Abstract

We theoretically investigate for the first time an all-optical switch using a silicon-based ring-assisted Mach–Zehnder interferometer (RAMZI), where the switch mechanism relies on Raman-induced loss. Compared to the conventional standalone microring resonator (MRR) switches, the RAMZI structure improves the fabrication tolerances by removing the critical coupling requirement for the MRR without compensating the switch performance. Moreover, the RAMZI structure provides an improved switching speed (5× faster) by shortening the photon lifetime of the MRR. Finally, the inverse Raman scattering of silicon guarantees a single wavelength selectivity for the switch.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687(2006).
    [CrossRef]
  2. B. C. Jacobs and J. D. Franson, “All-optical switching using the quantum Zeno effect and two-photon absorption,” Phys. Rev. A 79, 063830 (2009).
    [CrossRef]
  3. Y.-P. Huang and P. Kumar, “Interaction-free all-optical switching in χ(2) microdisks for quantum applications,” Opt. Lett. 35, 2376–2378 (2010).
    [CrossRef]
  4. Y. H. Wen, O. Kuzucu, T. Hou, M. Lipson, and A. L. Gaeta, “All-optical switching of a single resonance in silicon ring resonators,” Opt. Lett. 36, 1413–1415 (2011).
    [CrossRef]
  5. Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907(2012).
    [CrossRef]
  6. D. R. Solli, P. Koonath, and B. Jalali, “Inverse Raman scattering in silicon: a free-carrier enhanced effect,” Phys. Rev. A 79, 053853 (2009).
    [CrossRef]
  7. A. M. Gutierrez, A. Brimont, G. Rasigade, M. Ziebell, D. Marris-Morini, J.-M. Fedeli, L. Vivien, J. Marti, and P. Sanchis, “Ring-assisted Mach–Zehnder interferometer silicon modulator for enhanced performance,” J. Lightwave Technol. 30, 9–14(2012).
    [CrossRef]
  8. Y. Li, L. Zhang, M. Song, B. Zhang, J.-Y. Yang, R. G. Beausoleil, A. E. Willner, and P. D. Dapkus, “Coupled-ring-resonator-based silicon modulator for enhanced performance,” Opt. Express 16, 13342–13348 (2008).
    [CrossRef]
  9. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
    [CrossRef]
  10. R. Soref and B. Bennett, “Electro-optical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
    [CrossRef]
  11. T. K. Liang, and H. K. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
    [CrossRef]
  12. B. Jalali, D. Dimitropoulos, V. Raghunathan, and S. Fathpour, “Silicon laser,” in Silicon Photonics: The State of the Art, ed. G. T. Reed (Wiley, 2008), pp. 166–170.
  13. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express 15, 14467–14475 (2007).
    [CrossRef]
  14. B. E. Little, S. T. Chu, and H. A. Haus, “Tracking changing by use of the phase response of microspheres and resonators,” Opt. Lett. 23, 894–896 (1998).
    [CrossRef]
  15. Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
    [CrossRef]

2012

A. M. Gutierrez, A. Brimont, G. Rasigade, M. Ziebell, D. Marris-Morini, J.-M. Fedeli, L. Vivien, J. Marti, and P. Sanchis, “Ring-assisted Mach–Zehnder interferometer silicon modulator for enhanced performance,” J. Lightwave Technol. 30, 9–14(2012).
[CrossRef]

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907(2012).
[CrossRef]

2011

2010

2009

B. C. Jacobs and J. D. Franson, “All-optical switching using the quantum Zeno effect and two-photon absorption,” Phys. Rev. A 79, 063830 (2009).
[CrossRef]

D. R. Solli, P. Koonath, and B. Jalali, “Inverse Raman scattering in silicon: a free-carrier enhanced effect,” Phys. Rev. A 79, 053853 (2009).
[CrossRef]

2008

2007

2006

R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687(2006).
[CrossRef]

2004

T. K. Liang, and H. K. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[CrossRef]

2000

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
[CrossRef]

1998

1987

R. Soref and B. Bennett, “Electro-optical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[CrossRef]

Beausoleil, R. G.

Bennett, B.

R. Soref and B. Bennett, “Electro-optical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[CrossRef]

Brimont, A.

Chu, S. T.

Dapkus, P. D.

Dimitropoulos, D.

B. Jalali, D. Dimitropoulos, V. Raghunathan, and S. Fathpour, “Silicon laser,” in Silicon Photonics: The State of the Art, ed. G. T. Reed (Wiley, 2008), pp. 166–170.

Fathpour, S.

B. Jalali, D. Dimitropoulos, V. Raghunathan, and S. Fathpour, “Silicon laser,” in Silicon Photonics: The State of the Art, ed. G. T. Reed (Wiley, 2008), pp. 166–170.

Fedeli, J.-M.

Franson, J. D.

B. C. Jacobs and J. D. Franson, “All-optical switching using the quantum Zeno effect and two-photon absorption,” Phys. Rev. A 79, 063830 (2009).
[CrossRef]

Fridman, M.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907(2012).
[CrossRef]

Gaeta, A. L.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907(2012).
[CrossRef]

Y. H. Wen, O. Kuzucu, T. Hou, M. Lipson, and A. L. Gaeta, “All-optical switching of a single resonance in silicon ring resonators,” Opt. Lett. 36, 1413–1415 (2011).
[CrossRef]

Gutierrez, A. M.

Haus, H. A.

Hou, T.

Huang, Y.-P.

Jacobs, B. C.

B. C. Jacobs and J. D. Franson, “All-optical switching using the quantum Zeno effect and two-photon absorption,” Phys. Rev. A 79, 063830 (2009).
[CrossRef]

Jalali, B.

D. R. Solli, P. Koonath, and B. Jalali, “Inverse Raman scattering in silicon: a free-carrier enhanced effect,” Phys. Rev. A 79, 053853 (2009).
[CrossRef]

B. Jalali, D. Dimitropoulos, V. Raghunathan, and S. Fathpour, “Silicon laser,” in Silicon Photonics: The State of the Art, ed. G. T. Reed (Wiley, 2008), pp. 166–170.

Khan, M. H.

Koonath, P.

D. R. Solli, P. Koonath, and B. Jalali, “Inverse Raman scattering in silicon: a free-carrier enhanced effect,” Phys. Rev. A 79, 053853 (2009).
[CrossRef]

Kumar, P.

Kuzucu, O.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907(2012).
[CrossRef]

Y. H. Wen, O. Kuzucu, T. Hou, M. Lipson, and A. L. Gaeta, “All-optical switching of a single resonance in silicon ring resonators,” Opt. Lett. 36, 1413–1415 (2011).
[CrossRef]

Li, Y.

Liang, T. K.

T. K. Liang, and H. K. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[CrossRef]

Lipson, M.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907(2012).
[CrossRef]

Y. H. Wen, O. Kuzucu, T. Hou, M. Lipson, and A. L. Gaeta, “All-optical switching of a single resonance in silicon ring resonators,” Opt. Lett. 36, 1413–1415 (2011).
[CrossRef]

Little, B. E.

Luo, L.-W.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907(2012).
[CrossRef]

Marris-Morini, D.

Marti, J.

Qi, M.

Raghunathan, V.

B. Jalali, D. Dimitropoulos, V. Raghunathan, and S. Fathpour, “Silicon laser,” in Silicon Photonics: The State of the Art, ed. G. T. Reed (Wiley, 2008), pp. 166–170.

Rasigade, G.

Sanchis, P.

Shen, H.

Solli, D. R.

D. R. Solli, P. Koonath, and B. Jalali, “Inverse Raman scattering in silicon: a free-carrier enhanced effect,” Phys. Rev. A 79, 053853 (2009).
[CrossRef]

Song, M.

Soref, R.

R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687(2006).
[CrossRef]

R. Soref and B. Bennett, “Electro-optical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[CrossRef]

Tsang, H. K.

T. K. Liang, and H. K. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[CrossRef]

Vivien, L.

Wen, Y. H.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907(2012).
[CrossRef]

Y. H. Wen, O. Kuzucu, T. Hou, M. Lipson, and A. L. Gaeta, “All-optical switching of a single resonance in silicon ring resonators,” Opt. Lett. 36, 1413–1415 (2011).
[CrossRef]

Whitesides, G. M.

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
[CrossRef]

Willner, A. E.

Xia, Y.

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
[CrossRef]

Xiao, S.

Yang, J.-Y.

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
[CrossRef]

Zhang, B.

Zhang, L.

Ziebell, M.

Annu. Rev. Mater. Sci.

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
[CrossRef]

Appl. Phys. Lett.

T. K. Liang, and H. K. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[CrossRef]

Electron. Lett.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
[CrossRef]

IEEE J. Quantum Electron.

R. Soref and B. Bennett, “Electro-optical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687(2006).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Phys. Rev. A

B. C. Jacobs and J. D. Franson, “All-optical switching using the quantum Zeno effect and two-photon absorption,” Phys. Rev. A 79, 063830 (2009).
[CrossRef]

D. R. Solli, P. Koonath, and B. Jalali, “Inverse Raman scattering in silicon: a free-carrier enhanced effect,” Phys. Rev. A 79, 053853 (2009).
[CrossRef]

Phys. Rev. Lett.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907(2012).
[CrossRef]

Other

B. Jalali, D. Dimitropoulos, V. Raghunathan, and S. Fathpour, “Silicon laser,” in Silicon Photonics: The State of the Art, ed. G. T. Reed (Wiley, 2008), pp. 166–170.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of an all-optical switch based on a ring-assisted MZI (RAMZI) with control light and anti-Stokes signal.

Fig. 2.
Fig. 2.

(a) Transmission spectrum of the RAMZI switch and (b) transmission at the anti-Stokes resonance for several control light pulse energies (g=76cm/GW, λC=1430nm, and λa=1330nm).

Fig. 3.
Fig. 3.

(a) Transmission from Arm 1 of the RAMZI for the side-coupled MRR resonance and (b) transmission at the anti-Stokes resonance for several control light pulse energies (g=76cm/GW, λC=1430nm, and λa=1330nm).

Fig. 4.
Fig. 4.

(a) Transmission spectrum of the RAMZI switch and (b) transmission at the anti-Stokes resonance for the control light pulse energy of 20 pJ. (Resonances next to the anti-Stokes wavelength are disturbed.) Inset, transmission spectrum around the anti-Stokes wavelength for the control light pulse energy of 0.4 pJ.

Fig. 5.
Fig. 5.

(a) Transmission as a function of the control light pulse energy; switching is most efficient for transmission values below 3dB and (b) required control light pulse energy at the roll-off point (3 dB transmission) for various finesses (F) of the side-coupled MRR.

Fig. 6.
Fig. 6.

Simulated time response of the anti-Stokes signal with 200 ps control pulse of 20 pJ. Identical RAMZI device and operating parameters as in Fig. 2 are used.

Fig. 7.
Fig. 7.

Simulated ER as a function of the coupling coefficients t1, t2 and the ring intrinsic loss a0 with 200 ps control pulse of 20 pJ: (a) and (b) are for a standalone MRR switch, and (c) and (d) are for a RAMZI switch, where the blue regions indicate ER >5dB, while the green, yellow, and brown regions are for ER >10dB, >15dB, and >20dB, respectively. In (a) and (c), a0=2dB/cm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Eout=αMZIEin2[αrei(knL+φr)+eiknL],
αr=t12+t22γ22t1t2γcosθ1+t12t22γ22t1t2γcosθ,
φr=tan1[(1t12)t2γsinθ(1+t22γ2)t1(1+t12)t2γcosθ],
Az+iβ222At2=iχ(1+iω0t)A(z,t)×tR(tt)|A(z,t)|2dt+[iω0nFCRcaFCA2]A,
γ=e(a0+aFCAIC+aR(ω)IC)l,
aR(ω)=gΓ2(ωωa)2+Γ2,

Metrics