Abstract

The influence of the elastic modulus of a tumor (EMT) on the laser-generated thermoelastic force source and ultrasound waves are investigated by using the finite element method. Taking into account the effects of thermal diffusion, optical penetration, and finite duration of laser pulse, the transient temperature distribution is obtained. Applying this temperature field to structure analyses as thermal loading, the thermoelastic stress field and laser-induced ultrasound wave in soft tissues are obtained. The results show that there is a linear correlation between the maximum compressive stress and the elastic modulus of tissues. It is also shown that the features and frequency regions of the laser-induced ultrasound waveform have a close relationship with the EMT, which has been further verified by a corresponding experiment.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. M. Graf, S. Kim, B. Wang, R. Smalling, and S. Emelianov, “Noninvasive detection of intimal xanthoma using combined ultrasound, strain rate and photoacoustic imaging,” Ultrasonics 52, 435–441 (2012).
    [CrossRef]
  2. D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25, 875–882 (2011).
    [CrossRef]
  3. D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Topics Quantum Electron. 16, 730–739 (2010).
    [CrossRef]
  4. L. Zeng, G. Liu, D. Yang, and X. Ji, “3D-visual laser-diode-based photoacoustic imaging,” Opt. Express 20, 1237–1246 (2012).
    [CrossRef]
  5. G. Ku, K. Maslov, L. Li, and L. V. Wang, “Photoacoustic microscopy with 2 μm transverse resolution,” J. Biomed. Opt. 15, 021302 (2010).
    [CrossRef]
  6. Y. Zeng, D. Xing, Y. Wang, B. Yin, and Q. Chen, “Photoacoustic and ultrasonic coimage with a linear transducer array,” Opt. Lett. 29, 1760–1762 (2004).
    [CrossRef]
  7. R. A. Kruger, P. Liu, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)-reconstruction tomography,” Med. Phys. 22, 1605–1609 (1995).
    [CrossRef]
  8. G. Ku, X. Wang, X. Xie, G. Stoica, and L. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44, 770–775 (2005).
    [CrossRef]
  9. C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett. 35, 3195–3197 (2010).
    [CrossRef]
  10. B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15, 021314 (2010).
    [CrossRef]
  11. Y. Yuan, S. Yang, and D. Xing, “Optical-resolution photoacoustic microscopy based on two-dimensional scanning galvanometer,” Appl. Phys. Lett. 100, 023702 (2012).
    [CrossRef]
  12. T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imag. 20, 260–274 (1998).
  13. S. Kruse, J. Smith, A. Lawrence, M. Dresner, A. Manduca, J. Greenleaf, and R. Ehman, “Tissue characterization using magnetic resonance elastography: preliminary results,” Phys. Med. Biol. 45, 1579–1590 (2000).
    [CrossRef]
  14. A. Sarvazyan, A. Skovoroda, S. Emelianov, J. Fowlkes, J. Pipe, R. Adler, R. Buxton, and P. Carson, “Biophysical bases of elasticity imaging,” Acoust. Imaging 21, 223–240 (1995).
    [CrossRef]
  15. R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, and D. Holz, “High-resolution tensor MR elastography for breast tumour detection,” Phys. Med. Biol. 45, 1649–1664 (2000).
    [CrossRef]
  16. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
    [CrossRef]
  17. A. Lazarus, B. Prabel, and D. Combescure, “A 3D finite element model for the vibration analysis of asymmetric rotating machines,” J. Sound Vib. 329, 3780–3797(2010).
    [CrossRef]
  18. B. Vaseghi, N. Takorabet, and F. Meibody, “Transient finite element analysis of induction machines with stator winding turn fault,” Prog. Electromagn. Res. 95, 1–18 (2009).
    [CrossRef]
  19. W. B. Edwards and K. L. Troy, “Finite element prediction of surface strain and fracture strength at the distal radius,” Med. Eng. Phys. 34, 290–298 (2012).
    [CrossRef]
  20. J. Ripoll and V. Ntziachristos, “Quantitative point source photoacoustic inversion formulas for scattering and absorbing media,” Phys. Rev. E 71, 031912 (2005).
    [CrossRef]
  21. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).
  22. L. D. Landau and E. Lifshitz, Theory of Elasticity, 7 of Course of Theoretical Physics series (Pergamon, 1986), pp. 13–92.
  23. I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von Rosenberg, and M. S. Feld, “The thermoelastic basis of short pulsed laser ablation of biological tissue,” Proc. Nat. Acad. Sci. USA 92, 1960–1964 (1995).
    [CrossRef]
  24. J. N. Reddy, Solution Manual for an Introduction to the Finite Element Methods, 2nd ed. (McGraw-Hill, 1993).
  25. J. Wang, Z. Shen, B. Xu, X. Ni, J. Guan, and J. Lu, “Numerical simulation of laser-generated ultrasound in non-metallic material by the finite element method,” Opt. Laser Technol. 39, 806–813 (2007).
    [CrossRef]
  26. American National Standards Institute, American national standard for the safe use of lasers Tech. Rep. Z136.1-2000 (American National Standards Institute, 2000).
  27. M. F. Insana, R. F. Wagner, and D. G. Brown, “Describing small-scale structure in random media using pulse-echo ultrasound,” J. Acoust. Soc. Am. 87, 179–192 (1990).
    [CrossRef]
  28. M. Yamakawa, N. Nitta, T. Shiina, T. Matsumura, S. Tamano, T. Mitake, and E. Ueno, “High-speed freehand tissue elasticity imaging for breast diagnosis,” Jpn. J. Appl. Phys. 42, 3265–3270 (2003).
    [CrossRef]
  29. B. Choi, J. A. Pearce, and A. J. Welch, “Modelling infrared temperature measurements: implications for laser irradiation and cryogen cooling studies,” Phys. Med. Biol. 45, 541–557 (2000).
    [CrossRef]

2012 (4)

L. Zeng, G. Liu, D. Yang, and X. Ji, “3D-visual laser-diode-based photoacoustic imaging,” Opt. Express 20, 1237–1246 (2012).
[CrossRef]

I. M. Graf, S. Kim, B. Wang, R. Smalling, and S. Emelianov, “Noninvasive detection of intimal xanthoma using combined ultrasound, strain rate and photoacoustic imaging,” Ultrasonics 52, 435–441 (2012).
[CrossRef]

Y. Yuan, S. Yang, and D. Xing, “Optical-resolution photoacoustic microscopy based on two-dimensional scanning galvanometer,” Appl. Phys. Lett. 100, 023702 (2012).
[CrossRef]

W. B. Edwards and K. L. Troy, “Finite element prediction of surface strain and fracture strength at the distal radius,” Med. Eng. Phys. 34, 290–298 (2012).
[CrossRef]

2011 (1)

D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25, 875–882 (2011).
[CrossRef]

2010 (5)

D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Topics Quantum Electron. 16, 730–739 (2010).
[CrossRef]

C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett. 35, 3195–3197 (2010).
[CrossRef]

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15, 021314 (2010).
[CrossRef]

G. Ku, K. Maslov, L. Li, and L. V. Wang, “Photoacoustic microscopy with 2 μm transverse resolution,” J. Biomed. Opt. 15, 021302 (2010).
[CrossRef]

A. Lazarus, B. Prabel, and D. Combescure, “A 3D finite element model for the vibration analysis of asymmetric rotating machines,” J. Sound Vib. 329, 3780–3797(2010).
[CrossRef]

2009 (1)

B. Vaseghi, N. Takorabet, and F. Meibody, “Transient finite element analysis of induction machines with stator winding turn fault,” Prog. Electromagn. Res. 95, 1–18 (2009).
[CrossRef]

2007 (1)

J. Wang, Z. Shen, B. Xu, X. Ni, J. Guan, and J. Lu, “Numerical simulation of laser-generated ultrasound in non-metallic material by the finite element method,” Opt. Laser Technol. 39, 806–813 (2007).
[CrossRef]

2006 (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

2005 (2)

J. Ripoll and V. Ntziachristos, “Quantitative point source photoacoustic inversion formulas for scattering and absorbing media,” Phys. Rev. E 71, 031912 (2005).
[CrossRef]

G. Ku, X. Wang, X. Xie, G. Stoica, and L. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44, 770–775 (2005).
[CrossRef]

2004 (1)

2003 (1)

M. Yamakawa, N. Nitta, T. Shiina, T. Matsumura, S. Tamano, T. Mitake, and E. Ueno, “High-speed freehand tissue elasticity imaging for breast diagnosis,” Jpn. J. Appl. Phys. 42, 3265–3270 (2003).
[CrossRef]

2000 (3)

B. Choi, J. A. Pearce, and A. J. Welch, “Modelling infrared temperature measurements: implications for laser irradiation and cryogen cooling studies,” Phys. Med. Biol. 45, 541–557 (2000).
[CrossRef]

R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, and D. Holz, “High-resolution tensor MR elastography for breast tumour detection,” Phys. Med. Biol. 45, 1649–1664 (2000).
[CrossRef]

S. Kruse, J. Smith, A. Lawrence, M. Dresner, A. Manduca, J. Greenleaf, and R. Ehman, “Tissue characterization using magnetic resonance elastography: preliminary results,” Phys. Med. Biol. 45, 1579–1590 (2000).
[CrossRef]

1998 (1)

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imag. 20, 260–274 (1998).

1995 (3)

A. Sarvazyan, A. Skovoroda, S. Emelianov, J. Fowlkes, J. Pipe, R. Adler, R. Buxton, and P. Carson, “Biophysical bases of elasticity imaging,” Acoust. Imaging 21, 223–240 (1995).
[CrossRef]

R. A. Kruger, P. Liu, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)-reconstruction tomography,” Med. Phys. 22, 1605–1609 (1995).
[CrossRef]

I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von Rosenberg, and M. S. Feld, “The thermoelastic basis of short pulsed laser ablation of biological tissue,” Proc. Nat. Acad. Sci. USA 92, 1960–1964 (1995).
[CrossRef]

1990 (1)

M. F. Insana, R. F. Wagner, and D. G. Brown, “Describing small-scale structure in random media using pulse-echo ultrasound,” J. Acoust. Soc. Am. 87, 179–192 (1990).
[CrossRef]

Adler, R.

A. Sarvazyan, A. Skovoroda, S. Emelianov, J. Fowlkes, J. Pipe, R. Adler, R. Buxton, and P. Carson, “Biophysical bases of elasticity imaging,” Acoust. Imaging 21, 223–240 (1995).
[CrossRef]

Albagli, D.

I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von Rosenberg, and M. S. Feld, “The thermoelastic basis of short pulsed laser ablation of biological tissue,” Proc. Nat. Acad. Sci. USA 92, 1960–1964 (1995).
[CrossRef]

Allen, J. S.

D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25, 875–882 (2011).
[CrossRef]

Appledorn, C. R.

R. A. Kruger, P. Liu, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)-reconstruction tomography,” Med. Phys. 22, 1605–1609 (1995).
[CrossRef]

Brown, D. G.

M. F. Insana, R. F. Wagner, and D. G. Brown, “Describing small-scale structure in random media using pulse-echo ultrasound,” J. Acoust. Soc. Am. 87, 179–192 (1990).
[CrossRef]

Buxton, R.

A. Sarvazyan, A. Skovoroda, S. Emelianov, J. Fowlkes, J. Pipe, R. Adler, R. Buxton, and P. Carson, “Biophysical bases of elasticity imaging,” Acoust. Imaging 21, 223–240 (1995).
[CrossRef]

Carson, P.

A. Sarvazyan, A. Skovoroda, S. Emelianov, J. Fowlkes, J. Pipe, R. Adler, R. Buxton, and P. Carson, “Biophysical bases of elasticity imaging,” Acoust. Imaging 21, 223–240 (1995).
[CrossRef]

Chen, Q.

Choi, B.

B. Choi, J. A. Pearce, and A. J. Welch, “Modelling infrared temperature measurements: implications for laser irradiation and cryogen cooling studies,” Phys. Med. Biol. 45, 541–557 (2000).
[CrossRef]

Combescure, D.

A. Lazarus, B. Prabel, and D. Combescure, “A 3D finite element model for the vibration analysis of asymmetric rotating machines,” J. Sound Vib. 329, 3780–3797(2010).
[CrossRef]

Cox, B. T.

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15, 021314 (2010).
[CrossRef]

Dargatz, M.

R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, and D. Holz, “High-resolution tensor MR elastography for breast tumour detection,” Phys. Med. Biol. 45, 1649–1664 (2000).
[CrossRef]

Dark, M. L.

I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von Rosenberg, and M. S. Feld, “The thermoelastic basis of short pulsed laser ablation of biological tissue,” Proc. Nat. Acad. Sci. USA 92, 1960–1964 (1995).
[CrossRef]

Dresner, M.

S. Kruse, J. Smith, A. Lawrence, M. Dresner, A. Manduca, J. Greenleaf, and R. Ehman, “Tissue characterization using magnetic resonance elastography: preliminary results,” Phys. Med. Biol. 45, 1579–1590 (2000).
[CrossRef]

Edwards, W. B.

W. B. Edwards and K. L. Troy, “Finite element prediction of surface strain and fracture strength at the distal radius,” Med. Eng. Phys. 34, 290–298 (2012).
[CrossRef]

Ehman, R.

S. Kruse, J. Smith, A. Lawrence, M. Dresner, A. Manduca, J. Greenleaf, and R. Ehman, “Tissue characterization using magnetic resonance elastography: preliminary results,” Phys. Med. Biol. 45, 1579–1590 (2000).
[CrossRef]

Emelianov, S.

I. M. Graf, S. Kim, B. Wang, R. Smalling, and S. Emelianov, “Noninvasive detection of intimal xanthoma using combined ultrasound, strain rate and photoacoustic imaging,” Ultrasonics 52, 435–441 (2012).
[CrossRef]

A. Sarvazyan, A. Skovoroda, S. Emelianov, J. Fowlkes, J. Pipe, R. Adler, R. Buxton, and P. Carson, “Biophysical bases of elasticity imaging,” Acoust. Imaging 21, 223–240 (1995).
[CrossRef]

Feld, M. S.

I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von Rosenberg, and M. S. Feld, “The thermoelastic basis of short pulsed laser ablation of biological tissue,” Proc. Nat. Acad. Sci. USA 92, 1960–1964 (1995).
[CrossRef]

Fowlkes, J.

A. Sarvazyan, A. Skovoroda, S. Emelianov, J. Fowlkes, J. Pipe, R. Adler, R. Buxton, and P. Carson, “Biophysical bases of elasticity imaging,” Acoust. Imaging 21, 223–240 (1995).
[CrossRef]

Garra, B. S.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imag. 20, 260–274 (1998).

Graf, I. M.

I. M. Graf, S. Kim, B. Wang, R. Smalling, and S. Emelianov, “Noninvasive detection of intimal xanthoma using combined ultrasound, strain rate and photoacoustic imaging,” Ultrasonics 52, 435–441 (2012).
[CrossRef]

Greenleaf, J.

S. Kruse, J. Smith, A. Lawrence, M. Dresner, A. Manduca, J. Greenleaf, and R. Ehman, “Tissue characterization using magnetic resonance elastography: preliminary results,” Phys. Med. Biol. 45, 1579–1590 (2000).
[CrossRef]

Guan, J.

J. Wang, Z. Shen, B. Xu, X. Ni, J. Guan, and J. Lu, “Numerical simulation of laser-generated ultrasound in non-metallic material by the finite element method,” Opt. Laser Technol. 39, 806–813 (2007).
[CrossRef]

Hall, T.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imag. 20, 260–274 (1998).

Holz, D.

R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, and D. Holz, “High-resolution tensor MR elastography for breast tumour detection,” Phys. Med. Biol. 45, 1649–1664 (2000).
[CrossRef]

Insana, M. F.

M. F. Insana, R. F. Wagner, and D. G. Brown, “Describing small-scale structure in random media using pulse-echo ultrasound,” J. Acoust. Soc. Am. 87, 179–192 (1990).
[CrossRef]

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).

Itzkan, I.

I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von Rosenberg, and M. S. Feld, “The thermoelastic basis of short pulsed laser ablation of biological tissue,” Proc. Nat. Acad. Sci. USA 92, 1960–1964 (1995).
[CrossRef]

Ji, X.

Kallel, F.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imag. 20, 260–274 (1998).

Kim, S.

I. M. Graf, S. Kim, B. Wang, R. Smalling, and S. Emelianov, “Noninvasive detection of intimal xanthoma using combined ultrasound, strain rate and photoacoustic imaging,” Ultrasonics 52, 435–441 (2012).
[CrossRef]

Krouskop, T. A.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imag. 20, 260–274 (1998).

Kruger, R. A.

R. A. Kruger, P. Liu, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)-reconstruction tomography,” Med. Phys. 22, 1605–1609 (1995).
[CrossRef]

Kruse, S.

S. Kruse, J. Smith, A. Lawrence, M. Dresner, A. Manduca, J. Greenleaf, and R. Ehman, “Tissue characterization using magnetic resonance elastography: preliminary results,” Phys. Med. Biol. 45, 1579–1590 (2000).
[CrossRef]

Ku, G.

G. Ku, K. Maslov, L. Li, and L. V. Wang, “Photoacoustic microscopy with 2 μm transverse resolution,” J. Biomed. Opt. 15, 021302 (2010).
[CrossRef]

G. Ku, X. Wang, X. Xie, G. Stoica, and L. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44, 770–775 (2005).
[CrossRef]

Landau, L. D.

L. D. Landau and E. Lifshitz, Theory of Elasticity, 7 of Course of Theoretical Physics series (Pergamon, 1986), pp. 13–92.

Lanza, G. M.

D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25, 875–882 (2011).
[CrossRef]

Lawrence, A.

S. Kruse, J. Smith, A. Lawrence, M. Dresner, A. Manduca, J. Greenleaf, and R. Ehman, “Tissue characterization using magnetic resonance elastography: preliminary results,” Phys. Med. Biol. 45, 1579–1590 (2000).
[CrossRef]

Lazarus, A.

A. Lazarus, B. Prabel, and D. Combescure, “A 3D finite element model for the vibration analysis of asymmetric rotating machines,” J. Sound Vib. 329, 3780–3797(2010).
[CrossRef]

Li, L.

G. Ku, K. Maslov, L. Li, and L. V. Wang, “Photoacoustic microscopy with 2 μm transverse resolution,” J. Biomed. Opt. 15, 021302 (2010).
[CrossRef]

Lifshitz, E.

L. D. Landau and E. Lifshitz, Theory of Elasticity, 7 of Course of Theoretical Physics series (Pergamon, 1986), pp. 13–92.

Liu, G.

Liu, P.

R. A. Kruger, P. Liu, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)-reconstruction tomography,” Med. Phys. 22, 1605–1609 (1995).
[CrossRef]

Lorenzen, J.

R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, and D. Holz, “High-resolution tensor MR elastography for breast tumour detection,” Phys. Med. Biol. 45, 1649–1664 (2000).
[CrossRef]

Lorenzen, M.

R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, and D. Holz, “High-resolution tensor MR elastography for breast tumour detection,” Phys. Med. Biol. 45, 1649–1664 (2000).
[CrossRef]

Lu, J.

J. Wang, Z. Shen, B. Xu, X. Ni, J. Guan, and J. Lu, “Numerical simulation of laser-generated ultrasound in non-metallic material by the finite element method,” Opt. Laser Technol. 39, 806–813 (2007).
[CrossRef]

Manduca, A.

S. Kruse, J. Smith, A. Lawrence, M. Dresner, A. Manduca, J. Greenleaf, and R. Ehman, “Tissue characterization using magnetic resonance elastography: preliminary results,” Phys. Med. Biol. 45, 1579–1590 (2000).
[CrossRef]

Manohar, S.

D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Topics Quantum Electron. 16, 730–739 (2010).
[CrossRef]

Maslov, K.

G. Ku, K. Maslov, L. Li, and L. V. Wang, “Photoacoustic microscopy with 2 μm transverse resolution,” J. Biomed. Opt. 15, 021302 (2010).
[CrossRef]

C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett. 35, 3195–3197 (2010).
[CrossRef]

Matsumura, T.

M. Yamakawa, N. Nitta, T. Shiina, T. Matsumura, S. Tamano, T. Mitake, and E. Ueno, “High-speed freehand tissue elasticity imaging for breast diagnosis,” Jpn. J. Appl. Phys. 42, 3265–3270 (2003).
[CrossRef]

Meibody, F.

B. Vaseghi, N. Takorabet, and F. Meibody, “Transient finite element analysis of induction machines with stator winding turn fault,” Prog. Electromagn. Res. 95, 1–18 (2009).
[CrossRef]

Mitake, T.

M. Yamakawa, N. Nitta, T. Shiina, T. Matsumura, S. Tamano, T. Mitake, and E. Ueno, “High-speed freehand tissue elasticity imaging for breast diagnosis,” Jpn. J. Appl. Phys. 42, 3265–3270 (2003).
[CrossRef]

Ni, X.

J. Wang, Z. Shen, B. Xu, X. Ni, J. Guan, and J. Lu, “Numerical simulation of laser-generated ultrasound in non-metallic material by the finite element method,” Opt. Laser Technol. 39, 806–813 (2007).
[CrossRef]

Nitta, N.

M. Yamakawa, N. Nitta, T. Shiina, T. Matsumura, S. Tamano, T. Mitake, and E. Ueno, “High-speed freehand tissue elasticity imaging for breast diagnosis,” Jpn. J. Appl. Phys. 42, 3265–3270 (2003).
[CrossRef]

Ntziachristos, V.

J. Ripoll and V. Ntziachristos, “Quantitative point source photoacoustic inversion formulas for scattering and absorbing media,” Phys. Rev. E 71, 031912 (2005).
[CrossRef]

Pan, D.

D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25, 875–882 (2011).
[CrossRef]

Pearce, J. A.

B. Choi, J. A. Pearce, and A. J. Welch, “Modelling infrared temperature measurements: implications for laser irradiation and cryogen cooling studies,” Phys. Med. Biol. 45, 541–557 (2000).
[CrossRef]

Perelman, L. T.

I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von Rosenberg, and M. S. Feld, “The thermoelastic basis of short pulsed laser ablation of biological tissue,” Proc. Nat. Acad. Sci. USA 92, 1960–1964 (1995).
[CrossRef]

Pipe, J.

A. Sarvazyan, A. Skovoroda, S. Emelianov, J. Fowlkes, J. Pipe, R. Adler, R. Buxton, and P. Carson, “Biophysical bases of elasticity imaging,” Acoust. Imaging 21, 223–240 (1995).
[CrossRef]

Piras, D.

D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Topics Quantum Electron. 16, 730–739 (2010).
[CrossRef]

Prabel, B.

A. Lazarus, B. Prabel, and D. Combescure, “A 3D finite element model for the vibration analysis of asymmetric rotating machines,” J. Sound Vib. 329, 3780–3797(2010).
[CrossRef]

Pramanik, M.

D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25, 875–882 (2011).
[CrossRef]

Reddy, J. N.

J. N. Reddy, Solution Manual for an Introduction to the Finite Element Methods, 2nd ed. (McGraw-Hill, 1993).

Ripoll, J.

J. Ripoll and V. Ntziachristos, “Quantitative point source photoacoustic inversion formulas for scattering and absorbing media,” Phys. Rev. E 71, 031912 (2005).
[CrossRef]

Sarvazyan, A.

A. Sarvazyan, A. Skovoroda, S. Emelianov, J. Fowlkes, J. Pipe, R. Adler, R. Buxton, and P. Carson, “Biophysical bases of elasticity imaging,” Acoust. Imaging 21, 223–240 (1995).
[CrossRef]

Schrader, D.

R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, and D. Holz, “High-resolution tensor MR elastography for breast tumour detection,” Phys. Med. Biol. 45, 1649–1664 (2000).
[CrossRef]

Senpan, A.

D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25, 875–882 (2011).
[CrossRef]

Shen, Z.

J. Wang, Z. Shen, B. Xu, X. Ni, J. Guan, and J. Lu, “Numerical simulation of laser-generated ultrasound in non-metallic material by the finite element method,” Opt. Laser Technol. 39, 806–813 (2007).
[CrossRef]

Shiina, T.

M. Yamakawa, N. Nitta, T. Shiina, T. Matsumura, S. Tamano, T. Mitake, and E. Ueno, “High-speed freehand tissue elasticity imaging for breast diagnosis,” Jpn. J. Appl. Phys. 42, 3265–3270 (2003).
[CrossRef]

Sinkus, R.

R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, and D. Holz, “High-resolution tensor MR elastography for breast tumour detection,” Phys. Med. Biol. 45, 1649–1664 (2000).
[CrossRef]

Skovoroda, A.

A. Sarvazyan, A. Skovoroda, S. Emelianov, J. Fowlkes, J. Pipe, R. Adler, R. Buxton, and P. Carson, “Biophysical bases of elasticity imaging,” Acoust. Imaging 21, 223–240 (1995).
[CrossRef]

Smalling, R.

I. M. Graf, S. Kim, B. Wang, R. Smalling, and S. Emelianov, “Noninvasive detection of intimal xanthoma using combined ultrasound, strain rate and photoacoustic imaging,” Ultrasonics 52, 435–441 (2012).
[CrossRef]

Smith, J.

S. Kruse, J. Smith, A. Lawrence, M. Dresner, A. Manduca, J. Greenleaf, and R. Ehman, “Tissue characterization using magnetic resonance elastography: preliminary results,” Phys. Med. Biol. 45, 1579–1590 (2000).
[CrossRef]

Steenbergen, W.

D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Topics Quantum Electron. 16, 730–739 (2010).
[CrossRef]

Stoica, G.

Takorabet, N.

B. Vaseghi, N. Takorabet, and F. Meibody, “Transient finite element analysis of induction machines with stator winding turn fault,” Prog. Electromagn. Res. 95, 1–18 (2009).
[CrossRef]

Tamano, S.

M. Yamakawa, N. Nitta, T. Shiina, T. Matsumura, S. Tamano, T. Mitake, and E. Ueno, “High-speed freehand tissue elasticity imaging for breast diagnosis,” Jpn. J. Appl. Phys. 42, 3265–3270 (2003).
[CrossRef]

Treeby, B. E.

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15, 021314 (2010).
[CrossRef]

Troy, K. L.

W. B. Edwards and K. L. Troy, “Finite element prediction of surface strain and fracture strength at the distal radius,” Med. Eng. Phys. 34, 290–298 (2012).
[CrossRef]

Ueno, E.

M. Yamakawa, N. Nitta, T. Shiina, T. Matsumura, S. Tamano, T. Mitake, and E. Ueno, “High-speed freehand tissue elasticity imaging for breast diagnosis,” Jpn. J. Appl. Phys. 42, 3265–3270 (2003).
[CrossRef]

van Leeuwen, T. G.

D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Topics Quantum Electron. 16, 730–739 (2010).
[CrossRef]

Vaseghi, B.

B. Vaseghi, N. Takorabet, and F. Meibody, “Transient finite element analysis of induction machines with stator winding turn fault,” Prog. Electromagn. Res. 95, 1–18 (2009).
[CrossRef]

von Rosenberg, C.

I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von Rosenberg, and M. S. Feld, “The thermoelastic basis of short pulsed laser ablation of biological tissue,” Proc. Nat. Acad. Sci. USA 92, 1960–1964 (1995).
[CrossRef]

Wagner, R. F.

M. F. Insana, R. F. Wagner, and D. G. Brown, “Describing small-scale structure in random media using pulse-echo ultrasound,” J. Acoust. Soc. Am. 87, 179–192 (1990).
[CrossRef]

Wang, B.

I. M. Graf, S. Kim, B. Wang, R. Smalling, and S. Emelianov, “Noninvasive detection of intimal xanthoma using combined ultrasound, strain rate and photoacoustic imaging,” Ultrasonics 52, 435–441 (2012).
[CrossRef]

Wang, J.

J. Wang, Z. Shen, B. Xu, X. Ni, J. Guan, and J. Lu, “Numerical simulation of laser-generated ultrasound in non-metallic material by the finite element method,” Opt. Laser Technol. 39, 806–813 (2007).
[CrossRef]

Wang, L. V.

D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25, 875–882 (2011).
[CrossRef]

G. Ku, K. Maslov, L. Li, and L. V. Wang, “Photoacoustic microscopy with 2 μm transverse resolution,” J. Biomed. Opt. 15, 021302 (2010).
[CrossRef]

C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett. 35, 3195–3197 (2010).
[CrossRef]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

G. Ku, X. Wang, X. Xie, G. Stoica, and L. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44, 770–775 (2005).
[CrossRef]

Wang, X.

Wang, Y.

Welch, A. J.

B. Choi, J. A. Pearce, and A. J. Welch, “Modelling infrared temperature measurements: implications for laser irradiation and cryogen cooling studies,” Phys. Med. Biol. 45, 541–557 (2000).
[CrossRef]

Wheeler, T. M.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imag. 20, 260–274 (1998).

Wickline, S. A.

D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25, 875–882 (2011).
[CrossRef]

Xia, W.

D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Topics Quantum Electron. 16, 730–739 (2010).
[CrossRef]

Xie, X.

Xing, D.

Y. Yuan, S. Yang, and D. Xing, “Optical-resolution photoacoustic microscopy based on two-dimensional scanning galvanometer,” Appl. Phys. Lett. 100, 023702 (2012).
[CrossRef]

Y. Zeng, D. Xing, Y. Wang, B. Yin, and Q. Chen, “Photoacoustic and ultrasonic coimage with a linear transducer array,” Opt. Lett. 29, 1760–1762 (2004).
[CrossRef]

Xu, B.

J. Wang, Z. Shen, B. Xu, X. Ni, J. Guan, and J. Lu, “Numerical simulation of laser-generated ultrasound in non-metallic material by the finite element method,” Opt. Laser Technol. 39, 806–813 (2007).
[CrossRef]

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

Yamakawa, M.

M. Yamakawa, N. Nitta, T. Shiina, T. Matsumura, S. Tamano, T. Mitake, and E. Ueno, “High-speed freehand tissue elasticity imaging for breast diagnosis,” Jpn. J. Appl. Phys. 42, 3265–3270 (2003).
[CrossRef]

Yang, D.

Yang, S.

Y. Yuan, S. Yang, and D. Xing, “Optical-resolution photoacoustic microscopy based on two-dimensional scanning galvanometer,” Appl. Phys. Lett. 100, 023702 (2012).
[CrossRef]

Yin, B.

Yuan, Y.

Y. Yuan, S. Yang, and D. Xing, “Optical-resolution photoacoustic microscopy based on two-dimensional scanning galvanometer,” Appl. Phys. Lett. 100, 023702 (2012).
[CrossRef]

Zeng, L.

Zeng, Y.

Zhang, C.

Zhang, H.

D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25, 875–882 (2011).
[CrossRef]

Acoust. Imaging (1)

A. Sarvazyan, A. Skovoroda, S. Emelianov, J. Fowlkes, J. Pipe, R. Adler, R. Buxton, and P. Carson, “Biophysical bases of elasticity imaging,” Acoust. Imaging 21, 223–240 (1995).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Yuan, S. Yang, and D. Xing, “Optical-resolution photoacoustic microscopy based on two-dimensional scanning galvanometer,” Appl. Phys. Lett. 100, 023702 (2012).
[CrossRef]

FASEB J. (1)

D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25, 875–882 (2011).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron. (1)

D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Topics Quantum Electron. 16, 730–739 (2010).
[CrossRef]

J. Acoust. Soc. Am. (1)

M. F. Insana, R. F. Wagner, and D. G. Brown, “Describing small-scale structure in random media using pulse-echo ultrasound,” J. Acoust. Soc. Am. 87, 179–192 (1990).
[CrossRef]

J. Biomed. Opt. (2)

G. Ku, K. Maslov, L. Li, and L. V. Wang, “Photoacoustic microscopy with 2 μm transverse resolution,” J. Biomed. Opt. 15, 021302 (2010).
[CrossRef]

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15, 021314 (2010).
[CrossRef]

J. Sound Vib. (1)

A. Lazarus, B. Prabel, and D. Combescure, “A 3D finite element model for the vibration analysis of asymmetric rotating machines,” J. Sound Vib. 329, 3780–3797(2010).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Yamakawa, N. Nitta, T. Shiina, T. Matsumura, S. Tamano, T. Mitake, and E. Ueno, “High-speed freehand tissue elasticity imaging for breast diagnosis,” Jpn. J. Appl. Phys. 42, 3265–3270 (2003).
[CrossRef]

Med. Eng. Phys. (1)

W. B. Edwards and K. L. Troy, “Finite element prediction of surface strain and fracture strength at the distal radius,” Med. Eng. Phys. 34, 290–298 (2012).
[CrossRef]

Med. Phys. (1)

R. A. Kruger, P. Liu, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)-reconstruction tomography,” Med. Phys. 22, 1605–1609 (1995).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (1)

J. Wang, Z. Shen, B. Xu, X. Ni, J. Guan, and J. Lu, “Numerical simulation of laser-generated ultrasound in non-metallic material by the finite element method,” Opt. Laser Technol. 39, 806–813 (2007).
[CrossRef]

Opt. Lett. (2)

Phys. Med. Biol. (3)

R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, and D. Holz, “High-resolution tensor MR elastography for breast tumour detection,” Phys. Med. Biol. 45, 1649–1664 (2000).
[CrossRef]

S. Kruse, J. Smith, A. Lawrence, M. Dresner, A. Manduca, J. Greenleaf, and R. Ehman, “Tissue characterization using magnetic resonance elastography: preliminary results,” Phys. Med. Biol. 45, 1579–1590 (2000).
[CrossRef]

B. Choi, J. A. Pearce, and A. J. Welch, “Modelling infrared temperature measurements: implications for laser irradiation and cryogen cooling studies,” Phys. Med. Biol. 45, 541–557 (2000).
[CrossRef]

Phys. Rev. E (1)

J. Ripoll and V. Ntziachristos, “Quantitative point source photoacoustic inversion formulas for scattering and absorbing media,” Phys. Rev. E 71, 031912 (2005).
[CrossRef]

Proc. Nat. Acad. Sci. USA (1)

I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von Rosenberg, and M. S. Feld, “The thermoelastic basis of short pulsed laser ablation of biological tissue,” Proc. Nat. Acad. Sci. USA 92, 1960–1964 (1995).
[CrossRef]

Prog. Electromagn. Res. (1)

B. Vaseghi, N. Takorabet, and F. Meibody, “Transient finite element analysis of induction machines with stator winding turn fault,” Prog. Electromagn. Res. 95, 1–18 (2009).
[CrossRef]

Rev. Sci. Instrum. (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

Ultrason. Imag. (1)

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imag. 20, 260–274 (1998).

Ultrasonics (1)

I. M. Graf, S. Kim, B. Wang, R. Smalling, and S. Emelianov, “Noninvasive detection of intimal xanthoma using combined ultrasound, strain rate and photoacoustic imaging,” Ultrasonics 52, 435–441 (2012).
[CrossRef]

Other (4)

J. N. Reddy, Solution Manual for an Introduction to the Finite Element Methods, 2nd ed. (McGraw-Hill, 1993).

American National Standards Institute, American national standard for the safe use of lasers Tech. Rep. Z136.1-2000 (American National Standards Institute, 2000).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).

L. D. Landau and E. Lifshitz, Theory of Elasticity, 7 of Course of Theoretical Physics series (Pergamon, 1986), pp. 13–92.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Schematic diagram for laser irradiating soft tissue system.

Fig. 2.
Fig. 2.

Temperature versus time at different depths along Z in pure adipose tissue.

Fig. 3.
Fig. 3.

Transient stress contours of axial stress at 10 ns: (a) pure adipose tissue and (b) the adipose tissue with tumor.

Fig. 4.
Fig. 4.

Relationship between maximum compressive stress and the elastic modulus of tumor.

Fig. 5.
Fig. 5.

Waveforms of the pure adipose tissue and the adipose tissue containing tumor.

Fig. 6.
Fig. 6.

FWHM and rise time versus EMT.

Fig. 7.
Fig. 7.

Normalized ultrasonic frequency excited by laser when the elastic modulus ratios of tumor to adipose tissues are 1, 3, 6, and 10.

Fig. 8.
Fig. 8.

Energy of lower frequency at 0220kHz for the received ultrasound.

Fig. 9.
Fig. 9.

Percentage of the higher frequency (>220kHz) in the total frequency of the received ultrasound.

Fig. 10.
Fig. 10.

Schematic diagram for experimental setup.

Fig. 11.
Fig. 11.

Detected signal in the experiment system.

Fig. 12.
Fig. 12.

Normalized frequency spectrum of the detected signal.

Tables (2)

Tables Icon

Table 1. Physical Parameters of Adipose Tissue and Tumor

Tables Icon

Table 2. Percentages of Composing Component in Phantoms (%)

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ρmCT(z,t)tK2T(z,t)=Ea,
Ea=βUinc(z,t),
tT(z,t)=1ρmCβUinc(z,t).
ρ2Ut2E2(1+σ)(12σ)(·U)E2(1+σ)2U=Eα3(12σ)T,
[K]{T}+[C]{T˙}={p1}+{p2},
[M]{U¨}+[K]{U}={Flaser},
Δt=120fmax,
Le=λmin20,

Metrics