H. Stroud, Approximate Calculation of Multiple Integrals (Prentice-Hall, 1971).

F. Roddier, Adaptive Optics in Astronomy (Cambridge University, 1999).

P. Holoborodko, www.holoborodko.com .

M. Northcott, Performance Estimation and System Modeling in Adaptive Optics in Astronomy (Cambridge University, 1999), p. 155.

H. Socas-Navarro, “Stokes inversion techniques: recent achievements and future horizons,” in Advanced Solar Polarimetry—Theory, Observation, and Instrumentation, M. Sigwarth, ed., Vol. 236 of Astronomical Society of the Pacific Conference Series (Astronomical Society of the Pacific, 2001), pp. 487–501.

J. W. Hardy, Adaptive Optics for Astronomical Telescopes(Oxford University, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Sample phase screen with an enhanced circular region on the right side representing a telescope aperture of 1 m. The gray scale is ±19 waves. The simulation parameters are compiled in Table 1.

Fig. 2.
Fig. 2.

Synthetic Stokes images representing a plage region in the wing (+24) of the Fe I line at 6302 Å. The rectangular boxes are the regions considered to analyze cross talk terms. The Stokes images are normalized to the maximum value of Stokes I in the field-of-view.

Fig. 3.
Fig. 3.

Convolved Stokes I images with the phase screens of diameter 1 m. The top left panel contains the diffraction-limited image of a 1 m aperture telescope. The number on each other image indicates the number of lowest-order Zernike terms compensated in the phase screen [cf. Eq. (6)]. All the images are normalized to the maximum value of input Stokes I in the field-of-view.

Fig. 4.
Fig. 4.

Plots of Strehl ratio (top panel) and intensity contrast (lower panel) versus the number of lower-order Zernike terms compensated.

Fig. 5.
Fig. 5.

Plots of Cii as a function of number of lower-order Zernike terms compensated for the modulation scheme 1 (solid curves) and the modulation scheme 2 (dotted curves). The polarimeter is assumed to be in a single-beam setup.

Fig. 6.
Fig. 6.

Plots of cross talk elements in scheme 1 as a function of the number of Zernike terms compensated and for different modulation frequencies. The polarimeter is assumed to be in a single-beam setup.

Fig. 7.
Fig. 7.

Same as Fig. 6 but for scheme 2.

Fig. 8.
Fig. 8.

Same as Fig. 6 but for dual-beam setup.

Tables (1)

Tables Icon

Table 1. Simulation Parameters. The Parameter v is the Wind Speed and Δt is the Sampling Interval. See Eq. (1) or Eq. (2) for a Description of the Other Parameters

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Φ(k⃗)=0.023r05/3|k⃗|11/3,
Φ(k,l)=0.023(NSr0)5/3(k2+l2)11/3,
|φ^(k,l)|=0.023(NSr0)5/6(k2+l2)11/6.
φ^wind(k,l)=φ^old(k,l)e2πi(kNk+lNl)/N,
aj(t)=φ(r⃗,t)Zj(r⃗)dr⃗,
φJ(r⃗,t)=φ(r⃗,t)j=1Jaj(t)Zj(r⃗).
Cri=|r||i|,
fG=0.427vr0.
I=I++I2,Q=Q+Q2,U=U+U2,V=V+V2.

Metrics