Abstract

We demonstrate an integrated optofluidic system for monitoring the particle mass concentration and the Sauter mean diameter of polydisperse flowing suspensions of water and standardized test dust. For optimum integration, a planar emitter–receiver unit is developed and fabricated on Si technology. A vertical cavity surface emitting laser at 850 nm serves as light source, and monolithically integrated segmented photodiodes detect both the attenuation of the primary light beam and the scattered light. The optical system is integrated into a planar transparent polymethylmethacrylate substrate by micromilling of an optical freeform surface and electron beam evaporation of reflective layers following the concept of planar integrated free-space optical systems. We are able to detect 1mg/L of the standards ISO 12103-A2 (fine test dust), -A3 (medium test dust), and -A4 (coarse test dust) and to determine the Sauter mean diameter of the particle size distribution.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Zollars, “Turbidimetric method for on-line determination of latex particle number and particle size distribution,” J. Colloid Interface Sci. 74, 163–172 (1980).
    [CrossRef]
  2. T. Kourti, “Turbidimetry in particle size analysis,” in Encyclopedia of Analytical Chemistry: Instrumentation and Applications (Wiley, 2000), pp. 5549–5579.
  3. J. Gregory, “Turbidity fluctuations in flowing suspensions,” J. Colloid Interface Sci. 105, 357–371 (1985).
    [CrossRef]
  4. B. Wessely, J. Altmann, and S. Ripperger, “The use of statistical properties of transmission signals for particle characterization,” Chem. Eng. Technol. 19, 438–442 (1996).
    [CrossRef]
  5. M. Breitenstein, U. Kräuter, and U. Riebel, “The fundamentals of particle size analysis by transmission fluctuation spectrometry. Part 1: a theory of temporal transmission fluctuations in dilute suspensions,” Part. Part. Syst. Charact. 16, 249–256 (1999).
    [CrossRef]
  6. M. Breitenstein, U. Riebel, and J. Shen, “The fundamentals of particle size analysis by transmission fluctuation spectrometry. Part 2: a theory on transmission fluctuations with combined spatial and temporal averaging,” Part. Part. Syst. Charact. 18, 134–141 (2001).
    [CrossRef]
  7. L. Steinke, B. Wessely, and S. Ripperger, “Optische Extinktionsmessverfahren zur Inline-Kontrolle disperser Stoffsysteme,” Chem. Ing. Tech. 81, 735–747 (2009).
    [CrossRef]
  8. H.-H. Qiu and M. Sommerfeld, “A reliable method for determining the measurement volume size and particle mass fluxes using phase-doppler anemometry,” Exp. Fluids 13, 393–404 (1992).
    [CrossRef]
  9. I. Ayranci, G. Pinguet, D. Escudié, N. Selçuk, R. Vaillon, and F. André, “Effect of particle polydispersity on particle concentration measurement by using laser doppler anemometry,” Exp. Therm. Fluid. Sci. 31, 839–847 (2007).
    [CrossRef]
  10. A. P. Nefedov, O. F. Petrov, and O. S. Vaulina, “Analysis of particle sizes, concentration, and refractive index in measurement of light transmittance in the forward-scattering-angle range,” Appl. Opt. 36, 1357–1366 (1997).
    [CrossRef]
  11. D. Chicea, “Biospeckle size and contrast measurement application in particle sizing and concentration assessment,” Rom. J. Phys. 52, 625–632 (2007).
  12. O. F. Genceli, J. B. Schemni, and C. M. Vest, “Measurement of size and concentration of scattering particles by speckle photography,” J. Opt. Soc. Am. 70, 1212–1218 (1980).
    [CrossRef]
  13. M. Hofmann, R. Kampmann, and S. Sinzinger, “Perturbed Talbot patterns for the measurement of low particle concentrations in fluids,” Appl. Opt. 51, 1605–1615 (2012).
    [CrossRef]
  14. R. Müller and E. Förster, “Laser-based emitter-receiver-device with integrated micro-optics for the measurement of scattered light,” TM Tech. Mess. 75, 663–669 (2008).
    [CrossRef]
  15. R. Müller and O. Brodersen, “Emitter-receiver-devices to measure scattered light—an alternative to particle counters?,” TM Tech. Mess. 78, 448–456 (2011).
    [CrossRef]
  16. J. Jahns and A. Huang, “Planar integration of free-space optical components,” Appl. Opt. 28, 1602–1605 (1989).
    [CrossRef]
  17. M. Hofmann, S. Hauguth-Frank, V. Lebedev, O. Ambacher, and S. Sinzinger, “Sapphire-GaN-based planar integrated free-space optical system,” Appl. Opt. 47, 2950–2955(2008).
    [CrossRef]
  18. M. Jarczynski, T. Seiler, and J. Jahns, “Integrated three-dimensional optical multilayer using free-space optics,” Appl. Opt. 45, 6335–6341 (2006).
    [CrossRef]
  19. V. Daria, J. Glückstad, P. C. Mogensen, R. L. Eriksen, and S. Sinzinger, “Implementing the generalized phase-contrast method in a planar-integrated micro-optics platform,” Opt. Lett. 27, 945–947 (2002).
    [CrossRef]
  20. S. Sinzinger, “Microoptically integrated correlators for security applications,” Opt. Commun. 209, 69–74 (2002).
    [CrossRef]
  21. M. Rhodes, Introduction to Particle Technology (Wiley, 1998).
  22. R. G. Holdich, Fundamentals of Particle Technology (Midland Information Technology, 2002).
  23. L. C. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
    [CrossRef]
  24. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
    [CrossRef]
  25. U. Brokmann, K. Sönnichsen, and D. Hülsenberg, “Application of micro structured photosensitive glass for the gravure printing process,” Microsyst. Technol. 14, 1635–1639 (2008).
    [CrossRef]
  26. M. Hofmann, X. Ma, J. Schneider, and S. Sinzinger, “Highly integrated optical microsystem for particle concentration measurement,” Proc. SPIE 7716, 77160T (2010).
    [CrossRef]
  27. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  28. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
  29. P. Laven, “MiePlot,” http://www.philiplaven.com/mieplot.htm .
  30. J. Gregory and D. W. Nelson, “Monitoring of aggregates in flowing suspensions,” Colloids Surf. 18, 175–188 (1986).
    [CrossRef]
  31. S. Stoebenau, R. Kleindienst, R. Kampmann, and S. Sinzinger, “Enhanced optical functionalities by integrated ultraprecision machining techniques,” presented at the 11th EUSPEN International Conference, Como, Italy, 23–26 May 2011.
  32. S. Stoebenau, R. Kleindienst, M. Hofmann, and S. Sinzinger, “Computer-aided manufacturing for freeform optical elements by ultraprecision micromilling,” Proc. SPIE 8126, 812614 (2011).
    [CrossRef]
  33. S. van Overmeire, H. Ottevaere, G. Desmet, and H. Thienpont, “Miniaturized detection system for fluorescence and absorbance measurements in chromatographic applications,” IEEE J. Sel. Top. Quantum Electron. 14, 140–150(2008).
    [CrossRef]

2012 (1)

2011 (2)

R. Müller and O. Brodersen, “Emitter-receiver-devices to measure scattered light—an alternative to particle counters?,” TM Tech. Mess. 78, 448–456 (2011).
[CrossRef]

S. Stoebenau, R. Kleindienst, M. Hofmann, and S. Sinzinger, “Computer-aided manufacturing for freeform optical elements by ultraprecision micromilling,” Proc. SPIE 8126, 812614 (2011).
[CrossRef]

2010 (1)

M. Hofmann, X. Ma, J. Schneider, and S. Sinzinger, “Highly integrated optical microsystem for particle concentration measurement,” Proc. SPIE 7716, 77160T (2010).
[CrossRef]

2009 (1)

L. Steinke, B. Wessely, and S. Ripperger, “Optische Extinktionsmessverfahren zur Inline-Kontrolle disperser Stoffsysteme,” Chem. Ing. Tech. 81, 735–747 (2009).
[CrossRef]

2008 (4)

R. Müller and E. Förster, “Laser-based emitter-receiver-device with integrated micro-optics for the measurement of scattered light,” TM Tech. Mess. 75, 663–669 (2008).
[CrossRef]

M. Hofmann, S. Hauguth-Frank, V. Lebedev, O. Ambacher, and S. Sinzinger, “Sapphire-GaN-based planar integrated free-space optical system,” Appl. Opt. 47, 2950–2955(2008).
[CrossRef]

S. van Overmeire, H. Ottevaere, G. Desmet, and H. Thienpont, “Miniaturized detection system for fluorescence and absorbance measurements in chromatographic applications,” IEEE J. Sel. Top. Quantum Electron. 14, 140–150(2008).
[CrossRef]

U. Brokmann, K. Sönnichsen, and D. Hülsenberg, “Application of micro structured photosensitive glass for the gravure printing process,” Microsyst. Technol. 14, 1635–1639 (2008).
[CrossRef]

2007 (2)

D. Chicea, “Biospeckle size and contrast measurement application in particle sizing and concentration assessment,” Rom. J. Phys. 52, 625–632 (2007).

I. Ayranci, G. Pinguet, D. Escudié, N. Selçuk, R. Vaillon, and F. André, “Effect of particle polydispersity on particle concentration measurement by using laser doppler anemometry,” Exp. Therm. Fluid. Sci. 31, 839–847 (2007).
[CrossRef]

2006 (1)

2002 (2)

2001 (1)

M. Breitenstein, U. Riebel, and J. Shen, “The fundamentals of particle size analysis by transmission fluctuation spectrometry. Part 2: a theory on transmission fluctuations with combined spatial and temporal averaging,” Part. Part. Syst. Charact. 18, 134–141 (2001).
[CrossRef]

1999 (1)

M. Breitenstein, U. Kräuter, and U. Riebel, “The fundamentals of particle size analysis by transmission fluctuation spectrometry. Part 1: a theory of temporal transmission fluctuations in dilute suspensions,” Part. Part. Syst. Charact. 16, 249–256 (1999).
[CrossRef]

1997 (1)

1996 (1)

B. Wessely, J. Altmann, and S. Ripperger, “The use of statistical properties of transmission signals for particle characterization,” Chem. Eng. Technol. 19, 438–442 (1996).
[CrossRef]

1992 (1)

H.-H. Qiu and M. Sommerfeld, “A reliable method for determining the measurement volume size and particle mass fluxes using phase-doppler anemometry,” Exp. Fluids 13, 393–404 (1992).
[CrossRef]

1989 (1)

1986 (1)

J. Gregory and D. W. Nelson, “Monitoring of aggregates in flowing suspensions,” Colloids Surf. 18, 175–188 (1986).
[CrossRef]

1985 (1)

J. Gregory, “Turbidity fluctuations in flowing suspensions,” J. Colloid Interface Sci. 105, 357–371 (1985).
[CrossRef]

1980 (2)

R. L. Zollars, “Turbidimetric method for on-line determination of latex particle number and particle size distribution,” J. Colloid Interface Sci. 74, 163–172 (1980).
[CrossRef]

O. F. Genceli, J. B. Schemni, and C. M. Vest, “Measurement of size and concentration of scattering particles by speckle photography,” J. Opt. Soc. Am. 70, 1212–1218 (1980).
[CrossRef]

1941 (1)

L. C. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

1908 (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[CrossRef]

Altmann, J.

B. Wessely, J. Altmann, and S. Ripperger, “The use of statistical properties of transmission signals for particle characterization,” Chem. Eng. Technol. 19, 438–442 (1996).
[CrossRef]

Ambacher, O.

André, F.

I. Ayranci, G. Pinguet, D. Escudié, N. Selçuk, R. Vaillon, and F. André, “Effect of particle polydispersity on particle concentration measurement by using laser doppler anemometry,” Exp. Therm. Fluid. Sci. 31, 839–847 (2007).
[CrossRef]

Ayranci, I.

I. Ayranci, G. Pinguet, D. Escudié, N. Selçuk, R. Vaillon, and F. André, “Effect of particle polydispersity on particle concentration measurement by using laser doppler anemometry,” Exp. Therm. Fluid. Sci. 31, 839–847 (2007).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

Breitenstein, M.

M. Breitenstein, U. Riebel, and J. Shen, “The fundamentals of particle size analysis by transmission fluctuation spectrometry. Part 2: a theory on transmission fluctuations with combined spatial and temporal averaging,” Part. Part. Syst. Charact. 18, 134–141 (2001).
[CrossRef]

M. Breitenstein, U. Kräuter, and U. Riebel, “The fundamentals of particle size analysis by transmission fluctuation spectrometry. Part 1: a theory of temporal transmission fluctuations in dilute suspensions,” Part. Part. Syst. Charact. 16, 249–256 (1999).
[CrossRef]

Brodersen, O.

R. Müller and O. Brodersen, “Emitter-receiver-devices to measure scattered light—an alternative to particle counters?,” TM Tech. Mess. 78, 448–456 (2011).
[CrossRef]

Brokmann, U.

U. Brokmann, K. Sönnichsen, and D. Hülsenberg, “Application of micro structured photosensitive glass for the gravure printing process,” Microsyst. Technol. 14, 1635–1639 (2008).
[CrossRef]

Chicea, D.

D. Chicea, “Biospeckle size and contrast measurement application in particle sizing and concentration assessment,” Rom. J. Phys. 52, 625–632 (2007).

Daria, V.

Desmet, G.

S. van Overmeire, H. Ottevaere, G. Desmet, and H. Thienpont, “Miniaturized detection system for fluorescence and absorbance measurements in chromatographic applications,” IEEE J. Sel. Top. Quantum Electron. 14, 140–150(2008).
[CrossRef]

Eriksen, R. L.

Escudié, D.

I. Ayranci, G. Pinguet, D. Escudié, N. Selçuk, R. Vaillon, and F. André, “Effect of particle polydispersity on particle concentration measurement by using laser doppler anemometry,” Exp. Therm. Fluid. Sci. 31, 839–847 (2007).
[CrossRef]

Förster, E.

R. Müller and E. Förster, “Laser-based emitter-receiver-device with integrated micro-optics for the measurement of scattered light,” TM Tech. Mess. 75, 663–669 (2008).
[CrossRef]

Genceli, O. F.

Glückstad, J.

Greenstein, J. L.

L. C. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Gregory, J.

J. Gregory and D. W. Nelson, “Monitoring of aggregates in flowing suspensions,” Colloids Surf. 18, 175–188 (1986).
[CrossRef]

J. Gregory, “Turbidity fluctuations in flowing suspensions,” J. Colloid Interface Sci. 105, 357–371 (1985).
[CrossRef]

Hauguth-Frank, S.

Henyey, L. C.

L. C. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Hofmann, M.

M. Hofmann, R. Kampmann, and S. Sinzinger, “Perturbed Talbot patterns for the measurement of low particle concentrations in fluids,” Appl. Opt. 51, 1605–1615 (2012).
[CrossRef]

S. Stoebenau, R. Kleindienst, M. Hofmann, and S. Sinzinger, “Computer-aided manufacturing for freeform optical elements by ultraprecision micromilling,” Proc. SPIE 8126, 812614 (2011).
[CrossRef]

M. Hofmann, X. Ma, J. Schneider, and S. Sinzinger, “Highly integrated optical microsystem for particle concentration measurement,” Proc. SPIE 7716, 77160T (2010).
[CrossRef]

M. Hofmann, S. Hauguth-Frank, V. Lebedev, O. Ambacher, and S. Sinzinger, “Sapphire-GaN-based planar integrated free-space optical system,” Appl. Opt. 47, 2950–2955(2008).
[CrossRef]

Holdich, R. G.

R. G. Holdich, Fundamentals of Particle Technology (Midland Information Technology, 2002).

Huang, A.

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

Hülsenberg, D.

U. Brokmann, K. Sönnichsen, and D. Hülsenberg, “Application of micro structured photosensitive glass for the gravure printing process,” Microsyst. Technol. 14, 1635–1639 (2008).
[CrossRef]

Jahns, J.

Jarczynski, M.

Kampmann, R.

M. Hofmann, R. Kampmann, and S. Sinzinger, “Perturbed Talbot patterns for the measurement of low particle concentrations in fluids,” Appl. Opt. 51, 1605–1615 (2012).
[CrossRef]

S. Stoebenau, R. Kleindienst, R. Kampmann, and S. Sinzinger, “Enhanced optical functionalities by integrated ultraprecision machining techniques,” presented at the 11th EUSPEN International Conference, Como, Italy, 23–26 May 2011.

Kleindienst, R.

S. Stoebenau, R. Kleindienst, M. Hofmann, and S. Sinzinger, “Computer-aided manufacturing for freeform optical elements by ultraprecision micromilling,” Proc. SPIE 8126, 812614 (2011).
[CrossRef]

S. Stoebenau, R. Kleindienst, R. Kampmann, and S. Sinzinger, “Enhanced optical functionalities by integrated ultraprecision machining techniques,” presented at the 11th EUSPEN International Conference, Como, Italy, 23–26 May 2011.

Kourti, T.

T. Kourti, “Turbidimetry in particle size analysis,” in Encyclopedia of Analytical Chemistry: Instrumentation and Applications (Wiley, 2000), pp. 5549–5579.

Kräuter, U.

M. Breitenstein, U. Kräuter, and U. Riebel, “The fundamentals of particle size analysis by transmission fluctuation spectrometry. Part 1: a theory of temporal transmission fluctuations in dilute suspensions,” Part. Part. Syst. Charact. 16, 249–256 (1999).
[CrossRef]

Lebedev, V.

Ma, X.

M. Hofmann, X. Ma, J. Schneider, and S. Sinzinger, “Highly integrated optical microsystem for particle concentration measurement,” Proc. SPIE 7716, 77160T (2010).
[CrossRef]

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[CrossRef]

Mogensen, P. C.

Müller, R.

R. Müller and O. Brodersen, “Emitter-receiver-devices to measure scattered light—an alternative to particle counters?,” TM Tech. Mess. 78, 448–456 (2011).
[CrossRef]

R. Müller and E. Förster, “Laser-based emitter-receiver-device with integrated micro-optics for the measurement of scattered light,” TM Tech. Mess. 75, 663–669 (2008).
[CrossRef]

Nefedov, A. P.

Nelson, D. W.

J. Gregory and D. W. Nelson, “Monitoring of aggregates in flowing suspensions,” Colloids Surf. 18, 175–188 (1986).
[CrossRef]

Ottevaere, H.

S. van Overmeire, H. Ottevaere, G. Desmet, and H. Thienpont, “Miniaturized detection system for fluorescence and absorbance measurements in chromatographic applications,” IEEE J. Sel. Top. Quantum Electron. 14, 140–150(2008).
[CrossRef]

Petrov, O. F.

Pinguet, G.

I. Ayranci, G. Pinguet, D. Escudié, N. Selçuk, R. Vaillon, and F. André, “Effect of particle polydispersity on particle concentration measurement by using laser doppler anemometry,” Exp. Therm. Fluid. Sci. 31, 839–847 (2007).
[CrossRef]

Qiu, H.-H.

H.-H. Qiu and M. Sommerfeld, “A reliable method for determining the measurement volume size and particle mass fluxes using phase-doppler anemometry,” Exp. Fluids 13, 393–404 (1992).
[CrossRef]

Rhodes, M.

M. Rhodes, Introduction to Particle Technology (Wiley, 1998).

Riebel, U.

M. Breitenstein, U. Riebel, and J. Shen, “The fundamentals of particle size analysis by transmission fluctuation spectrometry. Part 2: a theory on transmission fluctuations with combined spatial and temporal averaging,” Part. Part. Syst. Charact. 18, 134–141 (2001).
[CrossRef]

M. Breitenstein, U. Kräuter, and U. Riebel, “The fundamentals of particle size analysis by transmission fluctuation spectrometry. Part 1: a theory of temporal transmission fluctuations in dilute suspensions,” Part. Part. Syst. Charact. 16, 249–256 (1999).
[CrossRef]

Ripperger, S.

L. Steinke, B. Wessely, and S. Ripperger, “Optische Extinktionsmessverfahren zur Inline-Kontrolle disperser Stoffsysteme,” Chem. Ing. Tech. 81, 735–747 (2009).
[CrossRef]

B. Wessely, J. Altmann, and S. Ripperger, “The use of statistical properties of transmission signals for particle characterization,” Chem. Eng. Technol. 19, 438–442 (1996).
[CrossRef]

Schemni, J. B.

Schneider, J.

M. Hofmann, X. Ma, J. Schneider, and S. Sinzinger, “Highly integrated optical microsystem for particle concentration measurement,” Proc. SPIE 7716, 77160T (2010).
[CrossRef]

Seiler, T.

Selçuk, N.

I. Ayranci, G. Pinguet, D. Escudié, N. Selçuk, R. Vaillon, and F. André, “Effect of particle polydispersity on particle concentration measurement by using laser doppler anemometry,” Exp. Therm. Fluid. Sci. 31, 839–847 (2007).
[CrossRef]

Shen, J.

M. Breitenstein, U. Riebel, and J. Shen, “The fundamentals of particle size analysis by transmission fluctuation spectrometry. Part 2: a theory on transmission fluctuations with combined spatial and temporal averaging,” Part. Part. Syst. Charact. 18, 134–141 (2001).
[CrossRef]

Sinzinger, S.

M. Hofmann, R. Kampmann, and S. Sinzinger, “Perturbed Talbot patterns for the measurement of low particle concentrations in fluids,” Appl. Opt. 51, 1605–1615 (2012).
[CrossRef]

S. Stoebenau, R. Kleindienst, M. Hofmann, and S. Sinzinger, “Computer-aided manufacturing for freeform optical elements by ultraprecision micromilling,” Proc. SPIE 8126, 812614 (2011).
[CrossRef]

M. Hofmann, X. Ma, J. Schneider, and S. Sinzinger, “Highly integrated optical microsystem for particle concentration measurement,” Proc. SPIE 7716, 77160T (2010).
[CrossRef]

M. Hofmann, S. Hauguth-Frank, V. Lebedev, O. Ambacher, and S. Sinzinger, “Sapphire-GaN-based planar integrated free-space optical system,” Appl. Opt. 47, 2950–2955(2008).
[CrossRef]

V. Daria, J. Glückstad, P. C. Mogensen, R. L. Eriksen, and S. Sinzinger, “Implementing the generalized phase-contrast method in a planar-integrated micro-optics platform,” Opt. Lett. 27, 945–947 (2002).
[CrossRef]

S. Sinzinger, “Microoptically integrated correlators for security applications,” Opt. Commun. 209, 69–74 (2002).
[CrossRef]

S. Stoebenau, R. Kleindienst, R. Kampmann, and S. Sinzinger, “Enhanced optical functionalities by integrated ultraprecision machining techniques,” presented at the 11th EUSPEN International Conference, Como, Italy, 23–26 May 2011.

Sommerfeld, M.

H.-H. Qiu and M. Sommerfeld, “A reliable method for determining the measurement volume size and particle mass fluxes using phase-doppler anemometry,” Exp. Fluids 13, 393–404 (1992).
[CrossRef]

Sönnichsen, K.

U. Brokmann, K. Sönnichsen, and D. Hülsenberg, “Application of micro structured photosensitive glass for the gravure printing process,” Microsyst. Technol. 14, 1635–1639 (2008).
[CrossRef]

Steinke, L.

L. Steinke, B. Wessely, and S. Ripperger, “Optische Extinktionsmessverfahren zur Inline-Kontrolle disperser Stoffsysteme,” Chem. Ing. Tech. 81, 735–747 (2009).
[CrossRef]

Stoebenau, S.

S. Stoebenau, R. Kleindienst, M. Hofmann, and S. Sinzinger, “Computer-aided manufacturing for freeform optical elements by ultraprecision micromilling,” Proc. SPIE 8126, 812614 (2011).
[CrossRef]

S. Stoebenau, R. Kleindienst, R. Kampmann, and S. Sinzinger, “Enhanced optical functionalities by integrated ultraprecision machining techniques,” presented at the 11th EUSPEN International Conference, Como, Italy, 23–26 May 2011.

Thienpont, H.

S. van Overmeire, H. Ottevaere, G. Desmet, and H. Thienpont, “Miniaturized detection system for fluorescence and absorbance measurements in chromatographic applications,” IEEE J. Sel. Top. Quantum Electron. 14, 140–150(2008).
[CrossRef]

Vaillon, R.

I. Ayranci, G. Pinguet, D. Escudié, N. Selçuk, R. Vaillon, and F. André, “Effect of particle polydispersity on particle concentration measurement by using laser doppler anemometry,” Exp. Therm. Fluid. Sci. 31, 839–847 (2007).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

van Overmeire, S.

S. van Overmeire, H. Ottevaere, G. Desmet, and H. Thienpont, “Miniaturized detection system for fluorescence and absorbance measurements in chromatographic applications,” IEEE J. Sel. Top. Quantum Electron. 14, 140–150(2008).
[CrossRef]

Vaulina, O. S.

Vest, C. M.

Wessely, B.

L. Steinke, B. Wessely, and S. Ripperger, “Optische Extinktionsmessverfahren zur Inline-Kontrolle disperser Stoffsysteme,” Chem. Ing. Tech. 81, 735–747 (2009).
[CrossRef]

B. Wessely, J. Altmann, and S. Ripperger, “The use of statistical properties of transmission signals for particle characterization,” Chem. Eng. Technol. 19, 438–442 (1996).
[CrossRef]

Zollars, R. L.

R. L. Zollars, “Turbidimetric method for on-line determination of latex particle number and particle size distribution,” J. Colloid Interface Sci. 74, 163–172 (1980).
[CrossRef]

Ann. Phys. (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[CrossRef]

Appl. Opt. (5)

Astrophys. J. (1)

L. C. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Chem. Eng. Technol. (1)

B. Wessely, J. Altmann, and S. Ripperger, “The use of statistical properties of transmission signals for particle characterization,” Chem. Eng. Technol. 19, 438–442 (1996).
[CrossRef]

Chem. Ing. Tech. (1)

L. Steinke, B. Wessely, and S. Ripperger, “Optische Extinktionsmessverfahren zur Inline-Kontrolle disperser Stoffsysteme,” Chem. Ing. Tech. 81, 735–747 (2009).
[CrossRef]

Colloids Surf. (1)

J. Gregory and D. W. Nelson, “Monitoring of aggregates in flowing suspensions,” Colloids Surf. 18, 175–188 (1986).
[CrossRef]

Exp. Fluids (1)

H.-H. Qiu and M. Sommerfeld, “A reliable method for determining the measurement volume size and particle mass fluxes using phase-doppler anemometry,” Exp. Fluids 13, 393–404 (1992).
[CrossRef]

Exp. Therm. Fluid. Sci. (1)

I. Ayranci, G. Pinguet, D. Escudié, N. Selçuk, R. Vaillon, and F. André, “Effect of particle polydispersity on particle concentration measurement by using laser doppler anemometry,” Exp. Therm. Fluid. Sci. 31, 839–847 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. van Overmeire, H. Ottevaere, G. Desmet, and H. Thienpont, “Miniaturized detection system for fluorescence and absorbance measurements in chromatographic applications,” IEEE J. Sel. Top. Quantum Electron. 14, 140–150(2008).
[CrossRef]

J. Colloid Interface Sci. (2)

R. L. Zollars, “Turbidimetric method for on-line determination of latex particle number and particle size distribution,” J. Colloid Interface Sci. 74, 163–172 (1980).
[CrossRef]

J. Gregory, “Turbidity fluctuations in flowing suspensions,” J. Colloid Interface Sci. 105, 357–371 (1985).
[CrossRef]

J. Opt. Soc. Am. (1)

Microsyst. Technol. (1)

U. Brokmann, K. Sönnichsen, and D. Hülsenberg, “Application of micro structured photosensitive glass for the gravure printing process,” Microsyst. Technol. 14, 1635–1639 (2008).
[CrossRef]

Opt. Commun. (1)

S. Sinzinger, “Microoptically integrated correlators for security applications,” Opt. Commun. 209, 69–74 (2002).
[CrossRef]

Opt. Lett. (1)

Part. Part. Syst. Charact. (2)

M. Breitenstein, U. Kräuter, and U. Riebel, “The fundamentals of particle size analysis by transmission fluctuation spectrometry. Part 1: a theory of temporal transmission fluctuations in dilute suspensions,” Part. Part. Syst. Charact. 16, 249–256 (1999).
[CrossRef]

M. Breitenstein, U. Riebel, and J. Shen, “The fundamentals of particle size analysis by transmission fluctuation spectrometry. Part 2: a theory on transmission fluctuations with combined spatial and temporal averaging,” Part. Part. Syst. Charact. 18, 134–141 (2001).
[CrossRef]

Proc. SPIE (2)

M. Hofmann, X. Ma, J. Schneider, and S. Sinzinger, “Highly integrated optical microsystem for particle concentration measurement,” Proc. SPIE 7716, 77160T (2010).
[CrossRef]

S. Stoebenau, R. Kleindienst, M. Hofmann, and S. Sinzinger, “Computer-aided manufacturing for freeform optical elements by ultraprecision micromilling,” Proc. SPIE 8126, 812614 (2011).
[CrossRef]

Rom. J. Phys. (1)

D. Chicea, “Biospeckle size and contrast measurement application in particle sizing and concentration assessment,” Rom. J. Phys. 52, 625–632 (2007).

TM Tech. Mess. (2)

R. Müller and E. Förster, “Laser-based emitter-receiver-device with integrated micro-optics for the measurement of scattered light,” TM Tech. Mess. 75, 663–669 (2008).
[CrossRef]

R. Müller and O. Brodersen, “Emitter-receiver-devices to measure scattered light—an alternative to particle counters?,” TM Tech. Mess. 78, 448–456 (2011).
[CrossRef]

Other (7)

T. Kourti, “Turbidimetry in particle size analysis,” in Encyclopedia of Analytical Chemistry: Instrumentation and Applications (Wiley, 2000), pp. 5549–5579.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

P. Laven, “MiePlot,” http://www.philiplaven.com/mieplot.htm .

M. Rhodes, Introduction to Particle Technology (Wiley, 1998).

R. G. Holdich, Fundamentals of Particle Technology (Midland Information Technology, 2002).

S. Stoebenau, R. Kleindienst, R. Kampmann, and S. Sinzinger, “Enhanced optical functionalities by integrated ultraprecision machining techniques,” presented at the 11th EUSPEN International Conference, Como, Italy, 23–26 May 2011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Cumulative distributions Q3 of the test dusts (fine, medium, and coarse).

Fig. 2.
Fig. 2.

Frequency distributions (a) q3 and (b) q0 of the test dust.

Fig. 3.
Fig. 3.

Concept of the measuring system.

Fig. 4.
Fig. 4.

(a) Photograph and (b) schematic drawing of the ERU.

Fig. 5.
Fig. 5.

Parameters of the biconic lens.

Fig. 6.
Fig. 6.

Simulation of the intensity versus the polar scattering angle for same particle volumes.

Fig. 7.
Fig. 7.

Simulated light distribution in the detection area for mass concentrations of (a) 0mg/L and (b) 10mg/L.

Fig. 8.
Fig. 8.

(a) Photograph and (b) SEM exposure of the ERU silicon component.

Fig. 9.
Fig. 9.

Detail of the biconic lens.

Fig. 10.
Fig. 10.

Mounted and aligned measuring system.

Fig. 11.
Fig. 11.

Signal of the transmitted and scattered light (fine test dust).

Fig. 12.
Fig. 12.

Mean values of the normalized signals of the transmitted and scattered light.

Fig. 13.
Fig. 13.

Standard deviation versus mean signal for (a) the transmitted light and (b) the scattered light.

Fig. 14.
Fig. 14.

SNR (data points and linear fit) of the signal of the transmitted and the scattered light.

Tables (4)

Tables Icon

Table 1. Parameters of the Test Dusts

Tables Icon

Table 2. Experimentally Determined fit Parameters

Tables Icon

Table 3. Experimentally Determined SNR of the Three Test Dusts

Tables Icon

Table 4. Limit of Detection

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

qt(x)=xtrqr(x)xminxmaxxtrqr(x)dxx¯itrqr(x¯i)i=1Jx¯itrqr(x¯i)Δxi.
f=NA¯.
N=ΦMρv¯.
v¯=π6xminxmaxx3q0(x)dxπ6i=1Jx¯i3q0(x¯i)Δxi.
A¯=π4xminxmaxx2q0(x)dxπ4i=1Jx¯i2q0(x¯i)Δxi.
f=3ΦM2ρ×xminxmaxx2q0(x)dxxminxmaxx3q0(x)dx.
f=3ΦM2ρ×1D32=FΦM.
z=cxx2+cyy21+[1(1+kx)cx2x2(1+ky)cy2y2]1/2
IT=exp(NCextL)I0=exp(ΦMρvQextAL)I0.
IT=exp(3Q¯extL2ρD32ΦM)I0.
T(ΦM)=3Q¯extL2ρD32ΦM+1
IS(θ)=0.5·(|S1(θ)|2+|S2(θ)|2)k2d2I0.
S(ΦM)=cSD32ΦM+1,
T(ΦM,D32)=cTD32ΦM+1
S(ΦM,D32)=cSD32ΦM+1
σT(ΦM,D32)=cσTD32ΦM,
σS(ΦM,D32)=cσSD32ΦM.
σT(T)=cσTcT(D32)321T,
σT(T)=cTcσT(ΦM)321(1T).
σS(S)=cσScS(D32)32S1,
σS(S)=cScσS(ΦM)321(S1).
LOD=Sb+3σb.
SNR(T)=TbTσbT,
SNR(S)=SSbσbS,

Metrics