Abstract

The bulk laser-induced damage threshold (LIDT) fluence of Ti:sapphire is determined under single-pulse irradiation from the femtosecond to nanosecond temporal regimes in the visible and near-infrared spectral domains. In the range of explored laser conditions, the LIDT fluence increases with both pulse duration and wavelength. The results are also compared to laser interaction with sapphire samples and show an increased resistance to laser damage when the material is doped with Ti3+ ions. These conclusions are of interest for robust operation of high-peak-power femtosecond Ti:sapphire laser chains.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Mourou, T. Tajima, and S. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006).
    [CrossRef]
  2. C. R. Giuliano and L. D. Hess, “Damage threshold studies in ruby and sapphire,” Proc. SPIE 341, 76–89 (1970).
  3. S. C. Seitel and L. G. DeShazer, “Laser-induced damage to titanium-doped sapphire using 532 nm wavelength pulses of 10 ns duration,” Proc. SPIE 752, 65–69 (1987).
    [CrossRef]
  4. Y. Sun, Q. Zhang, and H. Gong, “Polarized 10 ns frequency-doubled Nd:YAG laser induced damage to titanium-doped sapphire,” Proc. SPIE 2114, 166–177 (1993).
    [CrossRef]
  5. G. Nath and G. Walda, “Strong reduction of laser produced damage in sapphire and ruby by doping with TiO2,” Z. Naturforsch. A 23, 624–625 (1968).
  6. F. Canova, J.-P. Chambaret, G. Mourou, M. Sentis, O. Utéza, P. Delaporte, T. Itina, J.-Y. Natoli, M. Commandré, and C. Amra, “Complete characterization of damage threshold in titanium doped sapphire crystals with nanosecond, picosecond and femtosecond laser pulses,” Proc. SPIE 5991, 639–645 (2005).
    [CrossRef]
  7. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986).
    [CrossRef]
  8. M. A. Verneuil, “Mémoire sur la reproduction artificielle du rubis par fusion,” Ann. Chim. Phys. (8th Series) 3, 20–48 (1904).
  9. H. J. Scheel, “The development of crystal growth technology,” in Crystal Growth TechnologyH. J. Scheel and T. Fukuda, eds. (Wiley, 2003), pp. 3–14.
  10. C. P. Khattak and F. Schmid, “Growth of the world’s largest sapphire crystals,” J. Cryst. Growth 225, 572–579 (2001).
    [CrossRef]
  11. E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, Sapphire: Materials, Manufacturing, Applications (Springer, 2009).
  12. Standard ISO 11254-1, “Determination of laser-damage threshold of optical surfaces. 1. 1-on-1 test” (International Organization for Standardization, 2000).
  13. L. Gallais and J-Y. Natoli, “Optimized metrology for laser-damage measurement: application to multiparameter study,” Appl. Opt. 42, 960–971 (2003).
    [CrossRef]
  14. L. Lamaignère, T. Donval, M. Loiseau, J. C. Poncetta, G. Razé, C. Meslin, B. Bertussi, and H. Bercegol, “Accurate measurements of laser-induced bulk damage density,” Meas. Sci. Technol. 20, 095701 (2009).
    [CrossRef]
  15. N. Sanner, O. Utéza, B. Bussière, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys. A 94, 889–897 (2009).
    [CrossRef]
  16. F. R. Wagner, G. Duchateau, A. Hildenbrand, J-Y. Natoli, and M. Commandré, “Model for nanosecond laser-induced damage in potassium titanyl phosphate crystals,” Appl. Phys. Lett. 99, 231111 (2011).
    [CrossRef]
  17. B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Légaré, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused silica in femtosecond regime: relevant physical criteria and mechanisms,” Phys. Rev. B. 84, 094104 (2011).
    [CrossRef]
  18. A. E. Siegman, Lasers (University Science, 1986).
  19. B. Bussière, O. Utéza, N. Sanner, M. Sentis, G. Riboulet, L. Vigroux, M. Commandré, F. Wagner, J.-Y. Natoli, and J.-P. Chambaret, “Laser-induced damage of sapphire and titanium sapphire doped crystals under femtosecond to nanosecond laser irradiation,” Proc. SPIE 7504, 75041N (2009).
    [CrossRef]
  20. B. Bussière, Etude des mécanismes d’endommagement par laser impulsionnel des cristaux de saphir dopé titane, Ph.D. thesis (Aix-Marseille University, 2010), http://www.theses.fr/2010AIX22070 .
  21. W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, 1999).
  22. J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35–110 (1975).
    [CrossRef]
  23. N. Sanner, O. Utéza, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Towards determinism in surface damaging of dielectrics using few-cycle laser pulses,” Appl. Phys. Lett. 96, 071111 (2010).
    [CrossRef]
  24. A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
    [CrossRef]
  25. W. L. Smith, J. H. Bechtel, and N. Bloembergen, “Picosecond laser-induced breakdown at 5321 and 3547 angström: observation of frequency-dependent behavior,” Phys. Rev. B 15, 4039–4055 (1977).
    [CrossRef]
  26. N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974).
    [CrossRef]
  27. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond to femtosecond laser induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
    [CrossRef]
  28. S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 1039–1068 (1989).
  29. M. J. Soileau, “Laser-induced damage to optical materials,” in Handbook of Optics, Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum OpticsM. Bass, 3rd ed. (McGraw-Hill, 2010), pp. 19.1–19.12.
  30. S. Ciraci and I. P. Batra, “Electronic-structure of alpha-alumina and its defect states,” Phys. Rev. B 28, 982–992 (1983).
    [CrossRef]
  31. S. K. Gayen, W. B. Wang, V. Petricevic, K. M. Yoo, and R. R. Alfano, “Picosecond excite-and-probe absorption measurement of the intra-E2gE3/2-state vibrational relaxation time in Ti3+:Al2O3,” Appl. Phys. Lett. 50, 1494–1496 (1987).
    [CrossRef]
  32. A. Schmid, P. Kelly, and P. Braunlich, “Optical breakdown in alkali halides,” Phys. Rev. B 16, 4569–4582 (1977).
    [CrossRef]
  33. P. Agostini and G. Petite, “Photoelectric effect under strong irradiation,” Contemp. Phys. 29, 57–77 (1988).
    [CrossRef]
  34. G. Petite, “Mécanismes fondamentaux de l’ablation laser femtoseconde,” in Lasers et Technologies Femtosecondes, M. Sentis and O. Utéza, eds. (Publications de l’Université de Saint-Etienne, 2005).
  35. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307 (1965).
  36. R. French, “Electronic band structure of Al2O3, with comparison to AlON and AIN,” J. Am Ceram. Soc. 13, 471–489(1990).
    [CrossRef]
  37. B. Bertussi, J.-Y. Natoli, and M. Commandré, “Effect of polishing process on silica surface laser-induced damage threshold at 355 nm,” Opt. Commun. 242, 227–231 (2004).
    [CrossRef]
  38. A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
    [CrossRef]
  39. O. Utéza, B. Bussière, F. Canova, J. P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254, 799–803 (2007).
    [CrossRef]
  40. L. D. Merckle, N. Koumvakalis, and M. Bass, “Laser-induced bulk damage in SiO2 at 1.064, 0.532 and 0.355 μm,” J. Appl. Phys. 55, 772–775 (1984).
    [CrossRef]
  41. C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91, 127402 (2003).
    [CrossRef]

2011

F. R. Wagner, G. Duchateau, A. Hildenbrand, J-Y. Natoli, and M. Commandré, “Model for nanosecond laser-induced damage in potassium titanyl phosphate crystals,” Appl. Phys. Lett. 99, 231111 (2011).
[CrossRef]

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Légaré, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused silica in femtosecond regime: relevant physical criteria and mechanisms,” Phys. Rev. B. 84, 094104 (2011).
[CrossRef]

2010

N. Sanner, O. Utéza, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Towards determinism in surface damaging of dielectrics using few-cycle laser pulses,” Appl. Phys. Lett. 96, 071111 (2010).
[CrossRef]

2009

B. Bussière, O. Utéza, N. Sanner, M. Sentis, G. Riboulet, L. Vigroux, M. Commandré, F. Wagner, J.-Y. Natoli, and J.-P. Chambaret, “Laser-induced damage of sapphire and titanium sapphire doped crystals under femtosecond to nanosecond laser irradiation,” Proc. SPIE 7504, 75041N (2009).
[CrossRef]

L. Lamaignère, T. Donval, M. Loiseau, J. C. Poncetta, G. Razé, C. Meslin, B. Bertussi, and H. Bercegol, “Accurate measurements of laser-induced bulk damage density,” Meas. Sci. Technol. 20, 095701 (2009).
[CrossRef]

N. Sanner, O. Utéza, B. Bussière, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys. A 94, 889–897 (2009).
[CrossRef]

2007

O. Utéza, B. Bussière, F. Canova, J. P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254, 799–803 (2007).
[CrossRef]

2006

G. Mourou, T. Tajima, and S. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006).
[CrossRef]

2005

F. Canova, J.-P. Chambaret, G. Mourou, M. Sentis, O. Utéza, P. Delaporte, T. Itina, J.-Y. Natoli, M. Commandré, and C. Amra, “Complete characterization of damage threshold in titanium doped sapphire crystals with nanosecond, picosecond and femtosecond laser pulses,” Proc. SPIE 5991, 639–645 (2005).
[CrossRef]

2004

B. Bertussi, J.-Y. Natoli, and M. Commandré, “Effect of polishing process on silica surface laser-induced damage threshold at 355 nm,” Opt. Commun. 242, 227–231 (2004).
[CrossRef]

2003

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91, 127402 (2003).
[CrossRef]

L. Gallais and J-Y. Natoli, “Optimized metrology for laser-damage measurement: application to multiparameter study,” Appl. Opt. 42, 960–971 (2003).
[CrossRef]

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

2001

C. P. Khattak and F. Schmid, “Growth of the world’s largest sapphire crystals,” J. Cryst. Growth 225, 572–579 (2001).
[CrossRef]

1999

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

1996

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond to femtosecond laser induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

1993

Y. Sun, Q. Zhang, and H. Gong, “Polarized 10 ns frequency-doubled Nd:YAG laser induced damage to titanium-doped sapphire,” Proc. SPIE 2114, 166–177 (1993).
[CrossRef]

1990

R. French, “Electronic band structure of Al2O3, with comparison to AlON and AIN,” J. Am Ceram. Soc. 13, 471–489(1990).
[CrossRef]

1989

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 1039–1068 (1989).

1988

P. Agostini and G. Petite, “Photoelectric effect under strong irradiation,” Contemp. Phys. 29, 57–77 (1988).
[CrossRef]

1987

S. K. Gayen, W. B. Wang, V. Petricevic, K. M. Yoo, and R. R. Alfano, “Picosecond excite-and-probe absorption measurement of the intra-E2gE3/2-state vibrational relaxation time in Ti3+:Al2O3,” Appl. Phys. Lett. 50, 1494–1496 (1987).
[CrossRef]

S. C. Seitel and L. G. DeShazer, “Laser-induced damage to titanium-doped sapphire using 532 nm wavelength pulses of 10 ns duration,” Proc. SPIE 752, 65–69 (1987).
[CrossRef]

1986

1984

L. D. Merckle, N. Koumvakalis, and M. Bass, “Laser-induced bulk damage in SiO2 at 1.064, 0.532 and 0.355 μm,” J. Appl. Phys. 55, 772–775 (1984).
[CrossRef]

1983

S. Ciraci and I. P. Batra, “Electronic-structure of alpha-alumina and its defect states,” Phys. Rev. B 28, 982–992 (1983).
[CrossRef]

1977

A. Schmid, P. Kelly, and P. Braunlich, “Optical breakdown in alkali halides,” Phys. Rev. B 16, 4569–4582 (1977).
[CrossRef]

W. L. Smith, J. H. Bechtel, and N. Bloembergen, “Picosecond laser-induced breakdown at 5321 and 3547 angström: observation of frequency-dependent behavior,” Phys. Rev. B 15, 4039–4055 (1977).
[CrossRef]

1975

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35–110 (1975).
[CrossRef]

1974

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974).
[CrossRef]

1970

C. R. Giuliano and L. D. Hess, “Damage threshold studies in ruby and sapphire,” Proc. SPIE 341, 76–89 (1970).

1968

G. Nath and G. Walda, “Strong reduction of laser produced damage in sapphire and ruby by doping with TiO2,” Z. Naturforsch. A 23, 624–625 (1968).

1965

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307 (1965).

1904

M. A. Verneuil, “Mémoire sur la reproduction artificielle du rubis par fusion,” Ann. Chim. Phys. (8th Series) 3, 20–48 (1904).

Agostini, P.

P. Agostini and G. Petite, “Photoelectric effect under strong irradiation,” Contemp. Phys. 29, 57–77 (1988).
[CrossRef]

Alfano, R. R.

S. K. Gayen, W. B. Wang, V. Petricevic, K. M. Yoo, and R. R. Alfano, “Picosecond excite-and-probe absorption measurement of the intra-E2gE3/2-state vibrational relaxation time in Ti3+:Al2O3,” Appl. Phys. Lett. 50, 1494–1496 (1987).
[CrossRef]

Amra, C.

F. Canova, J.-P. Chambaret, G. Mourou, M. Sentis, O. Utéza, P. Delaporte, T. Itina, J.-Y. Natoli, M. Commandré, and C. Amra, “Complete characterization of damage threshold in titanium doped sapphire crystals with nanosecond, picosecond and femtosecond laser pulses,” Proc. SPIE 5991, 639–645 (2005).
[CrossRef]

Backus, S.

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

Bass, M.

L. D. Merckle, N. Koumvakalis, and M. Bass, “Laser-induced bulk damage in SiO2 at 1.064, 0.532 and 0.355 μm,” J. Appl. Phys. 55, 772–775 (1984).
[CrossRef]

Batra, I. P.

S. Ciraci and I. P. Batra, “Electronic-structure of alpha-alumina and its defect states,” Phys. Rev. B 28, 982–992 (1983).
[CrossRef]

Bechtel, J. H.

W. L. Smith, J. H. Bechtel, and N. Bloembergen, “Picosecond laser-induced breakdown at 5321 and 3547 angström: observation of frequency-dependent behavior,” Phys. Rev. B 15, 4039–4055 (1977).
[CrossRef]

Bercegol, H.

L. Lamaignère, T. Donval, M. Loiseau, J. C. Poncetta, G. Razé, C. Meslin, B. Bertussi, and H. Bercegol, “Accurate measurements of laser-induced bulk damage density,” Meas. Sci. Technol. 20, 095701 (2009).
[CrossRef]

Bertussi, B.

L. Lamaignère, T. Donval, M. Loiseau, J. C. Poncetta, G. Razé, C. Meslin, B. Bertussi, and H. Bercegol, “Accurate measurements of laser-induced bulk damage density,” Meas. Sci. Technol. 20, 095701 (2009).
[CrossRef]

B. Bertussi, J.-Y. Natoli, and M. Commandré, “Effect of polishing process on silica surface laser-induced damage threshold at 355 nm,” Opt. Commun. 242, 227–231 (2004).
[CrossRef]

Bloembergen, N.

W. L. Smith, J. H. Bechtel, and N. Bloembergen, “Picosecond laser-induced breakdown at 5321 and 3547 angström: observation of frequency-dependent behavior,” Phys. Rev. B 15, 4039–4055 (1977).
[CrossRef]

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974).
[CrossRef]

Braunlich, P.

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 1039–1068 (1989).

A. Schmid, P. Kelly, and P. Braunlich, “Optical breakdown in alkali halides,” Phys. Rev. B 16, 4569–4582 (1977).
[CrossRef]

Bulanov, S.

G. Mourou, T. Tajima, and S. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006).
[CrossRef]

Bussière, B.

N. Sanner, O. Utéza, B. Bussière, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys. A 94, 889–897 (2009).
[CrossRef]

B. Bussière, O. Utéza, N. Sanner, M. Sentis, G. Riboulet, L. Vigroux, M. Commandré, F. Wagner, J.-Y. Natoli, and J.-P. Chambaret, “Laser-induced damage of sapphire and titanium sapphire doped crystals under femtosecond to nanosecond laser irradiation,” Proc. SPIE 7504, 75041N (2009).
[CrossRef]

O. Utéza, B. Bussière, F. Canova, J. P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254, 799–803 (2007).
[CrossRef]

B. Bussière, Etude des mécanismes d’endommagement par laser impulsionnel des cristaux de saphir dopé titane, Ph.D. thesis (Aix-Marseille University, 2010), http://www.theses.fr/2010AIX22070 .

Canova, F.

O. Utéza, B. Bussière, F. Canova, J. P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254, 799–803 (2007).
[CrossRef]

F. Canova, J.-P. Chambaret, G. Mourou, M. Sentis, O. Utéza, P. Delaporte, T. Itina, J.-Y. Natoli, M. Commandré, and C. Amra, “Complete characterization of damage threshold in titanium doped sapphire crystals with nanosecond, picosecond and femtosecond laser pulses,” Proc. SPIE 5991, 639–645 (2005).
[CrossRef]

Carr, C. W.

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91, 127402 (2003).
[CrossRef]

Casper, R. T.

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 1039–1068 (1989).

Chambaret, J. P.

O. Utéza, B. Bussière, F. Canova, J. P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254, 799–803 (2007).
[CrossRef]

Chambaret, J.-P.

B. Bussière, O. Utéza, N. Sanner, M. Sentis, G. Riboulet, L. Vigroux, M. Commandré, F. Wagner, J.-Y. Natoli, and J.-P. Chambaret, “Laser-induced damage of sapphire and titanium sapphire doped crystals under femtosecond to nanosecond laser irradiation,” Proc. SPIE 7504, 75041N (2009).
[CrossRef]

F. Canova, J.-P. Chambaret, G. Mourou, M. Sentis, O. Utéza, P. Delaporte, T. Itina, J.-Y. Natoli, M. Commandré, and C. Amra, “Complete characterization of damage threshold in titanium doped sapphire crystals with nanosecond, picosecond and femtosecond laser pulses,” Proc. SPIE 5991, 639–645 (2005).
[CrossRef]

Chimier, B.

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Légaré, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused silica in femtosecond regime: relevant physical criteria and mechanisms,” Phys. Rev. B. 84, 094104 (2011).
[CrossRef]

Ciraci, S.

S. Ciraci and I. P. Batra, “Electronic-structure of alpha-alumina and its defect states,” Phys. Rev. B 28, 982–992 (1983).
[CrossRef]

Commandré, M.

F. R. Wagner, G. Duchateau, A. Hildenbrand, J-Y. Natoli, and M. Commandré, “Model for nanosecond laser-induced damage in potassium titanyl phosphate crystals,” Appl. Phys. Lett. 99, 231111 (2011).
[CrossRef]

B. Bussière, O. Utéza, N. Sanner, M. Sentis, G. Riboulet, L. Vigroux, M. Commandré, F. Wagner, J.-Y. Natoli, and J.-P. Chambaret, “Laser-induced damage of sapphire and titanium sapphire doped crystals under femtosecond to nanosecond laser irradiation,” Proc. SPIE 7504, 75041N (2009).
[CrossRef]

F. Canova, J.-P. Chambaret, G. Mourou, M. Sentis, O. Utéza, P. Delaporte, T. Itina, J.-Y. Natoli, M. Commandré, and C. Amra, “Complete characterization of damage threshold in titanium doped sapphire crystals with nanosecond, picosecond and femtosecond laser pulses,” Proc. SPIE 5991, 639–645 (2005).
[CrossRef]

B. Bertussi, J.-Y. Natoli, and M. Commandré, “Effect of polishing process on silica surface laser-induced damage threshold at 355 nm,” Opt. Commun. 242, 227–231 (2004).
[CrossRef]

Coustillier, G.

N. Sanner, O. Utéza, B. Bussière, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys. A 94, 889–897 (2009).
[CrossRef]

Delaporte, P.

O. Utéza, B. Bussière, F. Canova, J. P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254, 799–803 (2007).
[CrossRef]

F. Canova, J.-P. Chambaret, G. Mourou, M. Sentis, O. Utéza, P. Delaporte, T. Itina, J.-Y. Natoli, M. Commandré, and C. Amra, “Complete characterization of damage threshold in titanium doped sapphire crystals with nanosecond, picosecond and femtosecond laser pulses,” Proc. SPIE 5991, 639–645 (2005).
[CrossRef]

Demos, S. G.

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91, 127402 (2003).
[CrossRef]

DeShazer, L. G.

S. C. Seitel and L. G. DeShazer, “Laser-induced damage to titanium-doped sapphire using 532 nm wavelength pulses of 10 ns duration,” Proc. SPIE 752, 65–69 (1987).
[CrossRef]

Dobrovinskaya, E. R.

E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, Sapphire: Materials, Manufacturing, Applications (Springer, 2009).

Donval, T.

L. Lamaignère, T. Donval, M. Loiseau, J. C. Poncetta, G. Razé, C. Meslin, B. Bertussi, and H. Bercegol, “Accurate measurements of laser-induced bulk damage density,” Meas. Sci. Technol. 20, 095701 (2009).
[CrossRef]

Duchateau, G.

F. R. Wagner, G. Duchateau, A. Hildenbrand, J-Y. Natoli, and M. Commandré, “Model for nanosecond laser-induced damage in potassium titanyl phosphate crystals,” Appl. Phys. Lett. 99, 231111 (2011).
[CrossRef]

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond to femtosecond laser induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

French, R.

R. French, “Electronic band structure of Al2O3, with comparison to AlON and AIN,” J. Am Ceram. Soc. 13, 471–489(1990).
[CrossRef]

Gallais, L.

Gayen, S. K.

S. K. Gayen, W. B. Wang, V. Petricevic, K. M. Yoo, and R. R. Alfano, “Picosecond excite-and-probe absorption measurement of the intra-E2gE3/2-state vibrational relaxation time in Ti3+:Al2O3,” Appl. Phys. Lett. 50, 1494–1496 (1987).
[CrossRef]

Giuliano, C. R.

C. R. Giuliano and L. D. Hess, “Damage threshold studies in ruby and sapphire,” Proc. SPIE 341, 76–89 (1970).

Gong, H.

Y. Sun, Q. Zhang, and H. Gong, “Polarized 10 ns frequency-doubled Nd:YAG laser induced damage to titanium-doped sapphire,” Proc. SPIE 2114, 166–177 (1993).
[CrossRef]

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond to femtosecond laser induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Hess, L. D.

C. R. Giuliano and L. D. Hess, “Damage threshold studies in ruby and sapphire,” Proc. SPIE 341, 76–89 (1970).

Hildenbrand, A.

F. R. Wagner, G. Duchateau, A. Hildenbrand, J-Y. Natoli, and M. Commandré, “Model for nanosecond laser-induced damage in potassium titanyl phosphate crystals,” Appl. Phys. Lett. 99, 231111 (2011).
[CrossRef]

Hunt, A. J.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Itina, T.

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Légaré, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused silica in femtosecond regime: relevant physical criteria and mechanisms,” Phys. Rev. B. 84, 094104 (2011).
[CrossRef]

N. Sanner, O. Utéza, B. Bussière, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys. A 94, 889–897 (2009).
[CrossRef]

O. Utéza, B. Bussière, F. Canova, J. P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254, 799–803 (2007).
[CrossRef]

F. Canova, J.-P. Chambaret, G. Mourou, M. Sentis, O. Utéza, P. Delaporte, T. Itina, J.-Y. Natoli, M. Commandré, and C. Amra, “Complete characterization of damage threshold in titanium doped sapphire crystals with nanosecond, picosecond and femtosecond laser pulses,” Proc. SPIE 5991, 639–645 (2005).
[CrossRef]

Joglekar, A. P.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Jones, S. C.

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 1039–1068 (1989).

Kapteyn, H.

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

Keldysh, L. V.

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307 (1965).

Kelly, P.

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 1039–1068 (1989).

A. Schmid, P. Kelly, and P. Braunlich, “Optical breakdown in alkali halides,” Phys. Rev. B 16, 4569–4582 (1977).
[CrossRef]

Khattak, C. P.

C. P. Khattak and F. Schmid, “Growth of the world’s largest sapphire crystals,” J. Cryst. Growth 225, 572–579 (2001).
[CrossRef]

Kieffer, J. C.

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Légaré, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused silica in femtosecond regime: relevant physical criteria and mechanisms,” Phys. Rev. B. 84, 094104 (2011).
[CrossRef]

N. Sanner, O. Utéza, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Towards determinism in surface damaging of dielectrics using few-cycle laser pulses,” Appl. Phys. Lett. 96, 071111 (2010).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, 1999).

Koumvakalis, N.

L. D. Merckle, N. Koumvakalis, and M. Bass, “Laser-induced bulk damage in SiO2 at 1.064, 0.532 and 0.355 μm,” J. Appl. Phys. 55, 772–775 (1984).
[CrossRef]

Lamaignère, L.

L. Lamaignère, T. Donval, M. Loiseau, J. C. Poncetta, G. Razé, C. Meslin, B. Bertussi, and H. Bercegol, “Accurate measurements of laser-induced bulk damage density,” Meas. Sci. Technol. 20, 095701 (2009).
[CrossRef]

Lassonde, P.

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Légaré, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused silica in femtosecond regime: relevant physical criteria and mechanisms,” Phys. Rev. B. 84, 094104 (2011).
[CrossRef]

N. Sanner, O. Utéza, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Towards determinism in surface damaging of dielectrics using few-cycle laser pulses,” Appl. Phys. Lett. 96, 071111 (2010).
[CrossRef]

Légaré, F.

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Légaré, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused silica in femtosecond regime: relevant physical criteria and mechanisms,” Phys. Rev. B. 84, 094104 (2011).
[CrossRef]

N. Sanner, O. Utéza, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Towards determinism in surface damaging of dielectrics using few-cycle laser pulses,” Appl. Phys. Lett. 96, 071111 (2010).
[CrossRef]

Leray, A.

N. Sanner, O. Utéza, B. Bussière, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys. A 94, 889–897 (2009).
[CrossRef]

Liu, H.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Loiseau, M.

L. Lamaignère, T. Donval, M. Loiseau, J. C. Poncetta, G. Razé, C. Meslin, B. Bertussi, and H. Bercegol, “Accurate measurements of laser-induced bulk damage density,” Meas. Sci. Technol. 20, 095701 (2009).
[CrossRef]

Lytvynov, L. A.

E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, Sapphire: Materials, Manufacturing, Applications (Springer, 2009).

Marburger, J. H.

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35–110 (1975).
[CrossRef]

Merckle, L. D.

L. D. Merckle, N. Koumvakalis, and M. Bass, “Laser-induced bulk damage in SiO2 at 1.064, 0.532 and 0.355 μm,” J. Appl. Phys. 55, 772–775 (1984).
[CrossRef]

Meslin, C.

L. Lamaignère, T. Donval, M. Loiseau, J. C. Poncetta, G. Razé, C. Meslin, B. Bertussi, and H. Bercegol, “Accurate measurements of laser-induced bulk damage density,” Meas. Sci. Technol. 20, 095701 (2009).
[CrossRef]

Meyhofer, E.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Moulton, P. F.

Mourou, G.

G. Mourou, T. Tajima, and S. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006).
[CrossRef]

F. Canova, J.-P. Chambaret, G. Mourou, M. Sentis, O. Utéza, P. Delaporte, T. Itina, J.-Y. Natoli, M. Commandré, and C. Amra, “Complete characterization of damage threshold in titanium doped sapphire crystals with nanosecond, picosecond and femtosecond laser pulses,” Proc. SPIE 5991, 639–645 (2005).
[CrossRef]

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

Murnane, M.

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

Nath, G.

G. Nath and G. Walda, “Strong reduction of laser produced damage in sapphire and ruby by doping with TiO2,” Z. Naturforsch. A 23, 624–625 (1968).

Natoli, J.-Y.

B. Bussière, O. Utéza, N. Sanner, M. Sentis, G. Riboulet, L. Vigroux, M. Commandré, F. Wagner, J.-Y. Natoli, and J.-P. Chambaret, “Laser-induced damage of sapphire and titanium sapphire doped crystals under femtosecond to nanosecond laser irradiation,” Proc. SPIE 7504, 75041N (2009).
[CrossRef]

F. Canova, J.-P. Chambaret, G. Mourou, M. Sentis, O. Utéza, P. Delaporte, T. Itina, J.-Y. Natoli, M. Commandré, and C. Amra, “Complete characterization of damage threshold in titanium doped sapphire crystals with nanosecond, picosecond and femtosecond laser pulses,” Proc. SPIE 5991, 639–645 (2005).
[CrossRef]

B. Bertussi, J.-Y. Natoli, and M. Commandré, “Effect of polishing process on silica surface laser-induced damage threshold at 355 nm,” Opt. Commun. 242, 227–231 (2004).
[CrossRef]

Natoli, J-Y.

F. R. Wagner, G. Duchateau, A. Hildenbrand, J-Y. Natoli, and M. Commandré, “Model for nanosecond laser-induced damage in potassium titanyl phosphate crystals,” Appl. Phys. Lett. 99, 231111 (2011).
[CrossRef]

L. Gallais and J-Y. Natoli, “Optimized metrology for laser-damage measurement: application to multiparameter study,” Appl. Opt. 42, 960–971 (2003).
[CrossRef]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond to femtosecond laser induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Petite, G.

P. Agostini and G. Petite, “Photoelectric effect under strong irradiation,” Contemp. Phys. 29, 57–77 (1988).
[CrossRef]

G. Petite, “Mécanismes fondamentaux de l’ablation laser femtoseconde,” in Lasers et Technologies Femtosecondes, M. Sentis and O. Utéza, eds. (Publications de l’Université de Saint-Etienne, 2005).

Petricevic, V.

S. K. Gayen, W. B. Wang, V. Petricevic, K. M. Yoo, and R. R. Alfano, “Picosecond excite-and-probe absorption measurement of the intra-E2gE3/2-state vibrational relaxation time in Ti3+:Al2O3,” Appl. Phys. Lett. 50, 1494–1496 (1987).
[CrossRef]

Pishchik, V.

E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, Sapphire: Materials, Manufacturing, Applications (Springer, 2009).

Poncetta, J. C.

L. Lamaignère, T. Donval, M. Loiseau, J. C. Poncetta, G. Razé, C. Meslin, B. Bertussi, and H. Bercegol, “Accurate measurements of laser-induced bulk damage density,” Meas. Sci. Technol. 20, 095701 (2009).
[CrossRef]

Radousky, H. B.

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91, 127402 (2003).
[CrossRef]

Razé, G.

L. Lamaignère, T. Donval, M. Loiseau, J. C. Poncetta, G. Razé, C. Meslin, B. Bertussi, and H. Bercegol, “Accurate measurements of laser-induced bulk damage density,” Meas. Sci. Technol. 20, 095701 (2009).
[CrossRef]

Riboulet, G.

B. Bussière, O. Utéza, N. Sanner, M. Sentis, G. Riboulet, L. Vigroux, M. Commandré, F. Wagner, J.-Y. Natoli, and J.-P. Chambaret, “Laser-induced damage of sapphire and titanium sapphire doped crystals under femtosecond to nanosecond laser irradiation,” Proc. SPIE 7504, 75041N (2009).
[CrossRef]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond to femtosecond laser induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Sanner, N.

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Légaré, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused silica in femtosecond regime: relevant physical criteria and mechanisms,” Phys. Rev. B. 84, 094104 (2011).
[CrossRef]

N. Sanner, O. Utéza, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Towards determinism in surface damaging of dielectrics using few-cycle laser pulses,” Appl. Phys. Lett. 96, 071111 (2010).
[CrossRef]

B. Bussière, O. Utéza, N. Sanner, M. Sentis, G. Riboulet, L. Vigroux, M. Commandré, F. Wagner, J.-Y. Natoli, and J.-P. Chambaret, “Laser-induced damage of sapphire and titanium sapphire doped crystals under femtosecond to nanosecond laser irradiation,” Proc. SPIE 7504, 75041N (2009).
[CrossRef]

N. Sanner, O. Utéza, B. Bussière, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys. A 94, 889–897 (2009).
[CrossRef]

Scheel, H. J.

H. J. Scheel, “The development of crystal growth technology,” in Crystal Growth TechnologyH. J. Scheel and T. Fukuda, eds. (Wiley, 2003), pp. 3–14.

Schmid, A.

A. Schmid, P. Kelly, and P. Braunlich, “Optical breakdown in alkali halides,” Phys. Rev. B 16, 4569–4582 (1977).
[CrossRef]

Schmid, F.

C. P. Khattak and F. Schmid, “Growth of the world’s largest sapphire crystals,” J. Cryst. Growth 225, 572–579 (2001).
[CrossRef]

Seitel, S. C.

S. C. Seitel and L. G. DeShazer, “Laser-induced damage to titanium-doped sapphire using 532 nm wavelength pulses of 10 ns duration,” Proc. SPIE 752, 65–69 (1987).
[CrossRef]

Sentis, M.

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Légaré, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused silica in femtosecond regime: relevant physical criteria and mechanisms,” Phys. Rev. B. 84, 094104 (2011).
[CrossRef]

N. Sanner, O. Utéza, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Towards determinism in surface damaging of dielectrics using few-cycle laser pulses,” Appl. Phys. Lett. 96, 071111 (2010).
[CrossRef]

B. Bussière, O. Utéza, N. Sanner, M. Sentis, G. Riboulet, L. Vigroux, M. Commandré, F. Wagner, J.-Y. Natoli, and J.-P. Chambaret, “Laser-induced damage of sapphire and titanium sapphire doped crystals under femtosecond to nanosecond laser irradiation,” Proc. SPIE 7504, 75041N (2009).
[CrossRef]

N. Sanner, O. Utéza, B. Bussière, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys. A 94, 889–897 (2009).
[CrossRef]

O. Utéza, B. Bussière, F. Canova, J. P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254, 799–803 (2007).
[CrossRef]

F. Canova, J.-P. Chambaret, G. Mourou, M. Sentis, O. Utéza, P. Delaporte, T. Itina, J.-Y. Natoli, M. Commandré, and C. Amra, “Complete characterization of damage threshold in titanium doped sapphire crystals with nanosecond, picosecond and femtosecond laser pulses,” Proc. SPIE 5991, 639–645 (2005).
[CrossRef]

Shen, X.-A.

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 1039–1068 (1989).

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond to femtosecond laser induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, 1986).

Smith, W. L.

W. L. Smith, J. H. Bechtel, and N. Bloembergen, “Picosecond laser-induced breakdown at 5321 and 3547 angström: observation of frequency-dependent behavior,” Phys. Rev. B 15, 4039–4055 (1977).
[CrossRef]

Soileau, M. J.

M. J. Soileau, “Laser-induced damage to optical materials,” in Handbook of Optics, Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum OpticsM. Bass, 3rd ed. (McGraw-Hill, 2010), pp. 19.1–19.12.

Spooner, G. J.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond to femtosecond laser induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Sun, Y.

Y. Sun, Q. Zhang, and H. Gong, “Polarized 10 ns frequency-doubled Nd:YAG laser induced damage to titanium-doped sapphire,” Proc. SPIE 2114, 166–177 (1993).
[CrossRef]

Tajima, T.

G. Mourou, T. Tajima, and S. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006).
[CrossRef]

Tien, A.-C.

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

Utéza, O.

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Légaré, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused silica in femtosecond regime: relevant physical criteria and mechanisms,” Phys. Rev. B. 84, 094104 (2011).
[CrossRef]

N. Sanner, O. Utéza, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Towards determinism in surface damaging of dielectrics using few-cycle laser pulses,” Appl. Phys. Lett. 96, 071111 (2010).
[CrossRef]

B. Bussière, O. Utéza, N. Sanner, M. Sentis, G. Riboulet, L. Vigroux, M. Commandré, F. Wagner, J.-Y. Natoli, and J.-P. Chambaret, “Laser-induced damage of sapphire and titanium sapphire doped crystals under femtosecond to nanosecond laser irradiation,” Proc. SPIE 7504, 75041N (2009).
[CrossRef]

N. Sanner, O. Utéza, B. Bussière, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys. A 94, 889–897 (2009).
[CrossRef]

O. Utéza, B. Bussière, F. Canova, J. P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254, 799–803 (2007).
[CrossRef]

F. Canova, J.-P. Chambaret, G. Mourou, M. Sentis, O. Utéza, P. Delaporte, T. Itina, J.-Y. Natoli, M. Commandré, and C. Amra, “Complete characterization of damage threshold in titanium doped sapphire crystals with nanosecond, picosecond and femtosecond laser pulses,” Proc. SPIE 5991, 639–645 (2005).
[CrossRef]

Verneuil, M. A.

M. A. Verneuil, “Mémoire sur la reproduction artificielle du rubis par fusion,” Ann. Chim. Phys. (8th Series) 3, 20–48 (1904).

Vidal, F.

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Légaré, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused silica in femtosecond regime: relevant physical criteria and mechanisms,” Phys. Rev. B. 84, 094104 (2011).
[CrossRef]

Vigroux, L.

B. Bussière, O. Utéza, N. Sanner, M. Sentis, G. Riboulet, L. Vigroux, M. Commandré, F. Wagner, J.-Y. Natoli, and J.-P. Chambaret, “Laser-induced damage of sapphire and titanium sapphire doped crystals under femtosecond to nanosecond laser irradiation,” Proc. SPIE 7504, 75041N (2009).
[CrossRef]

Wagner, F.

B. Bussière, O. Utéza, N. Sanner, M. Sentis, G. Riboulet, L. Vigroux, M. Commandré, F. Wagner, J.-Y. Natoli, and J.-P. Chambaret, “Laser-induced damage of sapphire and titanium sapphire doped crystals under femtosecond to nanosecond laser irradiation,” Proc. SPIE 7504, 75041N (2009).
[CrossRef]

Wagner, F. R.

F. R. Wagner, G. Duchateau, A. Hildenbrand, J-Y. Natoli, and M. Commandré, “Model for nanosecond laser-induced damage in potassium titanyl phosphate crystals,” Appl. Phys. Lett. 99, 231111 (2011).
[CrossRef]

Walda, G.

G. Nath and G. Walda, “Strong reduction of laser produced damage in sapphire and ruby by doping with TiO2,” Z. Naturforsch. A 23, 624–625 (1968).

Wang, W. B.

S. K. Gayen, W. B. Wang, V. Petricevic, K. M. Yoo, and R. R. Alfano, “Picosecond excite-and-probe absorption measurement of the intra-E2gE3/2-state vibrational relaxation time in Ti3+:Al2O3,” Appl. Phys. Lett. 50, 1494–1496 (1987).
[CrossRef]

Yoo, K. M.

S. K. Gayen, W. B. Wang, V. Petricevic, K. M. Yoo, and R. R. Alfano, “Picosecond excite-and-probe absorption measurement of the intra-E2gE3/2-state vibrational relaxation time in Ti3+:Al2O3,” Appl. Phys. Lett. 50, 1494–1496 (1987).
[CrossRef]

Zhang, Q.

Y. Sun, Q. Zhang, and H. Gong, “Polarized 10 ns frequency-doubled Nd:YAG laser induced damage to titanium-doped sapphire,” Proc. SPIE 2114, 166–177 (1993).
[CrossRef]

Ann. Chim. Phys.

M. A. Verneuil, “Mémoire sur la reproduction artificielle du rubis par fusion,” Ann. Chim. Phys. (8th Series) 3, 20–48 (1904).

Appl. Opt.

Appl. Phys. A

N. Sanner, O. Utéza, B. Bussière, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys. A 94, 889–897 (2009).
[CrossRef]

Appl. Phys. B

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Appl. Phys. Lett.

N. Sanner, O. Utéza, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Towards determinism in surface damaging of dielectrics using few-cycle laser pulses,” Appl. Phys. Lett. 96, 071111 (2010).
[CrossRef]

F. R. Wagner, G. Duchateau, A. Hildenbrand, J-Y. Natoli, and M. Commandré, “Model for nanosecond laser-induced damage in potassium titanyl phosphate crystals,” Appl. Phys. Lett. 99, 231111 (2011).
[CrossRef]

S. K. Gayen, W. B. Wang, V. Petricevic, K. M. Yoo, and R. R. Alfano, “Picosecond excite-and-probe absorption measurement of the intra-E2gE3/2-state vibrational relaxation time in Ti3+:Al2O3,” Appl. Phys. Lett. 50, 1494–1496 (1987).
[CrossRef]

Appl. Surf. Sci.

O. Utéza, B. Bussière, F. Canova, J. P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254, 799–803 (2007).
[CrossRef]

Contemp. Phys.

P. Agostini and G. Petite, “Photoelectric effect under strong irradiation,” Contemp. Phys. 29, 57–77 (1988).
[CrossRef]

IEEE J. Quantum Electron.

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974).
[CrossRef]

J. Am Ceram. Soc.

R. French, “Electronic band structure of Al2O3, with comparison to AlON and AIN,” J. Am Ceram. Soc. 13, 471–489(1990).
[CrossRef]

J. Appl. Phys.

L. D. Merckle, N. Koumvakalis, and M. Bass, “Laser-induced bulk damage in SiO2 at 1.064, 0.532 and 0.355 μm,” J. Appl. Phys. 55, 772–775 (1984).
[CrossRef]

J. Cryst. Growth

C. P. Khattak and F. Schmid, “Growth of the world’s largest sapphire crystals,” J. Cryst. Growth 225, 572–579 (2001).
[CrossRef]

J. Opt. Soc. Am. B

Meas. Sci. Technol.

L. Lamaignère, T. Donval, M. Loiseau, J. C. Poncetta, G. Razé, C. Meslin, B. Bertussi, and H. Bercegol, “Accurate measurements of laser-induced bulk damage density,” Meas. Sci. Technol. 20, 095701 (2009).
[CrossRef]

Opt. Commun.

B. Bertussi, J.-Y. Natoli, and M. Commandré, “Effect of polishing process on silica surface laser-induced damage threshold at 355 nm,” Opt. Commun. 242, 227–231 (2004).
[CrossRef]

Opt. Eng.

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 1039–1068 (1989).

Phys. Rev. B

S. Ciraci and I. P. Batra, “Electronic-structure of alpha-alumina and its defect states,” Phys. Rev. B 28, 982–992 (1983).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond to femtosecond laser induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

W. L. Smith, J. H. Bechtel, and N. Bloembergen, “Picosecond laser-induced breakdown at 5321 and 3547 angström: observation of frequency-dependent behavior,” Phys. Rev. B 15, 4039–4055 (1977).
[CrossRef]

A. Schmid, P. Kelly, and P. Braunlich, “Optical breakdown in alkali halides,” Phys. Rev. B 16, 4569–4582 (1977).
[CrossRef]

Phys. Rev. B.

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Légaré, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused silica in femtosecond regime: relevant physical criteria and mechanisms,” Phys. Rev. B. 84, 094104 (2011).
[CrossRef]

Phys. Rev. Lett.

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91, 127402 (2003).
[CrossRef]

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

Proc. SPIE

F. Canova, J.-P. Chambaret, G. Mourou, M. Sentis, O. Utéza, P. Delaporte, T. Itina, J.-Y. Natoli, M. Commandré, and C. Amra, “Complete characterization of damage threshold in titanium doped sapphire crystals with nanosecond, picosecond and femtosecond laser pulses,” Proc. SPIE 5991, 639–645 (2005).
[CrossRef]

C. R. Giuliano and L. D. Hess, “Damage threshold studies in ruby and sapphire,” Proc. SPIE 341, 76–89 (1970).

S. C. Seitel and L. G. DeShazer, “Laser-induced damage to titanium-doped sapphire using 532 nm wavelength pulses of 10 ns duration,” Proc. SPIE 752, 65–69 (1987).
[CrossRef]

Y. Sun, Q. Zhang, and H. Gong, “Polarized 10 ns frequency-doubled Nd:YAG laser induced damage to titanium-doped sapphire,” Proc. SPIE 2114, 166–177 (1993).
[CrossRef]

B. Bussière, O. Utéza, N. Sanner, M. Sentis, G. Riboulet, L. Vigroux, M. Commandré, F. Wagner, J.-Y. Natoli, and J.-P. Chambaret, “Laser-induced damage of sapphire and titanium sapphire doped crystals under femtosecond to nanosecond laser irradiation,” Proc. SPIE 7504, 75041N (2009).
[CrossRef]

Prog. Quantum Electron.

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35–110 (1975).
[CrossRef]

Rev. Mod. Phys.

G. Mourou, T. Tajima, and S. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006).
[CrossRef]

Sov. Phys. JETP

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307 (1965).

Z. Naturforsch. A

G. Nath and G. Walda, “Strong reduction of laser produced damage in sapphire and ruby by doping with TiO2,” Z. Naturforsch. A 23, 624–625 (1968).

Other

G. Petite, “Mécanismes fondamentaux de l’ablation laser femtoseconde,” in Lasers et Technologies Femtosecondes, M. Sentis and O. Utéza, eds. (Publications de l’Université de Saint-Etienne, 2005).

B. Bussière, Etude des mécanismes d’endommagement par laser impulsionnel des cristaux de saphir dopé titane, Ph.D. thesis (Aix-Marseille University, 2010), http://www.theses.fr/2010AIX22070 .

W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, 1999).

A. E. Siegman, Lasers (University Science, 1986).

M. J. Soileau, “Laser-induced damage to optical materials,” in Handbook of Optics, Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum OpticsM. Bass, 3rd ed. (McGraw-Hill, 2010), pp. 19.1–19.12.

E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, Sapphire: Materials, Manufacturing, Applications (Springer, 2009).

Standard ISO 11254-1, “Determination of laser-damage threshold of optical surfaces. 1. 1-on-1 test” (International Organization for Standardization, 2000).

H. J. Scheel, “The development of crystal growth technology,” in Crystal Growth TechnologyH. J. Scheel and T. Fukuda, eds. (Wiley, 2003), pp. 3–14.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

General setup configuration used for laser-induced damage tests.

Fig. 2.
Fig. 2.

Damage probability of Ti:sapphire and sapphire in infrared range (1030 nm) as a function of fluence and for 500 fs pulse duration. The 1 / e 2 beam radius at the waist is measured outside the sample yielding w 0.1030 nm , fs = 10.8 μm . The insert shows typical damage morphology observed on sapphire sample with the optical microscope (the black circle denotes the beam diameter).

Fig. 3.
Fig. 3.

Damage probability of Ti:sapphire and sapphire in infrared range (1064 nm) as a function of fluence and for 50 ps pulse duration. The 1 / e 2 beam radius at the waist is measured outside the sample, yielding w 0.1064 nm , ps = 8.5 μm .

Fig. 4.
Fig. 4.

Evolution of the probability ratio P i / P D as a function of irradiation fluence. The calculation is performed for pulses of 500 fs (1030 nm) and 50 ps (1064 nm). For the calculation of the interband P i and intraband P D ionization probability, we respectively consider in rough approximation N i = 4.6 · 10 22 cm 3 and N D = 10 19 cm 3 .

Fig. 5.
Fig. 5.

Damage probability of Ti:sapphire and sapphire in visible range (532 nm) as a function of fluence and for 50 ps pulse duration. The 1 / e 2 beam radius at the waist is measured outside the sample, yielding w 0.532 nm , ps = 11 μm .

Fig. 6.
Fig. 6.

Damage probability of Ti:sapphire and sapphire in visible range (532 nm) as a function of fluence and for 5 ns pulse duration. The 1 / e 2 beam radius at the waist is measured outside the sample, yielding w 0.532 nm , ns = 5.4 μm . The insert shows typical damage morphology observed on sapphire sample with the optical microscope (the black circle denotes the beam diameter).

Fig. 7.
Fig. 7.

Evolution of the probability ratio P i / P D as a function of irradiation fluence. The calculation is performed for pulses of 50 ps and 5 ns at the wavelength of 532 nm. At 532 nm, four photons are necessary to overcome the bandgap (interband ionization) while one photon (linear absorption) is needed for triggering an absorption on the doping levels (intraband ionization).

Tables (1)

Tables Icon

Table 1. Summary of LIDT Fluence Measured in Bulk Ti:sapphire and Sapphire under Various Laser Illumination (LIDT Fluences Expressed with Respect to Beam Size Measured Outside Crystals)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

F = 2 E π ω 0 2 ,
α ( F ) = α 0 1 + F / F sat ,
F ( z ) = F ( 0 ) e α ( F ( 0 ) ) z ,
W i = σ n i Φ n i ,
P i , n i = N i σ n i ( F E p τ ) n i τ ,
σ n i 10 19 ( 10 31 ± 2 ) 1 n i .
P 1 , n 1 P 2 , n 2 = N 1 N 2 ( F E p τ 10 31 ) n 1 n 2 .

Metrics