Abstract

We describe the mathematical model and present simulation results for the optimization of a hybrid Raman/optical parametric amplifier (HROPA), exhibiting a bandwidth of 170 nm and low ripple that covers the top half of the wavelength plan (e.g., 1441 to 1611 nm) of next generation coarse wavelength division multiplexed passive optical network systems. We show that a critical parameter in the proper amplifier parameter optimization is the inclusion of the fourth-order dispersion coefficient (β4). Omission of β4 can lead to over-estimation or underestimation of the gain bandwidth, and hence its inclusion in the analysis of the HROPA is necessary.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. Effenberger, H. Mukai, S. Park, and T. Pfeiffer, “Next-generation PON—part II: candidate systems for next-generation PON,” IEEE Commun. Mag. 47(11), 50–57 (2009).
    [CrossRef]
  2. “Spectral grids for WDM applications: CWDM wavelength grid,” ITU-T Recommendation G.694.2, from Series G: Transmission Systems and Media, Digital Systems and Networks: Transmission media characteristics—Characteristics of optical components and subsystems (International Telecommunication Union, 2003).
  3. P. P. Iannone, K. C. Reichmann, and L. H. Spiekman, “Amplified CWDM systems,” in 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003 (LEOS 2003) (IEEE, 2003), Vol. 2, pp. 678–679.
  4. P. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, M. Du, B. Pálsdóttir, K. Feder, P. Westbrook, K. Brar, J. Mann, and L. Spiekman, “Four extended-reach TDM PONs sharing a bidirectional hybrid CWDM amplifier,” J. Lightwave Technol. 26, 138–143 (2008).
    [CrossRef]
  5. H. H. Lee, P. P. Iannone, K. Reichmann, J. Lee, and B. Pálsdóttir, “A C/L-band gain-clamped SOA-Raman hybrid amplifier for CWDM access networks,” IEEE Photon. Technol. Lett. 20, 196–198 (2008).
    [CrossRef]
  6. H. H. Lee, K. Reichmann, P. P. Iannone, and J. S. Lee, “A gain-clamped SOA-Raman hybrid amplifier for a CWDM access network without gain-saturation induced crosstalk,” in Conference on Lasers and Electro-Optics/Pacific Rim 2007 (CLEO/PR 2007) (Optical Society of America, 2007), paper WD1_2.
  7. Y. Shachaf, P. Kourtessis, and J. M. Senior, “A full-duplex access network based on CWDM-routed PONs,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JThA101.
  8. P. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, M. Du, B. Palsdottir, K. Feder, P. Westbrook, K. Brar, J. Mann, and L. Spiekman, “Hybrid CWDM amplifier shared by multiple TDM pons,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP13.
  9. J. M. Oh, S. G. Koo, D. Lee, and S. J. Park, “Enhanced system performance of an RSOA based hybrid WDM/TDM system using a remotely pumped erbium-doped fiber amplifier,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, (OFC/NFOEC), OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP9.
  10. H. H. Lee, K. C. Reichmann, P. P. Iannone, X. Zhou, and B. Palsdottir, “A hybrid-amplified PON with 75 nm downstream band-width, 60 km reach, 1∶64 split, and multiple video services,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 2007), paper OWL2.
  11. J. Kani and M. Jinno, “Wideband and flat-gain optical amplification from 1460 to 1510 nm by serial combination of a thulium-doped fluoride fiber amplifier and fiber Raman amplifier,” Electron. Lett. 35, 1004–1006 (1999).
    [CrossRef]
  12. S. Kawai, H. Masuda, K. I. Suzuki, and K. Aida, “75 nm 3 dB gain-band optical amplifier and discrete Raman amplification,” Electron. Lett. 35, 897–898 (1999).
    [CrossRef]
  13. H. H. Lee, P. P. Iannone, K. C. Richmann, and B. W. Kim, “A bidirectional SOA-Raman hybrid amplifier shared by 2.5  Gb/s, 60 km long-reach WDM-TDM PON,” in 34th European Conference on Optical Communication, 2008 (ECOC 2008) (IEEE, 2008), pp. 215–216.
  14. D. Nesset, S. Appathurai, R. Davey, and T. Kelly, “Extended reach GPON using high gain semiconductor optical amplifiers,” in The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWA107.
  15. J. A. Lazaro, J. Prat, P. Chanclou, G. M. Tosi Beleffi, A. Teixeira, I. Tomkos, R. Soila, and V. Koratzinos, “Scalable extended reach PON,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThL2.
  16. H. J. Thiele, L. Nelson, J. Thomas, B. Eichenbaum, L. Spiekman, and G. van den Hoven, “Linear optical amplifier for extended reach in CWDM transmission systems,” in Optical Fiber Communications Conference, Technical Digest (Optical Society of America, 2003), paper MF21.
  17. S. Park, R. Leavitt, R. Enck, V. Luciani, Y. Hu, P. J. S. Heim, D. Bowler, and M. Dagenais, “Semiconductor optical amplifier for CWDM operating over 1540–1620 nm,” IEEE Photon. Technol. Lett. 17, 980–982 (2005).
    [CrossRef]
  18. J. B. Rosolem, A. A. Juriollo, R. Arradi, A. D. Coral, J. C. Oliveira, and M. A. Romero, “Triple band silica based double pass EDFA with an embedded DCF module for CWDM applications,” in Optical Amplifiers and Their Applications, Technical Digest (CD) (Optical Society of America, 2005), paper WC4.
  19. J. B. Rosolem, A. A. Juriollo, R. Arradi, A. D. Coral, J. C. Oliveira, and M. A. Romero, “All silica triple band double pass EDFA for CWDM applications,” in Proceedings of the 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2005 (LEOS 2005) (IEEE, 2005), pp. 929–9030.
  20. T. Miyamoto, T. Tsuzaki, T. Okuno, M. Kakui, M. Hirano, M. Onoshi, M. Shigematsu, and M. Nishimura, “Highly-nonlinear-fiber-based discrete Raman amplifier for CWDM transmission system,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper MF19.
  21. K. C. Reichmann, P. P. Iannone, X. Zhou, N. J. Frigo, and B. R. Hemenway, “240 km CWDM transmission using cascaded SOA Raman hybrid amplifiers with 70 nm bandwidth,” IEEE Photon. Technol. Lett. 18, 328–330 (2006).
    [CrossRef]
  22. H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump interactions in a 100 nm bandwidth Raman amplifier,” IEEE Photon. Technol. Lett. 11, 530–532 (1999).
    [CrossRef]
  23. C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier/Academic, 2004).
  24. K. K. Y. Wong, M. E. Marhic, G. Kalogerakis, and L. G. Kazovsky, “Fiber optical parametric amplifier and wavelength converter with record 360 nm gain bandwidth and 50 dB signal gain,” in Conference on Lasers and Electro-Optics, 2003 (IEEE, 2003), paper CThPDB6.
  25. A. Altuncu, A. S. Siddiqui, A. Ellis, M. A. Newhouse, and A. J. Antos, “Gain and noise figure characterization of a 68 km long distributed erbium doped fiber amplifier,” Electron. Lett. 32, 1800–1801 (1996).
    [CrossRef]
  26. M. C. Ho, K. Uesaka, M. E. Marhic, Y. Akasaka, and L. G. Kazovsky, “200 nm-bandwidth fiber optical amplifier combining parametric and Raman gain,” J. Lightwave Technol. 19, 977–981 (2001).
    [CrossRef]
  27. S. H. Wang, L. Xu, P. K. A. Wai, and H. Y. Tam, “Optimization of Raman-assisted fiber optical parametric amplifier gain,” J. Lightwave Technol. 29, 1172–1181 (2011).
    [CrossRef]
  28. S. H. Wang, D. Wang, C. Lu, T. H. Cheng, and P. K. A. Wai, “Multiple Raman pump assisted fiber optical parametric amplifiers,” J. Lightwave Technol. 29, 2601–2608 (2011).
    [CrossRef]
  29. J. F. L. Freitas, M. B. Costa e Silva, S. R. Liitbi, and A. S. L. Gomes, “Raman enhanced parametric amplifier based S-C band wavelength converter: experiment and simulations,” Opt. Commun. 255, 314–318 (2005).
    [CrossRef]
  30. M. A. Ummy, M. F. Arend, L. Leng, N. Madamopoulos, and R. Dorsinville, “Extending the gain bandwidth of combined Raman-parametric fiber amplifiers using highly nonlinear fiber,” J. Lightwave Technol. 27, 583–589 (2009).
    [CrossRef]
  31. X. Jiang, C. Jiang, and X. Zhang, “Design of Raman-parametric fiber amplifier for wavelength division multiplex transmission system,” Chin. Opt. Lett. 6, 327–330 (2008).
    [CrossRef]
  32. S. Peiris, N. Madamopoulos, N. Antoniades, M. A. Ummy, R. Dorsinville, and M. Ali, “Extended gain bandwidth low ripple hybrid Raman-parametric amplifier design for PON applications,” presented at IEEE Photonics Conference 2012, Burlingame, California, USA, 23–27 September 2012, paper ME-2.
  33. LAN/MAN Standards Committee, “Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications, amendment 1: physical layer specifications and management parameters for 10  Gb/s passive optical networks,” in IEEE Std 802.3av-2009 (IEEE Computer Society, 2009).
  34. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
    [CrossRef]
  35. F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 16, 1292–1294 (2004).
    [CrossRef]
  36. OFS-HNLF Datasheet and data provided by L. Grüner-Nielsen, Incubation Center, OFS Denmark, Priorparken 680, DK-2605 Brondby, Denmark (personal communication, 2012).
  37. D. M. Spirit, L. C. Blank, S. T. Davey, and D. L. Williams, “Systems aspects of Raman fiber amplifiers,” IEE Proc. J. Optoelectron. 137, 221–224 (1990).
  38. M. E. Marhic, N. Kagi, T.-K. Chiang, and L. G. Kazovsky, “Broadband fiber optical parametric amplifiers,” Opt. Lett. 21, 573–575 (1996).
    [CrossRef]
  39. L. A. M. Saito, P. D. Taveira, P. B. Gaarde, K. D. Souza, and E. A. D. Souza, “Multi-pump discrete Raman amplifier for CWDM system in the O-band,” Opt. Fiber Technol. 14, 294–298 (2008).
    [CrossRef]

2011

2009

M. A. Ummy, M. F. Arend, L. Leng, N. Madamopoulos, and R. Dorsinville, “Extending the gain bandwidth of combined Raman-parametric fiber amplifiers using highly nonlinear fiber,” J. Lightwave Technol. 27, 583–589 (2009).
[CrossRef]

F. J. Effenberger, H. Mukai, S. Park, and T. Pfeiffer, “Next-generation PON—part II: candidate systems for next-generation PON,” IEEE Commun. Mag. 47(11), 50–57 (2009).
[CrossRef]

2008

P. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, M. Du, B. Pálsdóttir, K. Feder, P. Westbrook, K. Brar, J. Mann, and L. Spiekman, “Four extended-reach TDM PONs sharing a bidirectional hybrid CWDM amplifier,” J. Lightwave Technol. 26, 138–143 (2008).
[CrossRef]

H. H. Lee, P. P. Iannone, K. Reichmann, J. Lee, and B. Pálsdóttir, “A C/L-band gain-clamped SOA-Raman hybrid amplifier for CWDM access networks,” IEEE Photon. Technol. Lett. 20, 196–198 (2008).
[CrossRef]

X. Jiang, C. Jiang, and X. Zhang, “Design of Raman-parametric fiber amplifier for wavelength division multiplex transmission system,” Chin. Opt. Lett. 6, 327–330 (2008).
[CrossRef]

L. A. M. Saito, P. D. Taveira, P. B. Gaarde, K. D. Souza, and E. A. D. Souza, “Multi-pump discrete Raman amplifier for CWDM system in the O-band,” Opt. Fiber Technol. 14, 294–298 (2008).
[CrossRef]

2006

K. C. Reichmann, P. P. Iannone, X. Zhou, N. J. Frigo, and B. R. Hemenway, “240 km CWDM transmission using cascaded SOA Raman hybrid amplifiers with 70 nm bandwidth,” IEEE Photon. Technol. Lett. 18, 328–330 (2006).
[CrossRef]

2005

S. Park, R. Leavitt, R. Enck, V. Luciani, Y. Hu, P. J. S. Heim, D. Bowler, and M. Dagenais, “Semiconductor optical amplifier for CWDM operating over 1540–1620 nm,” IEEE Photon. Technol. Lett. 17, 980–982 (2005).
[CrossRef]

J. F. L. Freitas, M. B. Costa e Silva, S. R. Liitbi, and A. S. L. Gomes, “Raman enhanced parametric amplifier based S-C band wavelength converter: experiment and simulations,” Opt. Commun. 255, 314–318 (2005).
[CrossRef]

2004

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 16, 1292–1294 (2004).
[CrossRef]

2002

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[CrossRef]

2001

1999

H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump interactions in a 100 nm bandwidth Raman amplifier,” IEEE Photon. Technol. Lett. 11, 530–532 (1999).
[CrossRef]

J. Kani and M. Jinno, “Wideband and flat-gain optical amplification from 1460 to 1510 nm by serial combination of a thulium-doped fluoride fiber amplifier and fiber Raman amplifier,” Electron. Lett. 35, 1004–1006 (1999).
[CrossRef]

S. Kawai, H. Masuda, K. I. Suzuki, and K. Aida, “75 nm 3 dB gain-band optical amplifier and discrete Raman amplification,” Electron. Lett. 35, 897–898 (1999).
[CrossRef]

1996

A. Altuncu, A. S. Siddiqui, A. Ellis, M. A. Newhouse, and A. J. Antos, “Gain and noise figure characterization of a 68 km long distributed erbium doped fiber amplifier,” Electron. Lett. 32, 1800–1801 (1996).
[CrossRef]

M. E. Marhic, N. Kagi, T.-K. Chiang, and L. G. Kazovsky, “Broadband fiber optical parametric amplifiers,” Opt. Lett. 21, 573–575 (1996).
[CrossRef]

1990

D. M. Spirit, L. C. Blank, S. T. Davey, and D. L. Williams, “Systems aspects of Raman fiber amplifiers,” IEE Proc. J. Optoelectron. 137, 221–224 (1990).

Agrawal, G. P.

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 16, 1292–1294 (2004).
[CrossRef]

C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier/Academic, 2004).

Aida, K.

S. Kawai, H. Masuda, K. I. Suzuki, and K. Aida, “75 nm 3 dB gain-band optical amplifier and discrete Raman amplification,” Electron. Lett. 35, 897–898 (1999).
[CrossRef]

Akasaka, Y.

Ali, M.

S. Peiris, N. Madamopoulos, N. Antoniades, M. A. Ummy, R. Dorsinville, and M. Ali, “Extended gain bandwidth low ripple hybrid Raman-parametric amplifier design for PON applications,” presented at IEEE Photonics Conference 2012, Burlingame, California, USA, 23–27 September 2012, paper ME-2.

Altuncu, A.

A. Altuncu, A. S. Siddiqui, A. Ellis, M. A. Newhouse, and A. J. Antos, “Gain and noise figure characterization of a 68 km long distributed erbium doped fiber amplifier,” Electron. Lett. 32, 1800–1801 (1996).
[CrossRef]

Andrekson, P. A.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[CrossRef]

Antoniades, N.

S. Peiris, N. Madamopoulos, N. Antoniades, M. A. Ummy, R. Dorsinville, and M. Ali, “Extended gain bandwidth low ripple hybrid Raman-parametric amplifier design for PON applications,” presented at IEEE Photonics Conference 2012, Burlingame, California, USA, 23–27 September 2012, paper ME-2.

Antos, A. J.

A. Altuncu, A. S. Siddiqui, A. Ellis, M. A. Newhouse, and A. J. Antos, “Gain and noise figure characterization of a 68 km long distributed erbium doped fiber amplifier,” Electron. Lett. 32, 1800–1801 (1996).
[CrossRef]

Appathurai, S.

D. Nesset, S. Appathurai, R. Davey, and T. Kelly, “Extended reach GPON using high gain semiconductor optical amplifiers,” in The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWA107.

Arend, M. F.

Arradi, R.

J. B. Rosolem, A. A. Juriollo, R. Arradi, A. D. Coral, J. C. Oliveira, and M. A. Romero, “Triple band silica based double pass EDFA with an embedded DCF module for CWDM applications,” in Optical Amplifiers and Their Applications, Technical Digest (CD) (Optical Society of America, 2005), paper WC4.

J. B. Rosolem, A. A. Juriollo, R. Arradi, A. D. Coral, J. C. Oliveira, and M. A. Romero, “All silica triple band double pass EDFA for CWDM applications,” in Proceedings of the 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2005 (LEOS 2005) (IEEE, 2005), pp. 929–9030.

Blank, L. C.

D. M. Spirit, L. C. Blank, S. T. Davey, and D. L. Williams, “Systems aspects of Raman fiber amplifiers,” IEE Proc. J. Optoelectron. 137, 221–224 (1990).

Bowler, D.

S. Park, R. Leavitt, R. Enck, V. Luciani, Y. Hu, P. J. S. Heim, D. Bowler, and M. Dagenais, “Semiconductor optical amplifier for CWDM operating over 1540–1620 nm,” IEEE Photon. Technol. Lett. 17, 980–982 (2005).
[CrossRef]

Brar, K.

P. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, M. Du, B. Pálsdóttir, K. Feder, P. Westbrook, K. Brar, J. Mann, and L. Spiekman, “Four extended-reach TDM PONs sharing a bidirectional hybrid CWDM amplifier,” J. Lightwave Technol. 26, 138–143 (2008).
[CrossRef]

P. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, M. Du, B. Palsdottir, K. Feder, P. Westbrook, K. Brar, J. Mann, and L. Spiekman, “Hybrid CWDM amplifier shared by multiple TDM pons,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP13.

Chanclou, P.

J. A. Lazaro, J. Prat, P. Chanclou, G. M. Tosi Beleffi, A. Teixeira, I. Tomkos, R. Soila, and V. Koratzinos, “Scalable extended reach PON,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThL2.

Cheng, T. H.

Chiang, T.-K.

Coral, A. D.

J. B. Rosolem, A. A. Juriollo, R. Arradi, A. D. Coral, J. C. Oliveira, and M. A. Romero, “All silica triple band double pass EDFA for CWDM applications,” in Proceedings of the 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2005 (LEOS 2005) (IEEE, 2005), pp. 929–9030.

J. B. Rosolem, A. A. Juriollo, R. Arradi, A. D. Coral, J. C. Oliveira, and M. A. Romero, “Triple band silica based double pass EDFA with an embedded DCF module for CWDM applications,” in Optical Amplifiers and Their Applications, Technical Digest (CD) (Optical Society of America, 2005), paper WC4.

Costa e Silva, M. B.

J. F. L. Freitas, M. B. Costa e Silva, S. R. Liitbi, and A. S. L. Gomes, “Raman enhanced parametric amplifier based S-C band wavelength converter: experiment and simulations,” Opt. Commun. 255, 314–318 (2005).
[CrossRef]

Dagenais, M.

S. Park, R. Leavitt, R. Enck, V. Luciani, Y. Hu, P. J. S. Heim, D. Bowler, and M. Dagenais, “Semiconductor optical amplifier for CWDM operating over 1540–1620 nm,” IEEE Photon. Technol. Lett. 17, 980–982 (2005).
[CrossRef]

Davey, R.

D. Nesset, S. Appathurai, R. Davey, and T. Kelly, “Extended reach GPON using high gain semiconductor optical amplifiers,” in The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWA107.

Davey, S. T.

D. M. Spirit, L. C. Blank, S. T. Davey, and D. L. Williams, “Systems aspects of Raman fiber amplifiers,” IEE Proc. J. Optoelectron. 137, 221–224 (1990).

Dorsinville, R.

M. A. Ummy, M. F. Arend, L. Leng, N. Madamopoulos, and R. Dorsinville, “Extending the gain bandwidth of combined Raman-parametric fiber amplifiers using highly nonlinear fiber,” J. Lightwave Technol. 27, 583–589 (2009).
[CrossRef]

S. Peiris, N. Madamopoulos, N. Antoniades, M. A. Ummy, R. Dorsinville, and M. Ali, “Extended gain bandwidth low ripple hybrid Raman-parametric amplifier design for PON applications,” presented at IEEE Photonics Conference 2012, Burlingame, California, USA, 23–27 September 2012, paper ME-2.

Du, M.

P. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, M. Du, B. Pálsdóttir, K. Feder, P. Westbrook, K. Brar, J. Mann, and L. Spiekman, “Four extended-reach TDM PONs sharing a bidirectional hybrid CWDM amplifier,” J. Lightwave Technol. 26, 138–143 (2008).
[CrossRef]

P. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, M. Du, B. Palsdottir, K. Feder, P. Westbrook, K. Brar, J. Mann, and L. Spiekman, “Hybrid CWDM amplifier shared by multiple TDM pons,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP13.

Effenberger, F. J.

F. J. Effenberger, H. Mukai, S. Park, and T. Pfeiffer, “Next-generation PON—part II: candidate systems for next-generation PON,” IEEE Commun. Mag. 47(11), 50–57 (2009).
[CrossRef]

Eichenbaum, B.

H. J. Thiele, L. Nelson, J. Thomas, B. Eichenbaum, L. Spiekman, and G. van den Hoven, “Linear optical amplifier for extended reach in CWDM transmission systems,” in Optical Fiber Communications Conference, Technical Digest (Optical Society of America, 2003), paper MF21.

Ellis, A.

A. Altuncu, A. S. Siddiqui, A. Ellis, M. A. Newhouse, and A. J. Antos, “Gain and noise figure characterization of a 68 km long distributed erbium doped fiber amplifier,” Electron. Lett. 32, 1800–1801 (1996).
[CrossRef]

Enck, R.

S. Park, R. Leavitt, R. Enck, V. Luciani, Y. Hu, P. J. S. Heim, D. Bowler, and M. Dagenais, “Semiconductor optical amplifier for CWDM operating over 1540–1620 nm,” IEEE Photon. Technol. Lett. 17, 980–982 (2005).
[CrossRef]

Feder, K.

P. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, M. Du, B. Pálsdóttir, K. Feder, P. Westbrook, K. Brar, J. Mann, and L. Spiekman, “Four extended-reach TDM PONs sharing a bidirectional hybrid CWDM amplifier,” J. Lightwave Technol. 26, 138–143 (2008).
[CrossRef]

P. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, M. Du, B. Palsdottir, K. Feder, P. Westbrook, K. Brar, J. Mann, and L. Spiekman, “Hybrid CWDM amplifier shared by multiple TDM pons,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP13.

Freitas, J. F. L.

J. F. L. Freitas, M. B. Costa e Silva, S. R. Liitbi, and A. S. L. Gomes, “Raman enhanced parametric amplifier based S-C band wavelength converter: experiment and simulations,” Opt. Commun. 255, 314–318 (2005).
[CrossRef]

Frigo, N. J.

K. C. Reichmann, P. P. Iannone, X. Zhou, N. J. Frigo, and B. R. Hemenway, “240 km CWDM transmission using cascaded SOA Raman hybrid amplifiers with 70 nm bandwidth,” IEEE Photon. Technol. Lett. 18, 328–330 (2006).
[CrossRef]

Gaarde, P. B.

L. A. M. Saito, P. D. Taveira, P. B. Gaarde, K. D. Souza, and E. A. D. Souza, “Multi-pump discrete Raman amplifier for CWDM system in the O-band,” Opt. Fiber Technol. 14, 294–298 (2008).
[CrossRef]

Gomes, A. S. L.

J. F. L. Freitas, M. B. Costa e Silva, S. R. Liitbi, and A. S. L. Gomes, “Raman enhanced parametric amplifier based S-C band wavelength converter: experiment and simulations,” Opt. Commun. 255, 314–318 (2005).
[CrossRef]

Grüner-Nielsen, L.

OFS-HNLF Datasheet and data provided by L. Grüner-Nielsen, Incubation Center, OFS Denmark, Priorparken 680, DK-2605 Brondby, Denmark (personal communication, 2012).

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[CrossRef]

Headley, C.

C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier/Academic, 2004).

Hedekvist, P.-O.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[CrossRef]

Heim, P. J. S.

S. Park, R. Leavitt, R. Enck, V. Luciani, Y. Hu, P. J. S. Heim, D. Bowler, and M. Dagenais, “Semiconductor optical amplifier for CWDM operating over 1540–1620 nm,” IEEE Photon. Technol. Lett. 17, 980–982 (2005).
[CrossRef]

Hemenway, B. R.

K. C. Reichmann, P. P. Iannone, X. Zhou, N. J. Frigo, and B. R. Hemenway, “240 km CWDM transmission using cascaded SOA Raman hybrid amplifiers with 70 nm bandwidth,” IEEE Photon. Technol. Lett. 18, 328–330 (2006).
[CrossRef]

Hirano, M.

T. Miyamoto, T. Tsuzaki, T. Okuno, M. Kakui, M. Hirano, M. Onoshi, M. Shigematsu, and M. Nishimura, “Highly-nonlinear-fiber-based discrete Raman amplifier for CWDM transmission system,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper MF19.

Ho, M. C.

Hu, Y.

S. Park, R. Leavitt, R. Enck, V. Luciani, Y. Hu, P. J. S. Heim, D. Bowler, and M. Dagenais, “Semiconductor optical amplifier for CWDM operating over 1540–1620 nm,” IEEE Photon. Technol. Lett. 17, 980–982 (2005).
[CrossRef]

Iannone, P. P.

P. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, M. Du, B. Pálsdóttir, K. Feder, P. Westbrook, K. Brar, J. Mann, and L. Spiekman, “Four extended-reach TDM PONs sharing a bidirectional hybrid CWDM amplifier,” J. Lightwave Technol. 26, 138–143 (2008).
[CrossRef]

H. H. Lee, P. P. Iannone, K. Reichmann, J. Lee, and B. Pálsdóttir, “A C/L-band gain-clamped SOA-Raman hybrid amplifier for CWDM access networks,” IEEE Photon. Technol. Lett. 20, 196–198 (2008).
[CrossRef]

K. C. Reichmann, P. P. Iannone, X. Zhou, N. J. Frigo, and B. R. Hemenway, “240 km CWDM transmission using cascaded SOA Raman hybrid amplifiers with 70 nm bandwidth,” IEEE Photon. Technol. Lett. 18, 328–330 (2006).
[CrossRef]

H. H. Lee, K. Reichmann, P. P. Iannone, and J. S. Lee, “A gain-clamped SOA-Raman hybrid amplifier for a CWDM access network without gain-saturation induced crosstalk,” in Conference on Lasers and Electro-Optics/Pacific Rim 2007 (CLEO/PR 2007) (Optical Society of America, 2007), paper WD1_2.

P. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, M. Du, B. Palsdottir, K. Feder, P. Westbrook, K. Brar, J. Mann, and L. Spiekman, “Hybrid CWDM amplifier shared by multiple TDM pons,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP13.

P. P. Iannone, K. C. Reichmann, and L. H. Spiekman, “Amplified CWDM systems,” in 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003 (LEOS 2003) (IEEE, 2003), Vol. 2, pp. 678–679.

H. H. Lee, K. C. Reichmann, P. P. Iannone, X. Zhou, and B. Palsdottir, “A hybrid-amplified PON with 75 nm downstream band-width, 60 km reach, 1∶64 split, and multiple video services,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 2007), paper OWL2.

H. H. Lee, P. P. Iannone, K. C. Richmann, and B. W. Kim, “A bidirectional SOA-Raman hybrid amplifier shared by 2.5  Gb/s, 60 km long-reach WDM-TDM PON,” in 34th European Conference on Optical Communication, 2008 (ECOC 2008) (IEEE, 2008), pp. 215–216.

Jiang, C.

Jiang, X.

Jinno, M.

J. Kani and M. Jinno, “Wideband and flat-gain optical amplification from 1460 to 1510 nm by serial combination of a thulium-doped fluoride fiber amplifier and fiber Raman amplifier,” Electron. Lett. 35, 1004–1006 (1999).
[CrossRef]

Juriollo, A. A.

J. B. Rosolem, A. A. Juriollo, R. Arradi, A. D. Coral, J. C. Oliveira, and M. A. Romero, “Triple band silica based double pass EDFA with an embedded DCF module for CWDM applications,” in Optical Amplifiers and Their Applications, Technical Digest (CD) (Optical Society of America, 2005), paper WC4.

J. B. Rosolem, A. A. Juriollo, R. Arradi, A. D. Coral, J. C. Oliveira, and M. A. Romero, “All silica triple band double pass EDFA for CWDM applications,” in Proceedings of the 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2005 (LEOS 2005) (IEEE, 2005), pp. 929–9030.

Kagi, N.

Kakui, M.

T. Miyamoto, T. Tsuzaki, T. Okuno, M. Kakui, M. Hirano, M. Onoshi, M. Shigematsu, and M. Nishimura, “Highly-nonlinear-fiber-based discrete Raman amplifier for CWDM transmission system,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper MF19.

Kalogerakis, G.

K. K. Y. Wong, M. E. Marhic, G. Kalogerakis, and L. G. Kazovsky, “Fiber optical parametric amplifier and wavelength converter with record 360 nm gain bandwidth and 50 dB signal gain,” in Conference on Lasers and Electro-Optics, 2003 (IEEE, 2003), paper CThPDB6.

Kani, J.

J. Kani and M. Jinno, “Wideband and flat-gain optical amplification from 1460 to 1510 nm by serial combination of a thulium-doped fluoride fiber amplifier and fiber Raman amplifier,” Electron. Lett. 35, 1004–1006 (1999).
[CrossRef]

Kawai, S.

S. Kawai, H. Masuda, K. I. Suzuki, and K. Aida, “75 nm 3 dB gain-band optical amplifier and discrete Raman amplification,” Electron. Lett. 35, 897–898 (1999).
[CrossRef]

Kazovsky, L. G.

M. C. Ho, K. Uesaka, M. E. Marhic, Y. Akasaka, and L. G. Kazovsky, “200 nm-bandwidth fiber optical amplifier combining parametric and Raman gain,” J. Lightwave Technol. 19, 977–981 (2001).
[CrossRef]

M. E. Marhic, N. Kagi, T.-K. Chiang, and L. G. Kazovsky, “Broadband fiber optical parametric amplifiers,” Opt. Lett. 21, 573–575 (1996).
[CrossRef]

K. K. Y. Wong, M. E. Marhic, G. Kalogerakis, and L. G. Kazovsky, “Fiber optical parametric amplifier and wavelength converter with record 360 nm gain bandwidth and 50 dB signal gain,” in Conference on Lasers and Electro-Optics, 2003 (IEEE, 2003), paper CThPDB6.

Kelly, T.

D. Nesset, S. Appathurai, R. Davey, and T. Kelly, “Extended reach GPON using high gain semiconductor optical amplifiers,” in The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWA107.

Kidorf, H.

H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump interactions in a 100 nm bandwidth Raman amplifier,” IEEE Photon. Technol. Lett. 11, 530–532 (1999).
[CrossRef]

Kim, B. W.

H. H. Lee, P. P. Iannone, K. C. Richmann, and B. W. Kim, “A bidirectional SOA-Raman hybrid amplifier shared by 2.5  Gb/s, 60 km long-reach WDM-TDM PON,” in 34th European Conference on Optical Communication, 2008 (ECOC 2008) (IEEE, 2008), pp. 215–216.

Koo, S. G.

J. M. Oh, S. G. Koo, D. Lee, and S. J. Park, “Enhanced system performance of an RSOA based hybrid WDM/TDM system using a remotely pumped erbium-doped fiber amplifier,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, (OFC/NFOEC), OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP9.

Koratzinos, V.

J. A. Lazaro, J. Prat, P. Chanclou, G. M. Tosi Beleffi, A. Teixeira, I. Tomkos, R. Soila, and V. Koratzinos, “Scalable extended reach PON,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThL2.

Kourtessis, P.

Y. Shachaf, P. Kourtessis, and J. M. Senior, “A full-duplex access network based on CWDM-routed PONs,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JThA101.

Lazaro, J. A.

J. A. Lazaro, J. Prat, P. Chanclou, G. M. Tosi Beleffi, A. Teixeira, I. Tomkos, R. Soila, and V. Koratzinos, “Scalable extended reach PON,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThL2.

Leavitt, R.

S. Park, R. Leavitt, R. Enck, V. Luciani, Y. Hu, P. J. S. Heim, D. Bowler, and M. Dagenais, “Semiconductor optical amplifier for CWDM operating over 1540–1620 nm,” IEEE Photon. Technol. Lett. 17, 980–982 (2005).
[CrossRef]

Lee, D.

J. M. Oh, S. G. Koo, D. Lee, and S. J. Park, “Enhanced system performance of an RSOA based hybrid WDM/TDM system using a remotely pumped erbium-doped fiber amplifier,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, (OFC/NFOEC), OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP9.

Lee, H. H.

H. H. Lee, P. P. Iannone, K. Reichmann, J. Lee, and B. Pálsdóttir, “A C/L-band gain-clamped SOA-Raman hybrid amplifier for CWDM access networks,” IEEE Photon. Technol. Lett. 20, 196–198 (2008).
[CrossRef]

P. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, M. Du, B. Pálsdóttir, K. Feder, P. Westbrook, K. Brar, J. Mann, and L. Spiekman, “Four extended-reach TDM PONs sharing a bidirectional hybrid CWDM amplifier,” J. Lightwave Technol. 26, 138–143 (2008).
[CrossRef]

P. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, M. Du, B. Palsdottir, K. Feder, P. Westbrook, K. Brar, J. Mann, and L. Spiekman, “Hybrid CWDM amplifier shared by multiple TDM pons,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP13.

H. H. Lee, K. Reichmann, P. P. Iannone, and J. S. Lee, “A gain-clamped SOA-Raman hybrid amplifier for a CWDM access network without gain-saturation induced crosstalk,” in Conference on Lasers and Electro-Optics/Pacific Rim 2007 (CLEO/PR 2007) (Optical Society of America, 2007), paper WD1_2.

H. H. Lee, K. C. Reichmann, P. P. Iannone, X. Zhou, and B. Palsdottir, “A hybrid-amplified PON with 75 nm downstream band-width, 60 km reach, 1∶64 split, and multiple video services,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 2007), paper OWL2.

H. H. Lee, P. P. Iannone, K. C. Richmann, and B. W. Kim, “A bidirectional SOA-Raman hybrid amplifier shared by 2.5  Gb/s, 60 km long-reach WDM-TDM PON,” in 34th European Conference on Optical Communication, 2008 (ECOC 2008) (IEEE, 2008), pp. 215–216.

Lee, J.

H. H. Lee, P. P. Iannone, K. Reichmann, J. Lee, and B. Pálsdóttir, “A C/L-band gain-clamped SOA-Raman hybrid amplifier for CWDM access networks,” IEEE Photon. Technol. Lett. 20, 196–198 (2008).
[CrossRef]

Lee, J. S.

H. H. Lee, K. Reichmann, P. P. Iannone, and J. S. Lee, “A gain-clamped SOA-Raman hybrid amplifier for a CWDM access network without gain-saturation induced crosstalk,” in Conference on Lasers and Electro-Optics/Pacific Rim 2007 (CLEO/PR 2007) (Optical Society of America, 2007), paper WD1_2.

Leng, L.

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[CrossRef]

Liitbi, S. R.

J. F. L. Freitas, M. B. Costa e Silva, S. R. Liitbi, and A. S. L. Gomes, “Raman enhanced parametric amplifier based S-C band wavelength converter: experiment and simulations,” Opt. Commun. 255, 314–318 (2005).
[CrossRef]

Lin, Q.

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 16, 1292–1294 (2004).
[CrossRef]

Lu, C.

Luciani, V.

S. Park, R. Leavitt, R. Enck, V. Luciani, Y. Hu, P. J. S. Heim, D. Bowler, and M. Dagenais, “Semiconductor optical amplifier for CWDM operating over 1540–1620 nm,” IEEE Photon. Technol. Lett. 17, 980–982 (2005).
[CrossRef]

Ma, M.

H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump interactions in a 100 nm bandwidth Raman amplifier,” IEEE Photon. Technol. Lett. 11, 530–532 (1999).
[CrossRef]

Madamopoulos, N.

M. A. Ummy, M. F. Arend, L. Leng, N. Madamopoulos, and R. Dorsinville, “Extending the gain bandwidth of combined Raman-parametric fiber amplifiers using highly nonlinear fiber,” J. Lightwave Technol. 27, 583–589 (2009).
[CrossRef]

S. Peiris, N. Madamopoulos, N. Antoniades, M. A. Ummy, R. Dorsinville, and M. Ali, “Extended gain bandwidth low ripple hybrid Raman-parametric amplifier design for PON applications,” presented at IEEE Photonics Conference 2012, Burlingame, California, USA, 23–27 September 2012, paper ME-2.

Mann, J.

P. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, M. Du, B. Pálsdóttir, K. Feder, P. Westbrook, K. Brar, J. Mann, and L. Spiekman, “Four extended-reach TDM PONs sharing a bidirectional hybrid CWDM amplifier,” J. Lightwave Technol. 26, 138–143 (2008).
[CrossRef]

P. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, M. Du, B. Palsdottir, K. Feder, P. Westbrook, K. Brar, J. Mann, and L. Spiekman, “Hybrid CWDM amplifier shared by multiple TDM pons,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP13.

Marhic, M. E.

M. C. Ho, K. Uesaka, M. E. Marhic, Y. Akasaka, and L. G. Kazovsky, “200 nm-bandwidth fiber optical amplifier combining parametric and Raman gain,” J. Lightwave Technol. 19, 977–981 (2001).
[CrossRef]

M. E. Marhic, N. Kagi, T.-K. Chiang, and L. G. Kazovsky, “Broadband fiber optical parametric amplifiers,” Opt. Lett. 21, 573–575 (1996).
[CrossRef]

K. K. Y. Wong, M. E. Marhic, G. Kalogerakis, and L. G. Kazovsky, “Fiber optical parametric amplifier and wavelength converter with record 360 nm gain bandwidth and 50 dB signal gain,” in Conference on Lasers and Electro-Optics, 2003 (IEEE, 2003), paper CThPDB6.

Masuda, H.

S. Kawai, H. Masuda, K. I. Suzuki, and K. Aida, “75 nm 3 dB gain-band optical amplifier and discrete Raman amplification,” Electron. Lett. 35, 897–898 (1999).
[CrossRef]

Miyamoto, T.

T. Miyamoto, T. Tsuzaki, T. Okuno, M. Kakui, M. Hirano, M. Onoshi, M. Shigematsu, and M. Nishimura, “Highly-nonlinear-fiber-based discrete Raman amplifier for CWDM transmission system,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper MF19.

Mukai, H.

F. J. Effenberger, H. Mukai, S. Park, and T. Pfeiffer, “Next-generation PON—part II: candidate systems for next-generation PON,” IEEE Commun. Mag. 47(11), 50–57 (2009).
[CrossRef]

Nelson, L.

H. J. Thiele, L. Nelson, J. Thomas, B. Eichenbaum, L. Spiekman, and G. van den Hoven, “Linear optical amplifier for extended reach in CWDM transmission systems,” in Optical Fiber Communications Conference, Technical Digest (Optical Society of America, 2003), paper MF21.

Nesset, D.

D. Nesset, S. Appathurai, R. Davey, and T. Kelly, “Extended reach GPON using high gain semiconductor optical amplifiers,” in The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWA107.

Newhouse, M. A.

A. Altuncu, A. S. Siddiqui, A. Ellis, M. A. Newhouse, and A. J. Antos, “Gain and noise figure characterization of a 68 km long distributed erbium doped fiber amplifier,” Electron. Lett. 32, 1800–1801 (1996).
[CrossRef]

Nishimura, M.

T. Miyamoto, T. Tsuzaki, T. Okuno, M. Kakui, M. Hirano, M. Onoshi, M. Shigematsu, and M. Nishimura, “Highly-nonlinear-fiber-based discrete Raman amplifier for CWDM transmission system,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper MF19.

Nissov, M.

H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump interactions in a 100 nm bandwidth Raman amplifier,” IEEE Photon. Technol. Lett. 11, 530–532 (1999).
[CrossRef]

Oh, J. M.

J. M. Oh, S. G. Koo, D. Lee, and S. J. Park, “Enhanced system performance of an RSOA based hybrid WDM/TDM system using a remotely pumped erbium-doped fiber amplifier,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, (OFC/NFOEC), OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP9.

Okuno, T.

T. Miyamoto, T. Tsuzaki, T. Okuno, M. Kakui, M. Hirano, M. Onoshi, M. Shigematsu, and M. Nishimura, “Highly-nonlinear-fiber-based discrete Raman amplifier for CWDM transmission system,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper MF19.

Oliveira, J. C.

J. B. Rosolem, A. A. Juriollo, R. Arradi, A. D. Coral, J. C. Oliveira, and M. A. Romero, “Triple band silica based double pass EDFA with an embedded DCF module for CWDM applications,” in Optical Amplifiers and Their Applications, Technical Digest (CD) (Optical Society of America, 2005), paper WC4.

J. B. Rosolem, A. A. Juriollo, R. Arradi, A. D. Coral, J. C. Oliveira, and M. A. Romero, “All silica triple band double pass EDFA for CWDM applications,” in Proceedings of the 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2005 (LEOS 2005) (IEEE, 2005), pp. 929–9030.

Onoshi, M.

T. Miyamoto, T. Tsuzaki, T. Okuno, M. Kakui, M. Hirano, M. Onoshi, M. Shigematsu, and M. Nishimura, “Highly-nonlinear-fiber-based discrete Raman amplifier for CWDM transmission system,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper MF19.

Palsdottir, B.

H. H. Lee, K. C. Reichmann, P. P. Iannone, X. Zhou, and B. Palsdottir, “A hybrid-amplified PON with 75 nm downstream band-width, 60 km reach, 1∶64 split, and multiple video services,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 2007), paper OWL2.

P. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, M. Du, B. Palsdottir, K. Feder, P. Westbrook, K. Brar, J. Mann, and L. Spiekman, “Hybrid CWDM amplifier shared by multiple TDM pons,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP13.

Pálsdóttir, B.

H. H. Lee, P. P. Iannone, K. Reichmann, J. Lee, and B. Pálsdóttir, “A C/L-band gain-clamped SOA-Raman hybrid amplifier for CWDM access networks,” IEEE Photon. Technol. Lett. 20, 196–198 (2008).
[CrossRef]

P. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, M. Du, B. Pálsdóttir, K. Feder, P. Westbrook, K. Brar, J. Mann, and L. Spiekman, “Four extended-reach TDM PONs sharing a bidirectional hybrid CWDM amplifier,” J. Lightwave Technol. 26, 138–143 (2008).
[CrossRef]

Park, S.

F. J. Effenberger, H. Mukai, S. Park, and T. Pfeiffer, “Next-generation PON—part II: candidate systems for next-generation PON,” IEEE Commun. Mag. 47(11), 50–57 (2009).
[CrossRef]

S. Park, R. Leavitt, R. Enck, V. Luciani, Y. Hu, P. J. S. Heim, D. Bowler, and M. Dagenais, “Semiconductor optical amplifier for CWDM operating over 1540–1620 nm,” IEEE Photon. Technol. Lett. 17, 980–982 (2005).
[CrossRef]

Park, S. J.

J. M. Oh, S. G. Koo, D. Lee, and S. J. Park, “Enhanced system performance of an RSOA based hybrid WDM/TDM system using a remotely pumped erbium-doped fiber amplifier,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, (OFC/NFOEC), OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP9.

Peiris, S.

S. Peiris, N. Madamopoulos, N. Antoniades, M. A. Ummy, R. Dorsinville, and M. Ali, “Extended gain bandwidth low ripple hybrid Raman-parametric amplifier design for PON applications,” presented at IEEE Photonics Conference 2012, Burlingame, California, USA, 23–27 September 2012, paper ME-2.

Pfeiffer, T.

F. J. Effenberger, H. Mukai, S. Park, and T. Pfeiffer, “Next-generation PON—part II: candidate systems for next-generation PON,” IEEE Commun. Mag. 47(11), 50–57 (2009).
[CrossRef]

Prat, J.

J. A. Lazaro, J. Prat, P. Chanclou, G. M. Tosi Beleffi, A. Teixeira, I. Tomkos, R. Soila, and V. Koratzinos, “Scalable extended reach PON,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThL2.

Rabarijaona, E.

H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump interactions in a 100 nm bandwidth Raman amplifier,” IEEE Photon. Technol. Lett. 11, 530–532 (1999).
[CrossRef]

Radic, S.

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 16, 1292–1294 (2004).
[CrossRef]

Reichmann, K.

H. H. Lee, P. P. Iannone, K. Reichmann, J. Lee, and B. Pálsdóttir, “A C/L-band gain-clamped SOA-Raman hybrid amplifier for CWDM access networks,” IEEE Photon. Technol. Lett. 20, 196–198 (2008).
[CrossRef]

H. H. Lee, K. Reichmann, P. P. Iannone, and J. S. Lee, “A gain-clamped SOA-Raman hybrid amplifier for a CWDM access network without gain-saturation induced crosstalk,” in Conference on Lasers and Electro-Optics/Pacific Rim 2007 (CLEO/PR 2007) (Optical Society of America, 2007), paper WD1_2.

Reichmann, K. C.

P. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, M. Du, B. Pálsdóttir, K. Feder, P. Westbrook, K. Brar, J. Mann, and L. Spiekman, “Four extended-reach TDM PONs sharing a bidirectional hybrid CWDM amplifier,” J. Lightwave Technol. 26, 138–143 (2008).
[CrossRef]

K. C. Reichmann, P. P. Iannone, X. Zhou, N. J. Frigo, and B. R. Hemenway, “240 km CWDM transmission using cascaded SOA Raman hybrid amplifiers with 70 nm bandwidth,” IEEE Photon. Technol. Lett. 18, 328–330 (2006).
[CrossRef]

P. P. Iannone, K. C. Reichmann, and L. H. Spiekman, “Amplified CWDM systems,” in 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003 (LEOS 2003) (IEEE, 2003), Vol. 2, pp. 678–679.

P. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, M. Du, B. Palsdottir, K. Feder, P. Westbrook, K. Brar, J. Mann, and L. Spiekman, “Hybrid CWDM amplifier shared by multiple TDM pons,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP13.

H. H. Lee, K. C. Reichmann, P. P. Iannone, X. Zhou, and B. Palsdottir, “A hybrid-amplified PON with 75 nm downstream band-width, 60 km reach, 1∶64 split, and multiple video services,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 2007), paper OWL2.

Richmann, K. C.

H. H. Lee, P. P. Iannone, K. C. Richmann, and B. W. Kim, “A bidirectional SOA-Raman hybrid amplifier shared by 2.5  Gb/s, 60 km long-reach WDM-TDM PON,” in 34th European Conference on Optical Communication, 2008 (ECOC 2008) (IEEE, 2008), pp. 215–216.

Romero, M. A.

J. B. Rosolem, A. A. Juriollo, R. Arradi, A. D. Coral, J. C. Oliveira, and M. A. Romero, “All silica triple band double pass EDFA for CWDM applications,” in Proceedings of the 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2005 (LEOS 2005) (IEEE, 2005), pp. 929–9030.

J. B. Rosolem, A. A. Juriollo, R. Arradi, A. D. Coral, J. C. Oliveira, and M. A. Romero, “Triple band silica based double pass EDFA with an embedded DCF module for CWDM applications,” in Optical Amplifiers and Their Applications, Technical Digest (CD) (Optical Society of America, 2005), paper WC4.

Rosolem, J. B.

J. B. Rosolem, A. A. Juriollo, R. Arradi, A. D. Coral, J. C. Oliveira, and M. A. Romero, “All silica triple band double pass EDFA for CWDM applications,” in Proceedings of the 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2005 (LEOS 2005) (IEEE, 2005), pp. 929–9030.

J. B. Rosolem, A. A. Juriollo, R. Arradi, A. D. Coral, J. C. Oliveira, and M. A. Romero, “Triple band silica based double pass EDFA with an embedded DCF module for CWDM applications,” in Optical Amplifiers and Their Applications, Technical Digest (CD) (Optical Society of America, 2005), paper WC4.

Rottwitt, K.

H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump interactions in a 100 nm bandwidth Raman amplifier,” IEEE Photon. Technol. Lett. 11, 530–532 (1999).
[CrossRef]

Saito, L. A. M.

L. A. M. Saito, P. D. Taveira, P. B. Gaarde, K. D. Souza, and E. A. D. Souza, “Multi-pump discrete Raman amplifier for CWDM system in the O-band,” Opt. Fiber Technol. 14, 294–298 (2008).
[CrossRef]

Senior, J. M.

Y. Shachaf, P. Kourtessis, and J. M. Senior, “A full-duplex access network based on CWDM-routed PONs,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JThA101.

Shachaf, Y.

Y. Shachaf, P. Kourtessis, and J. M. Senior, “A full-duplex access network based on CWDM-routed PONs,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JThA101.

Shigematsu, M.

T. Miyamoto, T. Tsuzaki, T. Okuno, M. Kakui, M. Hirano, M. Onoshi, M. Shigematsu, and M. Nishimura, “Highly-nonlinear-fiber-based discrete Raman amplifier for CWDM transmission system,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper MF19.

Siddiqui, A. S.

A. Altuncu, A. S. Siddiqui, A. Ellis, M. A. Newhouse, and A. J. Antos, “Gain and noise figure characterization of a 68 km long distributed erbium doped fiber amplifier,” Electron. Lett. 32, 1800–1801 (1996).
[CrossRef]

Soila, R.

J. A. Lazaro, J. Prat, P. Chanclou, G. M. Tosi Beleffi, A. Teixeira, I. Tomkos, R. Soila, and V. Koratzinos, “Scalable extended reach PON,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThL2.

Souza, E. A. D.

L. A. M. Saito, P. D. Taveira, P. B. Gaarde, K. D. Souza, and E. A. D. Souza, “Multi-pump discrete Raman amplifier for CWDM system in the O-band,” Opt. Fiber Technol. 14, 294–298 (2008).
[CrossRef]

Souza, K. D.

L. A. M. Saito, P. D. Taveira, P. B. Gaarde, K. D. Souza, and E. A. D. Souza, “Multi-pump discrete Raman amplifier for CWDM system in the O-band,” Opt. Fiber Technol. 14, 294–298 (2008).
[CrossRef]

Spiekman, L.

P. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, M. Du, B. Pálsdóttir, K. Feder, P. Westbrook, K. Brar, J. Mann, and L. Spiekman, “Four extended-reach TDM PONs sharing a bidirectional hybrid CWDM amplifier,” J. Lightwave Technol. 26, 138–143 (2008).
[CrossRef]

P. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, M. Du, B. Palsdottir, K. Feder, P. Westbrook, K. Brar, J. Mann, and L. Spiekman, “Hybrid CWDM amplifier shared by multiple TDM pons,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP13.

H. J. Thiele, L. Nelson, J. Thomas, B. Eichenbaum, L. Spiekman, and G. van den Hoven, “Linear optical amplifier for extended reach in CWDM transmission systems,” in Optical Fiber Communications Conference, Technical Digest (Optical Society of America, 2003), paper MF21.

Spiekman, L. H.

P. P. Iannone, K. C. Reichmann, and L. H. Spiekman, “Amplified CWDM systems,” in 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003 (LEOS 2003) (IEEE, 2003), Vol. 2, pp. 678–679.

Spirit, D. M.

D. M. Spirit, L. C. Blank, S. T. Davey, and D. L. Williams, “Systems aspects of Raman fiber amplifiers,” IEE Proc. J. Optoelectron. 137, 221–224 (1990).

Suzuki, K. I.

S. Kawai, H. Masuda, K. I. Suzuki, and K. Aida, “75 nm 3 dB gain-band optical amplifier and discrete Raman amplification,” Electron. Lett. 35, 897–898 (1999).
[CrossRef]

Tam, H. Y.

Taveira, P. D.

L. A. M. Saito, P. D. Taveira, P. B. Gaarde, K. D. Souza, and E. A. D. Souza, “Multi-pump discrete Raman amplifier for CWDM system in the O-band,” Opt. Fiber Technol. 14, 294–298 (2008).
[CrossRef]

Teixeira, A.

J. A. Lazaro, J. Prat, P. Chanclou, G. M. Tosi Beleffi, A. Teixeira, I. Tomkos, R. Soila, and V. Koratzinos, “Scalable extended reach PON,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThL2.

Thiele, H. J.

H. J. Thiele, L. Nelson, J. Thomas, B. Eichenbaum, L. Spiekman, and G. van den Hoven, “Linear optical amplifier for extended reach in CWDM transmission systems,” in Optical Fiber Communications Conference, Technical Digest (Optical Society of America, 2003), paper MF21.

Thomas, J.

H. J. Thiele, L. Nelson, J. Thomas, B. Eichenbaum, L. Spiekman, and G. van den Hoven, “Linear optical amplifier for extended reach in CWDM transmission systems,” in Optical Fiber Communications Conference, Technical Digest (Optical Society of America, 2003), paper MF21.

Tomkos, I.

J. A. Lazaro, J. Prat, P. Chanclou, G. M. Tosi Beleffi, A. Teixeira, I. Tomkos, R. Soila, and V. Koratzinos, “Scalable extended reach PON,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThL2.

Tosi Beleffi, G. M.

J. A. Lazaro, J. Prat, P. Chanclou, G. M. Tosi Beleffi, A. Teixeira, I. Tomkos, R. Soila, and V. Koratzinos, “Scalable extended reach PON,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThL2.

Tsuzaki, T.

T. Miyamoto, T. Tsuzaki, T. Okuno, M. Kakui, M. Hirano, M. Onoshi, M. Shigematsu, and M. Nishimura, “Highly-nonlinear-fiber-based discrete Raman amplifier for CWDM transmission system,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper MF19.

Uesaka, K.

Ummy, M. A.

M. A. Ummy, M. F. Arend, L. Leng, N. Madamopoulos, and R. Dorsinville, “Extending the gain bandwidth of combined Raman-parametric fiber amplifiers using highly nonlinear fiber,” J. Lightwave Technol. 27, 583–589 (2009).
[CrossRef]

S. Peiris, N. Madamopoulos, N. Antoniades, M. A. Ummy, R. Dorsinville, and M. Ali, “Extended gain bandwidth low ripple hybrid Raman-parametric amplifier design for PON applications,” presented at IEEE Photonics Conference 2012, Burlingame, California, USA, 23–27 September 2012, paper ME-2.

van den Hoven, G.

H. J. Thiele, L. Nelson, J. Thomas, B. Eichenbaum, L. Spiekman, and G. van den Hoven, “Linear optical amplifier for extended reach in CWDM transmission systems,” in Optical Fiber Communications Conference, Technical Digest (Optical Society of America, 2003), paper MF21.

Wai, P. K. A.

Wang, D.

Wang, S. H.

Westbrook, P.

P. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, M. Du, B. Pálsdóttir, K. Feder, P. Westbrook, K. Brar, J. Mann, and L. Spiekman, “Four extended-reach TDM PONs sharing a bidirectional hybrid CWDM amplifier,” J. Lightwave Technol. 26, 138–143 (2008).
[CrossRef]

P. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, M. Du, B. Palsdottir, K. Feder, P. Westbrook, K. Brar, J. Mann, and L. Spiekman, “Hybrid CWDM amplifier shared by multiple TDM pons,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP13.

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[CrossRef]

Williams, D. L.

D. M. Spirit, L. C. Blank, S. T. Davey, and D. L. Williams, “Systems aspects of Raman fiber amplifiers,” IEE Proc. J. Optoelectron. 137, 221–224 (1990).

Wong, K. K. Y.

K. K. Y. Wong, M. E. Marhic, G. Kalogerakis, and L. G. Kazovsky, “Fiber optical parametric amplifier and wavelength converter with record 360 nm gain bandwidth and 50 dB signal gain,” in Conference on Lasers and Electro-Optics, 2003 (IEEE, 2003), paper CThPDB6.

Xu, L.

Yaman, F.

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 16, 1292–1294 (2004).
[CrossRef]

Zhang, X.

Zhou, X.

P. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, M. Du, B. Pálsdóttir, K. Feder, P. Westbrook, K. Brar, J. Mann, and L. Spiekman, “Four extended-reach TDM PONs sharing a bidirectional hybrid CWDM amplifier,” J. Lightwave Technol. 26, 138–143 (2008).
[CrossRef]

K. C. Reichmann, P. P. Iannone, X. Zhou, N. J. Frigo, and B. R. Hemenway, “240 km CWDM transmission using cascaded SOA Raman hybrid amplifiers with 70 nm bandwidth,” IEEE Photon. Technol. Lett. 18, 328–330 (2006).
[CrossRef]

P. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, M. Du, B. Palsdottir, K. Feder, P. Westbrook, K. Brar, J. Mann, and L. Spiekman, “Hybrid CWDM amplifier shared by multiple TDM pons,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP13.

H. H. Lee, K. C. Reichmann, P. P. Iannone, X. Zhou, and B. Palsdottir, “A hybrid-amplified PON with 75 nm downstream band-width, 60 km reach, 1∶64 split, and multiple video services,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 2007), paper OWL2.

Chin. Opt. Lett.

Electron. Lett.

A. Altuncu, A. S. Siddiqui, A. Ellis, M. A. Newhouse, and A. J. Antos, “Gain and noise figure characterization of a 68 km long distributed erbium doped fiber amplifier,” Electron. Lett. 32, 1800–1801 (1996).
[CrossRef]

J. Kani and M. Jinno, “Wideband and flat-gain optical amplification from 1460 to 1510 nm by serial combination of a thulium-doped fluoride fiber amplifier and fiber Raman amplifier,” Electron. Lett. 35, 1004–1006 (1999).
[CrossRef]

S. Kawai, H. Masuda, K. I. Suzuki, and K. Aida, “75 nm 3 dB gain-band optical amplifier and discrete Raman amplification,” Electron. Lett. 35, 897–898 (1999).
[CrossRef]

IEE Proc. J. Optoelectron.

D. M. Spirit, L. C. Blank, S. T. Davey, and D. L. Williams, “Systems aspects of Raman fiber amplifiers,” IEE Proc. J. Optoelectron. 137, 221–224 (1990).

IEEE Commun. Mag.

F. J. Effenberger, H. Mukai, S. Park, and T. Pfeiffer, “Next-generation PON—part II: candidate systems for next-generation PON,” IEEE Commun. Mag. 47(11), 50–57 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 16, 1292–1294 (2004).
[CrossRef]

H. H. Lee, P. P. Iannone, K. Reichmann, J. Lee, and B. Pálsdóttir, “A C/L-band gain-clamped SOA-Raman hybrid amplifier for CWDM access networks,” IEEE Photon. Technol. Lett. 20, 196–198 (2008).
[CrossRef]

S. Park, R. Leavitt, R. Enck, V. Luciani, Y. Hu, P. J. S. Heim, D. Bowler, and M. Dagenais, “Semiconductor optical amplifier for CWDM operating over 1540–1620 nm,” IEEE Photon. Technol. Lett. 17, 980–982 (2005).
[CrossRef]

K. C. Reichmann, P. P. Iannone, X. Zhou, N. J. Frigo, and B. R. Hemenway, “240 km CWDM transmission using cascaded SOA Raman hybrid amplifiers with 70 nm bandwidth,” IEEE Photon. Technol. Lett. 18, 328–330 (2006).
[CrossRef]

H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump interactions in a 100 nm bandwidth Raman amplifier,” IEEE Photon. Technol. Lett. 11, 530–532 (1999).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

J. F. L. Freitas, M. B. Costa e Silva, S. R. Liitbi, and A. S. L. Gomes, “Raman enhanced parametric amplifier based S-C band wavelength converter: experiment and simulations,” Opt. Commun. 255, 314–318 (2005).
[CrossRef]

Opt. Fiber Technol.

L. A. M. Saito, P. D. Taveira, P. B. Gaarde, K. D. Souza, and E. A. D. Souza, “Multi-pump discrete Raman amplifier for CWDM system in the O-band,” Opt. Fiber Technol. 14, 294–298 (2008).
[CrossRef]

Opt. Lett.

Other

OFS-HNLF Datasheet and data provided by L. Grüner-Nielsen, Incubation Center, OFS Denmark, Priorparken 680, DK-2605 Brondby, Denmark (personal communication, 2012).

S. Peiris, N. Madamopoulos, N. Antoniades, M. A. Ummy, R. Dorsinville, and M. Ali, “Extended gain bandwidth low ripple hybrid Raman-parametric amplifier design for PON applications,” presented at IEEE Photonics Conference 2012, Burlingame, California, USA, 23–27 September 2012, paper ME-2.

LAN/MAN Standards Committee, “Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications, amendment 1: physical layer specifications and management parameters for 10  Gb/s passive optical networks,” in IEEE Std 802.3av-2009 (IEEE Computer Society, 2009).

“Spectral grids for WDM applications: CWDM wavelength grid,” ITU-T Recommendation G.694.2, from Series G: Transmission Systems and Media, Digital Systems and Networks: Transmission media characteristics—Characteristics of optical components and subsystems (International Telecommunication Union, 2003).

P. P. Iannone, K. C. Reichmann, and L. H. Spiekman, “Amplified CWDM systems,” in 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003 (LEOS 2003) (IEEE, 2003), Vol. 2, pp. 678–679.

C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier/Academic, 2004).

K. K. Y. Wong, M. E. Marhic, G. Kalogerakis, and L. G. Kazovsky, “Fiber optical parametric amplifier and wavelength converter with record 360 nm gain bandwidth and 50 dB signal gain,” in Conference on Lasers and Electro-Optics, 2003 (IEEE, 2003), paper CThPDB6.

J. B. Rosolem, A. A. Juriollo, R. Arradi, A. D. Coral, J. C. Oliveira, and M. A. Romero, “Triple band silica based double pass EDFA with an embedded DCF module for CWDM applications,” in Optical Amplifiers and Their Applications, Technical Digest (CD) (Optical Society of America, 2005), paper WC4.

J. B. Rosolem, A. A. Juriollo, R. Arradi, A. D. Coral, J. C. Oliveira, and M. A. Romero, “All silica triple band double pass EDFA for CWDM applications,” in Proceedings of the 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2005 (LEOS 2005) (IEEE, 2005), pp. 929–9030.

T. Miyamoto, T. Tsuzaki, T. Okuno, M. Kakui, M. Hirano, M. Onoshi, M. Shigematsu, and M. Nishimura, “Highly-nonlinear-fiber-based discrete Raman amplifier for CWDM transmission system,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper MF19.

H. H. Lee, K. Reichmann, P. P. Iannone, and J. S. Lee, “A gain-clamped SOA-Raman hybrid amplifier for a CWDM access network without gain-saturation induced crosstalk,” in Conference on Lasers and Electro-Optics/Pacific Rim 2007 (CLEO/PR 2007) (Optical Society of America, 2007), paper WD1_2.

Y. Shachaf, P. Kourtessis, and J. M. Senior, “A full-duplex access network based on CWDM-routed PONs,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JThA101.

P. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, M. Du, B. Palsdottir, K. Feder, P. Westbrook, K. Brar, J. Mann, and L. Spiekman, “Hybrid CWDM amplifier shared by multiple TDM pons,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP13.

J. M. Oh, S. G. Koo, D. Lee, and S. J. Park, “Enhanced system performance of an RSOA based hybrid WDM/TDM system using a remotely pumped erbium-doped fiber amplifier,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, (OFC/NFOEC), OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP9.

H. H. Lee, K. C. Reichmann, P. P. Iannone, X. Zhou, and B. Palsdottir, “A hybrid-amplified PON with 75 nm downstream band-width, 60 km reach, 1∶64 split, and multiple video services,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 2007), paper OWL2.

H. H. Lee, P. P. Iannone, K. C. Richmann, and B. W. Kim, “A bidirectional SOA-Raman hybrid amplifier shared by 2.5  Gb/s, 60 km long-reach WDM-TDM PON,” in 34th European Conference on Optical Communication, 2008 (ECOC 2008) (IEEE, 2008), pp. 215–216.

D. Nesset, S. Appathurai, R. Davey, and T. Kelly, “Extended reach GPON using high gain semiconductor optical amplifiers,” in The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWA107.

J. A. Lazaro, J. Prat, P. Chanclou, G. M. Tosi Beleffi, A. Teixeira, I. Tomkos, R. Soila, and V. Koratzinos, “Scalable extended reach PON,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThL2.

H. J. Thiele, L. Nelson, J. Thomas, B. Eichenbaum, L. Spiekman, and G. van den Hoven, “Linear optical amplifier for extended reach in CWDM transmission systems,” in Optical Fiber Communications Conference, Technical Digest (Optical Society of America, 2003), paper MF21.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

(a) HROPA model and (b) relative wavelength difference of the two pumps and their associated gain.

Fig. 2.
Fig. 2.

Fiber parameters used in our simulation: (a) Raman gain efficiency and (b) fiber attenuation versus wavelength [36].

Fig. 3.
Fig. 3.

Raman gain spectra for different values of PR.

Fig. 4.
Fig. 4.

Parametric gain spectra for different values of PP.

Fig. 5.
Fig. 5.

Parametric gain spectra for three different values of ΔλP0=|λPλ0| of 0.6, 1.0, and 1.4 nm.

Fig. 6.
Fig. 6.

Linear phase mismatch Δβ for corresponding ΔλP0=|λPλ0| of 0.6, 1.0, and 1.4 nm.

Fig. 7.
Fig. 7.

Signal gain versus ΔλSP using our model and showing full agreement of our model with the results of their [38] (Fig. 1).

Fig. 8.
Fig. 8.

(a) Parametric gain spectra and (b) required linear phase mismatch Δβ for ΔλP0=1.4nm and different combinations of PP and L (PP=0.5W, L=500m, Δβ=0.01m1; PP=1.0W, L=250m, Δβ=0.02m1; PP=2.5W, L=100m, Δβ=0.05m1).

Fig. 9.
Fig. 9.

Comparison of the gain profiles of the hybrid Raman/OPA with and without β4 in the model. Omission of the β4 leads to (a) underestimation (ΔλP0=0.6nm), (b) correct estimation (ΔλP0=0.45nm), and (c) overestimation (ΔλP0=0.3nm) of the gain bandwidth. (Solid curves show the model that includes β4; dashed curves show model that does not include β4).

Fig. 10.
Fig. 10.

Linear phase mismatch (Δβ) for the corresponding ΔλP0 when we include β4 and omit β4 in the model. The Δβ curve narrows for decreasing ΔλP0 when β4 is included in the model, whereas the Δβ curve widens for decreasing ΔλP0 when β4 is omitted from the model.

Fig. 11.
Fig. 11.

HROPA gain for different PP.

Fig. 12.
Fig. 12.

HROPA gain for different PR.

Fig. 13.
Fig. 13.

HROPA gain for different combinations of PP and PR and PP×PR=3W2.

Fig. 14.
Fig. 14.

HROPA gain curve showing three different gains.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

dPRdz=ωRωPgRPPPPR+ωRωsgRsPsPR+ωRωigRiPiPR+αRPR,
dPPdz=4γ(PP2PsPi)1/2sinϕ+gRPPPPRαPPP,
dPsdz=2γ(PP2PsPi)1/2sinϕ+gRsPsPRαsPs,
dPidz=2γ(PP2PsPi)1/2sinϕ+gRiPiPRαiPi,
dϕdz=Δβ+γ(2PPPsPi)+γ[(PP2Ps/Pi)1/2+(PP2Pi/Ps)1/24(PsPi)1/2]cosϕ,
Δβ=(β3(ωPωo)+β42(ωPωo)2)(ωsωP)2+β412(ωsωP)4.

Metrics