Abstract

In this paper a novel method, based on time-resolved diffuse optical spectroscopy, is proposed to measure the absorption of small amounts of nanostructured powder materials independent of scattering. Experimental validation, in the visible and near-infrared spectral range, has been carried out on India Ink particles. The effectiveness of the technique to measure scattering-free absorption is demonstrated on carbon nanotubes. The comparison between the absorption spectra acquired by the proposed method and conventional measurements performed with a commercial spectrophotometer is discussed.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Hielscher and P. Taroni, eds., Diffuse Optical Imaging III, Proceedings of European Conference on Biomedical Optics (SPIE, 2011) Vol. 8088.
  2. A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48(3), 34 (1995).
    [CrossRef]
  3. M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical application,” J. Biomed. Opt. 12, 062104 (2007).
    [CrossRef]
  4. P. Taroni, “Diffuse optical imaging and spectroscopy of the breast: a brief outline of history and perspectives,” Photochem. Photobiol. Sci. 11, 241–250 (2012).
    [CrossRef]
  5. R. Cubeddu, G. Canti, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of photodynamic therapy on the absorption properties of disulphonated aluminum phthalocyanine in tumor-bearing mice,” J. Photochem. Photobiol. B 60, 73–78 (2001).
    [CrossRef]
  6. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
    [CrossRef]
  7. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
    [CrossRef]
  8. C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets,” Anal. Chem. 77, 1055–1059 (2005).
    [CrossRef]
  9. Z. Sun, S. Torrance, F. K. McNeil-Watson, and E. M. Sevick-Muraca, “Application of frequency domain photon migration to particle size analysis and monitoring of pharmaceutical powders,” Anal. Chem. 75, 1720–1725 (2003).
    [CrossRef]
  10. R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, C. Dover, D. Johnson, M. Ruiz-Altisent, and C. Valero, “Nondestructive quantification of chemical and physical properties of fruits by time-resolved reflectance spectroscopy in the wavelength range 650–1000 nm,” Appl. Opt. 40, 538–543 (2001).
    [CrossRef]
  11. C. D’Andrea, A. Farina, D. Comelli, A. Pifferi, P. Taroni, G. Valentini, R. Cubeddu, L. Zoia, M. Orlandi, and A. Kienle, “Time-resolved optical spectroscopy of wood,” Appl. Spectrosc. 62, 569–574 (2008).
    [CrossRef]
  12. O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8, 2638–2642 (2008).
    [CrossRef]
  13. S. R. Arridge and W. R. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884 (1998).
    [CrossRef]
  14. M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297, 593–596 (2002).
    [CrossRef]
  15. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef]
  16. F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media (SPIE, 2010), pp. 57–91.
  17. T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett. 107, 143901 (2011).
    [CrossRef]
  18. A. Bassi, A. Farina, C. D’Andrea, A. Pifferi, G. Valentini, and R. Cubeddu, “Portable, large-bandwidth time-resolved system for diffuse optical spectroscopy,” Opt. Express 15, 14482–14487 (2007).
    [CrossRef]
  19. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University, 1988).
  20. S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
    [CrossRef]
  21. P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, and R. E. Smalley, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide,” Chem. Phys. Lett. 313, 91–97 (1999).
    [CrossRef]
  22. A. I. Chernov, E. D. Obraztsova, and A. S. Lobach, “Optical properties of polymer films with embedded single-wall carbon nanotubes,” Phys. Status Solidi B 244, 4231–4235 (2007).
    [CrossRef]
  23. N. Minami, Y. Kim, S. Kazaoui, and B. Nalini, “Cellulose derivatives as excellent dispersants for single-wall carbon nanotubes as demonstrated by absorption and photoluminescence spectroscopy,” Appl. Phys. Lett. 88, 093123 (2006).
    [CrossRef]
  24. J. R. Mourant, T. Fuselier, J. Boyer, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
    [CrossRef]
  25. C. D’Andrea, L. Spinelli, A. Bassi, D. Contini, J. Swartling, A. Torricelli, and R. Cubeddu, “Time-resolved spectrally constrained method for the quantification of chromophore concentrations and scattering parameters in diffusing media,” Opt. Express 14, 1888–1898 (2006).
    [CrossRef]

2012 (1)

P. Taroni, “Diffuse optical imaging and spectroscopy of the breast: a brief outline of history and perspectives,” Photochem. Photobiol. Sci. 11, 241–250 (2012).
[CrossRef]

2011 (1)

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett. 107, 143901 (2011).
[CrossRef]

2008 (3)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
[CrossRef]

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8, 2638–2642 (2008).
[CrossRef]

C. D’Andrea, A. Farina, D. Comelli, A. Pifferi, P. Taroni, G. Valentini, R. Cubeddu, L. Zoia, M. Orlandi, and A. Kienle, “Time-resolved optical spectroscopy of wood,” Appl. Spectrosc. 62, 569–574 (2008).
[CrossRef]

2007 (3)

A. Bassi, A. Farina, C. D’Andrea, A. Pifferi, G. Valentini, and R. Cubeddu, “Portable, large-bandwidth time-resolved system for diffuse optical spectroscopy,” Opt. Express 15, 14482–14487 (2007).
[CrossRef]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical application,” J. Biomed. Opt. 12, 062104 (2007).
[CrossRef]

A. I. Chernov, E. D. Obraztsova, and A. S. Lobach, “Optical properties of polymer films with embedded single-wall carbon nanotubes,” Phys. Status Solidi B 244, 4231–4235 (2007).
[CrossRef]

2006 (2)

N. Minami, Y. Kim, S. Kazaoui, and B. Nalini, “Cellulose derivatives as excellent dispersants for single-wall carbon nanotubes as demonstrated by absorption and photoluminescence spectroscopy,” Appl. Phys. Lett. 88, 093123 (2006).
[CrossRef]

C. D’Andrea, L. Spinelli, A. Bassi, D. Contini, J. Swartling, A. Torricelli, and R. Cubeddu, “Time-resolved spectrally constrained method for the quantification of chromophore concentrations and scattering parameters in diffusing media,” Opt. Express 14, 1888–1898 (2006).
[CrossRef]

2005 (1)

C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets,” Anal. Chem. 77, 1055–1059 (2005).
[CrossRef]

2003 (1)

Z. Sun, S. Torrance, F. K. McNeil-Watson, and E. M. Sevick-Muraca, “Application of frequency domain photon migration to particle size analysis and monitoring of pharmaceutical powders,” Anal. Chem. 75, 1720–1725 (2003).
[CrossRef]

2002 (1)

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297, 593–596 (2002).
[CrossRef]

2001 (2)

R. Cubeddu, G. Canti, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of photodynamic therapy on the absorption properties of disulphonated aluminum phthalocyanine in tumor-bearing mice,” J. Photochem. Photobiol. B 60, 73–78 (2001).
[CrossRef]

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, C. Dover, D. Johnson, M. Ruiz-Altisent, and C. Valero, “Nondestructive quantification of chemical and physical properties of fruits by time-resolved reflectance spectroscopy in the wavelength range 650–1000 nm,” Appl. Opt. 40, 538–543 (2001).
[CrossRef]

1999 (1)

P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, and R. E. Smalley, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide,” Chem. Phys. Lett. 313, 91–97 (1999).
[CrossRef]

1998 (1)

1997 (2)

1995 (1)

A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48(3), 34 (1995).
[CrossRef]

1992 (1)

S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[CrossRef]

1989 (1)

Abrahamsson, C.

C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets,” Anal. Chem. 77, 1055–1059 (2005).
[CrossRef]

Adolfsson, E.

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett. 107, 143901 (2011).
[CrossRef]

Algra, R. E.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8, 2638–2642 (2008).
[CrossRef]

Andersson-Engels, S.

C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets,” Anal. Chem. 77, 1055–1059 (2005).
[CrossRef]

Arridge, S. R.

Bachilo, S. M.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297, 593–596 (2002).
[CrossRef]

Bakkers, E. P. A. M.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8, 2638–2642 (2008).
[CrossRef]

Bartolini, P.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[CrossRef]

Bassi, A.

Bigio, I. J.

Boul, P. J.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297, 593–596 (2002).
[CrossRef]

Boyer, J.

Bradley, R. K.

P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, and R. E. Smalley, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide,” Chem. Phys. Lett. 313, 91–97 (1999).
[CrossRef]

Bronikowski, M. J.

P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, and R. E. Smalley, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide,” Chem. Phys. Lett. 313, 91–97 (1999).
[CrossRef]

Canti, G.

R. Cubeddu, G. Canti, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of photodynamic therapy on the absorption properties of disulphonated aluminum phthalocyanine in tumor-bearing mice,” J. Photochem. Photobiol. B 60, 73–78 (2001).
[CrossRef]

Chance, B.

Chernov, A. I.

A. I. Chernov, E. D. Obraztsova, and A. S. Lobach, “Optical properties of polymer films with embedded single-wall carbon nanotubes,” Phys. Status Solidi B 244, 4231–4235 (2007).
[CrossRef]

Colbert, D. T.

P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, and R. E. Smalley, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide,” Chem. Phys. Lett. 313, 91–97 (1999).
[CrossRef]

Comelli, D.

Contini, D.

Cubeddu, R.

D’Andrea, C.

Del Bianco, S.

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media (SPIE, 2010), pp. 57–91.

Dover, C.

Farina, A.

Ferrari, M.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical application,” J. Biomed. Opt. 12, 062104 (2007).
[CrossRef]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University, 1988).

Folestad, S.

C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets,” Anal. Chem. 77, 1055–1059 (2005).
[CrossRef]

Fuselier, T.

Haroz, E. H.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297, 593–596 (2002).
[CrossRef]

Hauge, R. H.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297, 593–596 (2002).
[CrossRef]

Huffman, C. B.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297, 593–596 (2002).
[CrossRef]

Ismaelli, A.

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media (SPIE, 2010), pp. 57–91.

Johansson, J.

C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets,” Anal. Chem. 77, 1055–1059 (2005).
[CrossRef]

Johnson, D.

Kazaoui, S.

N. Minami, Y. Kim, S. Kazaoui, and B. Nalini, “Cellulose derivatives as excellent dispersants for single-wall carbon nanotubes as demonstrated by absorption and photoluminescence spectroscopy,” Appl. Phys. Lett. 88, 093123 (2006).
[CrossRef]

Kienle, A.

Kim, Y.

N. Minami, Y. Kim, S. Kazaoui, and B. Nalini, “Cellulose derivatives as excellent dispersants for single-wall carbon nanotubes as demonstrated by absorption and photoluminescence spectroscopy,” Appl. Phys. Lett. 88, 093123 (2006).
[CrossRef]

Kittrell, C.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297, 593–596 (2002).
[CrossRef]

Lagendijk, A.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8, 2638–2642 (2008).
[CrossRef]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[CrossRef]

Lewander, M.

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett. 107, 143901 (2011).
[CrossRef]

Lionheart, W. R.

Lobach, A. S.

A. I. Chernov, E. D. Obraztsova, and A. S. Lobach, “Optical properties of polymer films with embedded single-wall carbon nanotubes,” Phys. Status Solidi B 244, 4231–4235 (2007).
[CrossRef]

Ma, J.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297, 593–596 (2002).
[CrossRef]

Madsen, S. J.

S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[CrossRef]

Martelli, F.

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media (SPIE, 2010), pp. 57–91.

McNeil-Watson, F. K.

Z. Sun, S. Torrance, F. K. McNeil-Watson, and E. M. Sevick-Muraca, “Application of frequency domain photon migration to particle size analysis and monitoring of pharmaceutical powders,” Anal. Chem. 75, 1720–1725 (2003).
[CrossRef]

Minami, N.

N. Minami, Y. Kim, S. Kazaoui, and B. Nalini, “Cellulose derivatives as excellent dispersants for single-wall carbon nanotubes as demonstrated by absorption and photoluminescence spectroscopy,” Appl. Phys. Lett. 88, 093123 (2006).
[CrossRef]

Moore, V. C.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297, 593–596 (2002).
[CrossRef]

Mourant, J. R.

Muskens, O. L.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8, 2638–2642 (2008).
[CrossRef]

Nalini, B.

N. Minami, Y. Kim, S. Kazaoui, and B. Nalini, “Cellulose derivatives as excellent dispersants for single-wall carbon nanotubes as demonstrated by absorption and photoluminescence spectroscopy,” Appl. Phys. Lett. 88, 093123 (2006).
[CrossRef]

Nikolaev, P.

P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, and R. E. Smalley, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide,” Chem. Phys. Lett. 313, 91–97 (1999).
[CrossRef]

Noon, W. H.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297, 593–596 (2002).
[CrossRef]

O’Connell, M. J.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297, 593–596 (2002).
[CrossRef]

Obraztsova, E. D.

A. I. Chernov, E. D. Obraztsova, and A. S. Lobach, “Optical properties of polymer films with embedded single-wall carbon nanotubes,” Phys. Status Solidi B 244, 4231–4235 (2007).
[CrossRef]

Orlandi, M.

Patterson, M. S.

S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[CrossRef]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef]

Pifferi, A.

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University, 1988).

Quaresima, V.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical application,” J. Biomed. Opt. 12, 062104 (2007).
[CrossRef]

Rialon, K. L.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297, 593–596 (2002).
[CrossRef]

Righini, R.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[CrossRef]

Rivas, J. G.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8, 2638–2642 (2008).
[CrossRef]

Rohmund, F.

P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, and R. E. Smalley, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide,” Chem. Phys. Lett. 313, 91–97 (1999).
[CrossRef]

Ruiz-Altisent, M.

Sevick-Muraca, E. M.

Z. Sun, S. Torrance, F. K. McNeil-Watson, and E. M. Sevick-Muraca, “Application of frequency domain photon migration to particle size analysis and monitoring of pharmaceutical powders,” Anal. Chem. 75, 1720–1725 (2003).
[CrossRef]

Smalley, R. E.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297, 593–596 (2002).
[CrossRef]

P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, and R. E. Smalley, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide,” Chem. Phys. Lett. 313, 91–97 (1999).
[CrossRef]

Smith, K. A.

P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, and R. E. Smalley, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide,” Chem. Phys. Lett. 313, 91–97 (1999).
[CrossRef]

Spinelli, L.

Strano, M. S.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297, 593–596 (2002).
[CrossRef]

Sun, Z.

Z. Sun, S. Torrance, F. K. McNeil-Watson, and E. M. Sevick-Muraca, “Application of frequency domain photon migration to particle size analysis and monitoring of pharmaceutical powders,” Anal. Chem. 75, 1720–1725 (2003).
[CrossRef]

Svanberg, S.

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett. 107, 143901 (2011).
[CrossRef]

C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets,” Anal. Chem. 77, 1055–1059 (2005).
[CrossRef]

Svensson, T.

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett. 107, 143901 (2011).
[CrossRef]

Swartling, J.

Taroni, P.

P. Taroni, “Diffuse optical imaging and spectroscopy of the breast: a brief outline of history and perspectives,” Photochem. Photobiol. Sci. 11, 241–250 (2012).
[CrossRef]

C. D’Andrea, A. Farina, D. Comelli, A. Pifferi, P. Taroni, G. Valentini, R. Cubeddu, L. Zoia, M. Orlandi, and A. Kienle, “Time-resolved optical spectroscopy of wood,” Appl. Spectrosc. 62, 569–574 (2008).
[CrossRef]

R. Cubeddu, G. Canti, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of photodynamic therapy on the absorption properties of disulphonated aluminum phthalocyanine in tumor-bearing mice,” J. Photochem. Photobiol. B 60, 73–78 (2001).
[CrossRef]

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, C. Dover, D. Johnson, M. Ruiz-Altisent, and C. Valero, “Nondestructive quantification of chemical and physical properties of fruits by time-resolved reflectance spectroscopy in the wavelength range 650–1000 nm,” Appl. Opt. 40, 538–543 (2001).
[CrossRef]

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University, 1988).

Torrance, S.

Z. Sun, S. Torrance, F. K. McNeil-Watson, and E. M. Sevick-Muraca, “Application of frequency domain photon migration to particle size analysis and monitoring of pharmaceutical powders,” Anal. Chem. 75, 1720–1725 (2003).
[CrossRef]

Torricelli, A.

Valentini, G.

Valero, C.

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University, 1988).

Weisman, R. B.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297, 593–596 (2002).
[CrossRef]

Wiersma, D. S.

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
[CrossRef]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[CrossRef]

Wilson, B. C.

S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[CrossRef]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef]

Wolf, M.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical application,” J. Biomed. Opt. 12, 062104 (2007).
[CrossRef]

Xu, C. T.

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett. 107, 143901 (2011).
[CrossRef]

Yodh, A.

A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48(3), 34 (1995).
[CrossRef]

Zaccanti, G.

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media (SPIE, 2010), pp. 57–91.

Zoia, L.

Anal. Chem. (2)

C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets,” Anal. Chem. 77, 1055–1059 (2005).
[CrossRef]

Z. Sun, S. Torrance, F. K. McNeil-Watson, and E. M. Sevick-Muraca, “Application of frequency domain photon migration to particle size analysis and monitoring of pharmaceutical powders,” Anal. Chem. 75, 1720–1725 (2003).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

N. Minami, Y. Kim, S. Kazaoui, and B. Nalini, “Cellulose derivatives as excellent dispersants for single-wall carbon nanotubes as demonstrated by absorption and photoluminescence spectroscopy,” Appl. Phys. Lett. 88, 093123 (2006).
[CrossRef]

Appl. Spectrosc. (1)

Chem. Phys. Lett. (1)

P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, and R. E. Smalley, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide,” Chem. Phys. Lett. 313, 91–97 (1999).
[CrossRef]

J. Biomed. Opt. (1)

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical application,” J. Biomed. Opt. 12, 062104 (2007).
[CrossRef]

J. Photochem. Photobiol. B (1)

R. Cubeddu, G. Canti, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of photodynamic therapy on the absorption properties of disulphonated aluminum phthalocyanine in tumor-bearing mice,” J. Photochem. Photobiol. B 60, 73–78 (2001).
[CrossRef]

Nano Lett. (1)

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8, 2638–2642 (2008).
[CrossRef]

Nat. Phys. (1)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
[CrossRef]

Nature (1)

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Photochem. Photobiol. Sci. (1)

P. Taroni, “Diffuse optical imaging and spectroscopy of the breast: a brief outline of history and perspectives,” Photochem. Photobiol. Sci. 11, 241–250 (2012).
[CrossRef]

Phys. Med. Biol. (1)

S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[CrossRef]

Phys. Rev. Lett. (1)

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett. 107, 143901 (2011).
[CrossRef]

Phys. Status Solidi B (1)

A. I. Chernov, E. D. Obraztsova, and A. S. Lobach, “Optical properties of polymer films with embedded single-wall carbon nanotubes,” Phys. Status Solidi B 244, 4231–4235 (2007).
[CrossRef]

Phys. Today (1)

A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48(3), 34 (1995).
[CrossRef]

Science (1)

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297, 593–596 (2002).
[CrossRef]

Other (3)

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University, 1988).

A. H. Hielscher and P. Taroni, eds., Diffuse Optical Imaging III, Proceedings of European Conference on Biomedical Optics (SPIE, 2011) Vol. 8088.

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media (SPIE, 2010), pp. 57–91.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Principle of the proposed method.

Fig. 2.
Fig. 2.

Experimental set-up: optical multichannel analyzer (OMA), reference signal for time correlated single photon counting (TCSPC) (Sync), neutral density filter (ND), photomultiplier tube (PMT), PC board for TCSPC.

Fig. 3.
Fig. 3.

Example of IRF, sample measurement (nanotubes), and best fitting at a single wavelength (770 nm).

Fig. 4.
Fig. 4.

Absorption (a) and reduced scattering spectrum (b) of RPE (circles) and table (squares) salt with medium (empty symbols), and fine (filled symbols) grain size.

Fig. 5.
Fig. 5.

Measured absorption coefficient versus India Ink concentration. Each data point refers to the average and standard deviation of 16 repeated measurements. The straight line represents the best linear fit to all data points.

Fig. 6.
Fig. 6.

Absorption spectrum of HiPCO nanotubes measured in a liquid solution (black, y-axis on the left) and drop casted on a glass slide (gray, y-axis on the right). The measurements were performed with a commercial spectrophotometer.

Fig. 7.
Fig. 7.

Absorption spectrum of HiPCO nanotubes measured by a commercial spectrophotometer (triangles) and by the proposed method (circles). The scattering spectrum obtained from Mie theory (gray dotted curve), and fitting result (black curve) is also shown.

Metrics