Abstract

In this article we propose a novel mechano-optical switch and dual channel transmitter based on photonic crystal. The device consists of two waveguides and an elliptical cavity in a square lattice structure. Two optical signals at separate wavelengths are inserted in the input waveguide. The elliptical cavity can be rotated using a mechanical force, which results in the control of transmission efficiency at each of the wavelengths. In addition, rotation of the cavity can be considered as a switching action, which changes on–off states of the output signals.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
    [CrossRef]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef]
  3. M. Qiu, M. Mulot, M. Swillo, S. Anand, B. Jaskorzynak, A. Karlsson, M. Kamp, and A. Forchel, “Photonic crystal optical filter based on contra-directional waveguide coupling,” Appl. Phys. Lett. 83, 5121–5123 (2003).
    [CrossRef]
  4. L. Fekete, F. Kadlec, P. Kuzel, and H. Nemec, “Ultrafast optoterahertz photonic crystal modulator,” Opt. Lett. 32, 680–682 (2007).
    [CrossRef]
  5. L. Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen, “High speed silicon photonic crystal waveguide modulator for low voltage operation,” Appl. Phys. Lett. 90, 071105 (2007).
    [CrossRef]
  6. Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80 micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87, 221105 (2005).
    [CrossRef]
  7. M. Noshad, A. Abbasi, R. Ranjbar, and R. Kheradmand, “Novel all-optical logic gates based on photonic crystal structure,” J. Phys. Conf. Ser. 350, 012007 (2012).
    [CrossRef]
  8. S. Y. Lin, E. Chow, J. Bur, S. G. Johnson, and J. D. Joannopoulos, “Low-loss, wide-angle Y splitter at 1.6 m wavelengths built with a two-dimensional photonic crystal,” Opt. Lett. 27, 1400–1402 (2002).
    [CrossRef]
  9. H. Takeda and K. Yoshino, “Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals utilizing liquid crystals as linear defects,” Phys. Rev. B 67, 073106 (2003).
    [CrossRef]
  10. K. Inoue, Y. Sugimoto, N. Ikeda, Y. Tanaka, K. Asakawa, H. Sasaki, and K. Ishida, “Ultra-small photonic-crystal-waveguide-based Y-splitters useful in the near-infrared wavelength region,” Jpn. J. Appl. Phys. 43, 446–448 (2004).
  11. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
    [CrossRef]
  12. J. Amet, F. Baida, G. Burr, and M. P. Bernal, “The superprism effect in lithium niobate photonic crystals for ultra-fast, ultra-compact electro-optical switching,” Photon. Nanostr. Fundam. Appl. 6, 47–59 (2008).
    [CrossRef]
  13. S. Diziain, J. Amet, F. I. Baida, and M. P. Bernal, “Optical far-field and near-field observations of the strong angular dispersion in a lithium niobate photonic crystal superprism designed for double (passive and active) demultiplexer applications,” Appl. Phys. Lett. 93, 261103 (2008).
    [CrossRef]
  14. C. Chao, H. Li, X. Li, K. Xu, J. Wu, and J. Lin, “Band pass filters based on phase-shifted photonic crystal waveguide gratings,” Opt. Express 15, 11278–11284 (2007).
    [CrossRef]
  15. L. Scolari, C. B. Olausson, J. Weirich, D. Turchinovich, T. T. Alkeskjold, A. Bjarklev, and L. Eskildsen, “Tunable polarisation-maintaining filter based on liquid crystal photonic bandgap fibre,” Electron. Lett. 44, 1189–1190 (2008).
    [CrossRef]
  16. T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, and A. W. Domanski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39, 1021–1032 (2007).
    [CrossRef]
  17. L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Tunable gaussian filter based on tapered liquid crystal photonic bandgap fibre,” Electron. Lett. 42, 1270–1271 (2006).
    [CrossRef]
  18. L. An and G.-P. Wang, “Triple-periodical photonic crystal heterostructures for multichannel ultranarrow transmission filters,” Chin. Phys. Lett. 23, 388 (2006).
    [CrossRef]
  19. W. Zhou, D. Mackie, M. Taysinglara, G. Dang, P. Newman, and S. Svensson, “Novel reconfigurable semiconductor photonic crystal-MEMS device,” Solid-State Electron. 50, 908–913 (2006).
    [CrossRef]
  20. T. Takahata, K. Hoshiro, K. Matsumoto, and I. Shimoyama, “Photonic crystal attenuator with a flexible waveguide and nano-rods,” in International Conference on Micro Electro Mechanical Systems, MEMS 2006 (IEEE, 2006), pp. 834–837.
  21. L. J. Kauppinen, T. J. Pinkert, H. J. W. M. Hoekstra, and R. M. de Ridder, “Photonic crystal cavity-based Y splitter for mechano-optical switching,” IEEE Photon. Technol. Lett. 22, 966–968 (2010).
    [CrossRef]
  22. S. Mujumdar, A. F. Koenderink, R. Wüest, and V. Sandoghdar, “Nano-optomechanical characterization and manipulation of photonic crystals,” IEEE J. Quantum Electron. 13, 253–261 (2007).
    [CrossRef]
  23. H. Kim and M. J. Kim, “Design and characterization of dual-band-pass filters for optical communication,” J. Korean Phys. Soc. 53, 1607–1611 (2008).
    [CrossRef]
  24. T. Richter, R. Ludwig, J. K. Fischer, S. Watanabe, R. Okabe, T. Kato, and C. Schubert, “All-optical level equalization of data packets using a fiber-optic parametric amplifier,” in 36th European Conference and Exhibition on Optical Communication, ECOC 2010 (IEEE, 2010), pp. 1–3.

2012

M. Noshad, A. Abbasi, R. Ranjbar, and R. Kheradmand, “Novel all-optical logic gates based on photonic crystal structure,” J. Phys. Conf. Ser. 350, 012007 (2012).
[CrossRef]

2010

L. J. Kauppinen, T. J. Pinkert, H. J. W. M. Hoekstra, and R. M. de Ridder, “Photonic crystal cavity-based Y splitter for mechano-optical switching,” IEEE Photon. Technol. Lett. 22, 966–968 (2010).
[CrossRef]

2008

H. Kim and M. J. Kim, “Design and characterization of dual-band-pass filters for optical communication,” J. Korean Phys. Soc. 53, 1607–1611 (2008).
[CrossRef]

J. Amet, F. Baida, G. Burr, and M. P. Bernal, “The superprism effect in lithium niobate photonic crystals for ultra-fast, ultra-compact electro-optical switching,” Photon. Nanostr. Fundam. Appl. 6, 47–59 (2008).
[CrossRef]

S. Diziain, J. Amet, F. I. Baida, and M. P. Bernal, “Optical far-field and near-field observations of the strong angular dispersion in a lithium niobate photonic crystal superprism designed for double (passive and active) demultiplexer applications,” Appl. Phys. Lett. 93, 261103 (2008).
[CrossRef]

L. Scolari, C. B. Olausson, J. Weirich, D. Turchinovich, T. T. Alkeskjold, A. Bjarklev, and L. Eskildsen, “Tunable polarisation-maintaining filter based on liquid crystal photonic bandgap fibre,” Electron. Lett. 44, 1189–1190 (2008).
[CrossRef]

2007

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, and A. W. Domanski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39, 1021–1032 (2007).
[CrossRef]

L. Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen, “High speed silicon photonic crystal waveguide modulator for low voltage operation,” Appl. Phys. Lett. 90, 071105 (2007).
[CrossRef]

S. Mujumdar, A. F. Koenderink, R. Wüest, and V. Sandoghdar, “Nano-optomechanical characterization and manipulation of photonic crystals,” IEEE J. Quantum Electron. 13, 253–261 (2007).
[CrossRef]

L. Fekete, F. Kadlec, P. Kuzel, and H. Nemec, “Ultrafast optoterahertz photonic crystal modulator,” Opt. Lett. 32, 680–682 (2007).
[CrossRef]

C. Chao, H. Li, X. Li, K. Xu, J. Wu, and J. Lin, “Band pass filters based on phase-shifted photonic crystal waveguide gratings,” Opt. Express 15, 11278–11284 (2007).
[CrossRef]

2006

L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Tunable gaussian filter based on tapered liquid crystal photonic bandgap fibre,” Electron. Lett. 42, 1270–1271 (2006).
[CrossRef]

L. An and G.-P. Wang, “Triple-periodical photonic crystal heterostructures for multichannel ultranarrow transmission filters,” Chin. Phys. Lett. 23, 388 (2006).
[CrossRef]

W. Zhou, D. Mackie, M. Taysinglara, G. Dang, P. Newman, and S. Svensson, “Novel reconfigurable semiconductor photonic crystal-MEMS device,” Solid-State Electron. 50, 908–913 (2006).
[CrossRef]

2005

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80 micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87, 221105 (2005).
[CrossRef]

2004

K. Inoue, Y. Sugimoto, N. Ikeda, Y. Tanaka, K. Asakawa, H. Sasaki, and K. Ishida, “Ultra-small photonic-crystal-waveguide-based Y-splitters useful in the near-infrared wavelength region,” Jpn. J. Appl. Phys. 43, 446–448 (2004).

2003

H. Takeda and K. Yoshino, “Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals utilizing liquid crystals as linear defects,” Phys. Rev. B 67, 073106 (2003).
[CrossRef]

M. Qiu, M. Mulot, M. Swillo, S. Anand, B. Jaskorzynak, A. Karlsson, M. Kamp, and A. Forchel, “Photonic crystal optical filter based on contra-directional waveguide coupling,” Appl. Phys. Lett. 83, 5121–5123 (2003).
[CrossRef]

2002

1998

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

1987

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

Abbasi, A.

M. Noshad, A. Abbasi, R. Ranjbar, and R. Kheradmand, “Novel all-optical logic gates based on photonic crystal structure,” J. Phys. Conf. Ser. 350, 012007 (2012).
[CrossRef]

Alkeskjold, T. T.

L. Scolari, C. B. Olausson, J. Weirich, D. Turchinovich, T. T. Alkeskjold, A. Bjarklev, and L. Eskildsen, “Tunable polarisation-maintaining filter based on liquid crystal photonic bandgap fibre,” Electron. Lett. 44, 1189–1190 (2008).
[CrossRef]

L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Tunable gaussian filter based on tapered liquid crystal photonic bandgap fibre,” Electron. Lett. 42, 1270–1271 (2006).
[CrossRef]

Amet, J.

S. Diziain, J. Amet, F. I. Baida, and M. P. Bernal, “Optical far-field and near-field observations of the strong angular dispersion in a lithium niobate photonic crystal superprism designed for double (passive and active) demultiplexer applications,” Appl. Phys. Lett. 93, 261103 (2008).
[CrossRef]

J. Amet, F. Baida, G. Burr, and M. P. Bernal, “The superprism effect in lithium niobate photonic crystals for ultra-fast, ultra-compact electro-optical switching,” Photon. Nanostr. Fundam. Appl. 6, 47–59 (2008).
[CrossRef]

An, L.

L. An and G.-P. Wang, “Triple-periodical photonic crystal heterostructures for multichannel ultranarrow transmission filters,” Chin. Phys. Lett. 23, 388 (2006).
[CrossRef]

Anand, S.

M. Qiu, M. Mulot, M. Swillo, S. Anand, B. Jaskorzynak, A. Karlsson, M. Kamp, and A. Forchel, “Photonic crystal optical filter based on contra-directional waveguide coupling,” Appl. Phys. Lett. 83, 5121–5123 (2003).
[CrossRef]

Asakawa, K.

K. Inoue, Y. Sugimoto, N. Ikeda, Y. Tanaka, K. Asakawa, H. Sasaki, and K. Ishida, “Ultra-small photonic-crystal-waveguide-based Y-splitters useful in the near-infrared wavelength region,” Jpn. J. Appl. Phys. 43, 446–448 (2004).

Baida, F.

J. Amet, F. Baida, G. Burr, and M. P. Bernal, “The superprism effect in lithium niobate photonic crystals for ultra-fast, ultra-compact electro-optical switching,” Photon. Nanostr. Fundam. Appl. 6, 47–59 (2008).
[CrossRef]

Baida, F. I.

S. Diziain, J. Amet, F. I. Baida, and M. P. Bernal, “Optical far-field and near-field observations of the strong angular dispersion in a lithium niobate photonic crystal superprism designed for double (passive and active) demultiplexer applications,” Appl. Phys. Lett. 93, 261103 (2008).
[CrossRef]

Bernal, M. P.

S. Diziain, J. Amet, F. I. Baida, and M. P. Bernal, “Optical far-field and near-field observations of the strong angular dispersion in a lithium niobate photonic crystal superprism designed for double (passive and active) demultiplexer applications,” Appl. Phys. Lett. 93, 261103 (2008).
[CrossRef]

J. Amet, F. Baida, G. Burr, and M. P. Bernal, “The superprism effect in lithium niobate photonic crystals for ultra-fast, ultra-compact electro-optical switching,” Photon. Nanostr. Fundam. Appl. 6, 47–59 (2008).
[CrossRef]

Bjarklev, A.

L. Scolari, C. B. Olausson, J. Weirich, D. Turchinovich, T. T. Alkeskjold, A. Bjarklev, and L. Eskildsen, “Tunable polarisation-maintaining filter based on liquid crystal photonic bandgap fibre,” Electron. Lett. 44, 1189–1190 (2008).
[CrossRef]

L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Tunable gaussian filter based on tapered liquid crystal photonic bandgap fibre,” Electron. Lett. 42, 1270–1271 (2006).
[CrossRef]

Bur, J.

Burr, G.

J. Amet, F. Baida, G. Burr, and M. P. Bernal, “The superprism effect in lithium niobate photonic crystals for ultra-fast, ultra-compact electro-optical switching,” Photon. Nanostr. Fundam. Appl. 6, 47–59 (2008).
[CrossRef]

Chao, C.

Chen, R. T.

L. Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen, “High speed silicon photonic crystal waveguide modulator for low voltage operation,” Appl. Phys. Lett. 90, 071105 (2007).
[CrossRef]

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80 micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87, 221105 (2005).
[CrossRef]

Chen, X.

L. Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen, “High speed silicon photonic crystal waveguide modulator for low voltage operation,” Appl. Phys. Lett. 90, 071105 (2007).
[CrossRef]

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80 micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87, 221105 (2005).
[CrossRef]

Chow, E.

Czapla, A.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, and A. W. Domanski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39, 1021–1032 (2007).
[CrossRef]

Dang, G.

W. Zhou, D. Mackie, M. Taysinglara, G. Dang, P. Newman, and S. Svensson, “Novel reconfigurable semiconductor photonic crystal-MEMS device,” Solid-State Electron. 50, 908–913 (2006).
[CrossRef]

de Ridder, R. M.

L. J. Kauppinen, T. J. Pinkert, H. J. W. M. Hoekstra, and R. M. de Ridder, “Photonic crystal cavity-based Y splitter for mechano-optical switching,” IEEE Photon. Technol. Lett. 22, 966–968 (2010).
[CrossRef]

Diziain, S.

S. Diziain, J. Amet, F. I. Baida, and M. P. Bernal, “Optical far-field and near-field observations of the strong angular dispersion in a lithium niobate photonic crystal superprism designed for double (passive and active) demultiplexer applications,” Appl. Phys. Lett. 93, 261103 (2008).
[CrossRef]

Domanski, A. W.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, and A. W. Domanski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39, 1021–1032 (2007).
[CrossRef]

Ertman, S.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, and A. W. Domanski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39, 1021–1032 (2007).
[CrossRef]

Eskildsen, L.

L. Scolari, C. B. Olausson, J. Weirich, D. Turchinovich, T. T. Alkeskjold, A. Bjarklev, and L. Eskildsen, “Tunable polarisation-maintaining filter based on liquid crystal photonic bandgap fibre,” Electron. Lett. 44, 1189–1190 (2008).
[CrossRef]

Fekete, L.

Fischer, J. K.

T. Richter, R. Ludwig, J. K. Fischer, S. Watanabe, R. Okabe, T. Kato, and C. Schubert, “All-optical level equalization of data packets using a fiber-optic parametric amplifier,” in 36th European Conference and Exhibition on Optical Communication, ECOC 2010 (IEEE, 2010), pp. 1–3.

Forchel, A.

M. Qiu, M. Mulot, M. Swillo, S. Anand, B. Jaskorzynak, A. Karlsson, M. Kamp, and A. Forchel, “Photonic crystal optical filter based on contra-directional waveguide coupling,” Appl. Phys. Lett. 83, 5121–5123 (2003).
[CrossRef]

Gu, L.

L. Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen, “High speed silicon photonic crystal waveguide modulator for low voltage operation,” Appl. Phys. Lett. 90, 071105 (2007).
[CrossRef]

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80 micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87, 221105 (2005).
[CrossRef]

Hoekstra, H. J. W. M.

L. J. Kauppinen, T. J. Pinkert, H. J. W. M. Hoekstra, and R. M. de Ridder, “Photonic crystal cavity-based Y splitter for mechano-optical switching,” IEEE Photon. Technol. Lett. 22, 966–968 (2010).
[CrossRef]

Hoshiro, K.

T. Takahata, K. Hoshiro, K. Matsumoto, and I. Shimoyama, “Photonic crystal attenuator with a flexible waveguide and nano-rods,” in International Conference on Micro Electro Mechanical Systems, MEMS 2006 (IEEE, 2006), pp. 834–837.

Ikeda, N.

K. Inoue, Y. Sugimoto, N. Ikeda, Y. Tanaka, K. Asakawa, H. Sasaki, and K. Ishida, “Ultra-small photonic-crystal-waveguide-based Y-splitters useful in the near-infrared wavelength region,” Jpn. J. Appl. Phys. 43, 446–448 (2004).

Inoue, K.

K. Inoue, Y. Sugimoto, N. Ikeda, Y. Tanaka, K. Asakawa, H. Sasaki, and K. Ishida, “Ultra-small photonic-crystal-waveguide-based Y-splitters useful in the near-infrared wavelength region,” Jpn. J. Appl. Phys. 43, 446–448 (2004).

Ishida, K.

K. Inoue, Y. Sugimoto, N. Ikeda, Y. Tanaka, K. Asakawa, H. Sasaki, and K. Ishida, “Ultra-small photonic-crystal-waveguide-based Y-splitters useful in the near-infrared wavelength region,” Jpn. J. Appl. Phys. 43, 446–448 (2004).

Jaskorzynak, B.

M. Qiu, M. Mulot, M. Swillo, S. Anand, B. Jaskorzynak, A. Karlsson, M. Kamp, and A. Forchel, “Photonic crystal optical filter based on contra-directional waveguide coupling,” Appl. Phys. Lett. 83, 5121–5123 (2003).
[CrossRef]

Jiang, W.

L. Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen, “High speed silicon photonic crystal waveguide modulator for low voltage operation,” Appl. Phys. Lett. 90, 071105 (2007).
[CrossRef]

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80 micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87, 221105 (2005).
[CrossRef]

Jiang, Y.

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80 micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87, 221105 (2005).
[CrossRef]

Joannopoulos, J. D.

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

Johnson, S. G.

Kadlec, F.

Kamp, M.

M. Qiu, M. Mulot, M. Swillo, S. Anand, B. Jaskorzynak, A. Karlsson, M. Kamp, and A. Forchel, “Photonic crystal optical filter based on contra-directional waveguide coupling,” Appl. Phys. Lett. 83, 5121–5123 (2003).
[CrossRef]

Karlsson, A.

M. Qiu, M. Mulot, M. Swillo, S. Anand, B. Jaskorzynak, A. Karlsson, M. Kamp, and A. Forchel, “Photonic crystal optical filter based on contra-directional waveguide coupling,” Appl. Phys. Lett. 83, 5121–5123 (2003).
[CrossRef]

Kato, T.

T. Richter, R. Ludwig, J. K. Fischer, S. Watanabe, R. Okabe, T. Kato, and C. Schubert, “All-optical level equalization of data packets using a fiber-optic parametric amplifier,” in 36th European Conference and Exhibition on Optical Communication, ECOC 2010 (IEEE, 2010), pp. 1–3.

Kauppinen, L. J.

L. J. Kauppinen, T. J. Pinkert, H. J. W. M. Hoekstra, and R. M. de Ridder, “Photonic crystal cavity-based Y splitter for mechano-optical switching,” IEEE Photon. Technol. Lett. 22, 966–968 (2010).
[CrossRef]

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Kheradmand, R.

M. Noshad, A. Abbasi, R. Ranjbar, and R. Kheradmand, “Novel all-optical logic gates based on photonic crystal structure,” J. Phys. Conf. Ser. 350, 012007 (2012).
[CrossRef]

Kim, H.

H. Kim and M. J. Kim, “Design and characterization of dual-band-pass filters for optical communication,” J. Korean Phys. Soc. 53, 1607–1611 (2008).
[CrossRef]

Kim, M. J.

H. Kim and M. J. Kim, “Design and characterization of dual-band-pass filters for optical communication,” J. Korean Phys. Soc. 53, 1607–1611 (2008).
[CrossRef]

Koenderink, A. F.

S. Mujumdar, A. F. Koenderink, R. Wüest, and V. Sandoghdar, “Nano-optomechanical characterization and manipulation of photonic crystals,” IEEE J. Quantum Electron. 13, 253–261 (2007).
[CrossRef]

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Kuzel, P.

Li, H.

Li, X.

Lin, J.

Lin, S. Y.

Ludwig, R.

T. Richter, R. Ludwig, J. K. Fischer, S. Watanabe, R. Okabe, T. Kato, and C. Schubert, “All-optical level equalization of data packets using a fiber-optic parametric amplifier,” in 36th European Conference and Exhibition on Optical Communication, ECOC 2010 (IEEE, 2010), pp. 1–3.

Mackie, D.

W. Zhou, D. Mackie, M. Taysinglara, G. Dang, P. Newman, and S. Svensson, “Novel reconfigurable semiconductor photonic crystal-MEMS device,” Solid-State Electron. 50, 908–913 (2006).
[CrossRef]

Matsumoto, K.

T. Takahata, K. Hoshiro, K. Matsumoto, and I. Shimoyama, “Photonic crystal attenuator with a flexible waveguide and nano-rods,” in International Conference on Micro Electro Mechanical Systems, MEMS 2006 (IEEE, 2006), pp. 834–837.

Mujumdar, S.

S. Mujumdar, A. F. Koenderink, R. Wüest, and V. Sandoghdar, “Nano-optomechanical characterization and manipulation of photonic crystals,” IEEE J. Quantum Electron. 13, 253–261 (2007).
[CrossRef]

Mulot, M.

M. Qiu, M. Mulot, M. Swillo, S. Anand, B. Jaskorzynak, A. Karlsson, M. Kamp, and A. Forchel, “Photonic crystal optical filter based on contra-directional waveguide coupling,” Appl. Phys. Lett. 83, 5121–5123 (2003).
[CrossRef]

Nemec, H.

Newman, P.

W. Zhou, D. Mackie, M. Taysinglara, G. Dang, P. Newman, and S. Svensson, “Novel reconfigurable semiconductor photonic crystal-MEMS device,” Solid-State Electron. 50, 908–913 (2006).
[CrossRef]

Noshad, M.

M. Noshad, A. Abbasi, R. Ranjbar, and R. Kheradmand, “Novel all-optical logic gates based on photonic crystal structure,” J. Phys. Conf. Ser. 350, 012007 (2012).
[CrossRef]

Notomi, M.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Okabe, R.

T. Richter, R. Ludwig, J. K. Fischer, S. Watanabe, R. Okabe, T. Kato, and C. Schubert, “All-optical level equalization of data packets using a fiber-optic parametric amplifier,” in 36th European Conference and Exhibition on Optical Communication, ECOC 2010 (IEEE, 2010), pp. 1–3.

Olausson, C. B.

L. Scolari, C. B. Olausson, J. Weirich, D. Turchinovich, T. T. Alkeskjold, A. Bjarklev, and L. Eskildsen, “Tunable polarisation-maintaining filter based on liquid crystal photonic bandgap fibre,” Electron. Lett. 44, 1189–1190 (2008).
[CrossRef]

Pinkert, T. J.

L. J. Kauppinen, T. J. Pinkert, H. J. W. M. Hoekstra, and R. M. de Ridder, “Photonic crystal cavity-based Y splitter for mechano-optical switching,” IEEE Photon. Technol. Lett. 22, 966–968 (2010).
[CrossRef]

Qiu, M.

M. Qiu, M. Mulot, M. Swillo, S. Anand, B. Jaskorzynak, A. Karlsson, M. Kamp, and A. Forchel, “Photonic crystal optical filter based on contra-directional waveguide coupling,” Appl. Phys. Lett. 83, 5121–5123 (2003).
[CrossRef]

Ranjbar, R.

M. Noshad, A. Abbasi, R. Ranjbar, and R. Kheradmand, “Novel all-optical logic gates based on photonic crystal structure,” J. Phys. Conf. Ser. 350, 012007 (2012).
[CrossRef]

Richter, T.

T. Richter, R. Ludwig, J. K. Fischer, S. Watanabe, R. Okabe, T. Kato, and C. Schubert, “All-optical level equalization of data packets using a fiber-optic parametric amplifier,” in 36th European Conference and Exhibition on Optical Communication, ECOC 2010 (IEEE, 2010), pp. 1–3.

Sandoghdar, V.

S. Mujumdar, A. F. Koenderink, R. Wüest, and V. Sandoghdar, “Nano-optomechanical characterization and manipulation of photonic crystals,” IEEE J. Quantum Electron. 13, 253–261 (2007).
[CrossRef]

Sasaki, H.

K. Inoue, Y. Sugimoto, N. Ikeda, Y. Tanaka, K. Asakawa, H. Sasaki, and K. Ishida, “Ultra-small photonic-crystal-waveguide-based Y-splitters useful in the near-infrared wavelength region,” Jpn. J. Appl. Phys. 43, 446–448 (2004).

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Schubert, C.

T. Richter, R. Ludwig, J. K. Fischer, S. Watanabe, R. Okabe, T. Kato, and C. Schubert, “All-optical level equalization of data packets using a fiber-optic parametric amplifier,” in 36th European Conference and Exhibition on Optical Communication, ECOC 2010 (IEEE, 2010), pp. 1–3.

Scolari, L.

L. Scolari, C. B. Olausson, J. Weirich, D. Turchinovich, T. T. Alkeskjold, A. Bjarklev, and L. Eskildsen, “Tunable polarisation-maintaining filter based on liquid crystal photonic bandgap fibre,” Electron. Lett. 44, 1189–1190 (2008).
[CrossRef]

L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Tunable gaussian filter based on tapered liquid crystal photonic bandgap fibre,” Electron. Lett. 42, 1270–1271 (2006).
[CrossRef]

Shimoyama, I.

T. Takahata, K. Hoshiro, K. Matsumoto, and I. Shimoyama, “Photonic crystal attenuator with a flexible waveguide and nano-rods,” in International Conference on Micro Electro Mechanical Systems, MEMS 2006 (IEEE, 2006), pp. 834–837.

Sugimoto, Y.

K. Inoue, Y. Sugimoto, N. Ikeda, Y. Tanaka, K. Asakawa, H. Sasaki, and K. Ishida, “Ultra-small photonic-crystal-waveguide-based Y-splitters useful in the near-infrared wavelength region,” Jpn. J. Appl. Phys. 43, 446–448 (2004).

Svensson, S.

W. Zhou, D. Mackie, M. Taysinglara, G. Dang, P. Newman, and S. Svensson, “Novel reconfigurable semiconductor photonic crystal-MEMS device,” Solid-State Electron. 50, 908–913 (2006).
[CrossRef]

Swillo, M.

M. Qiu, M. Mulot, M. Swillo, S. Anand, B. Jaskorzynak, A. Karlsson, M. Kamp, and A. Forchel, “Photonic crystal optical filter based on contra-directional waveguide coupling,” Appl. Phys. Lett. 83, 5121–5123 (2003).
[CrossRef]

Takahata, T.

T. Takahata, K. Hoshiro, K. Matsumoto, and I. Shimoyama, “Photonic crystal attenuator with a flexible waveguide and nano-rods,” in International Conference on Micro Electro Mechanical Systems, MEMS 2006 (IEEE, 2006), pp. 834–837.

Takeda, H.

H. Takeda and K. Yoshino, “Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals utilizing liquid crystals as linear defects,” Phys. Rev. B 67, 073106 (2003).
[CrossRef]

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Tanaka, Y.

K. Inoue, Y. Sugimoto, N. Ikeda, Y. Tanaka, K. Asakawa, H. Sasaki, and K. Ishida, “Ultra-small photonic-crystal-waveguide-based Y-splitters useful in the near-infrared wavelength region,” Jpn. J. Appl. Phys. 43, 446–448 (2004).

Taysinglara, M.

W. Zhou, D. Mackie, M. Taysinglara, G. Dang, P. Newman, and S. Svensson, “Novel reconfigurable semiconductor photonic crystal-MEMS device,” Solid-State Electron. 50, 908–913 (2006).
[CrossRef]

Tefelska, M.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, and A. W. Domanski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39, 1021–1032 (2007).
[CrossRef]

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Turchinovich, D.

L. Scolari, C. B. Olausson, J. Weirich, D. Turchinovich, T. T. Alkeskjold, A. Bjarklev, and L. Eskildsen, “Tunable polarisation-maintaining filter based on liquid crystal photonic bandgap fibre,” Electron. Lett. 44, 1189–1190 (2008).
[CrossRef]

Wang, G.-P.

L. An and G.-P. Wang, “Triple-periodical photonic crystal heterostructures for multichannel ultranarrow transmission filters,” Chin. Phys. Lett. 23, 388 (2006).
[CrossRef]

Wang, L.

L. Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen, “High speed silicon photonic crystal waveguide modulator for low voltage operation,” Appl. Phys. Lett. 90, 071105 (2007).
[CrossRef]

Watanabe, S.

T. Richter, R. Ludwig, J. K. Fischer, S. Watanabe, R. Okabe, T. Kato, and C. Schubert, “All-optical level equalization of data packets using a fiber-optic parametric amplifier,” in 36th European Conference and Exhibition on Optical Communication, ECOC 2010 (IEEE, 2010), pp. 1–3.

Weirich, J.

L. Scolari, C. B. Olausson, J. Weirich, D. Turchinovich, T. T. Alkeskjold, A. Bjarklev, and L. Eskildsen, “Tunable polarisation-maintaining filter based on liquid crystal photonic bandgap fibre,” Electron. Lett. 44, 1189–1190 (2008).
[CrossRef]

Wolinski, T. R.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, and A. W. Domanski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39, 1021–1032 (2007).
[CrossRef]

Wu, J.

Wüest, R.

S. Mujumdar, A. F. Koenderink, R. Wüest, and V. Sandoghdar, “Nano-optomechanical characterization and manipulation of photonic crystals,” IEEE J. Quantum Electron. 13, 253–261 (2007).
[CrossRef]

Xu, K.

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
[CrossRef]

Yoshino, K.

H. Takeda and K. Yoshino, “Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals utilizing liquid crystals as linear defects,” Phys. Rev. B 67, 073106 (2003).
[CrossRef]

Zhou, W.

W. Zhou, D. Mackie, M. Taysinglara, G. Dang, P. Newman, and S. Svensson, “Novel reconfigurable semiconductor photonic crystal-MEMS device,” Solid-State Electron. 50, 908–913 (2006).
[CrossRef]

Appl. Phys. Lett.

M. Qiu, M. Mulot, M. Swillo, S. Anand, B. Jaskorzynak, A. Karlsson, M. Kamp, and A. Forchel, “Photonic crystal optical filter based on contra-directional waveguide coupling,” Appl. Phys. Lett. 83, 5121–5123 (2003).
[CrossRef]

L. Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen, “High speed silicon photonic crystal waveguide modulator for low voltage operation,” Appl. Phys. Lett. 90, 071105 (2007).
[CrossRef]

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80 micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87, 221105 (2005).
[CrossRef]

S. Diziain, J. Amet, F. I. Baida, and M. P. Bernal, “Optical far-field and near-field observations of the strong angular dispersion in a lithium niobate photonic crystal superprism designed for double (passive and active) demultiplexer applications,” Appl. Phys. Lett. 93, 261103 (2008).
[CrossRef]

Chin. Phys. Lett.

L. An and G.-P. Wang, “Triple-periodical photonic crystal heterostructures for multichannel ultranarrow transmission filters,” Chin. Phys. Lett. 23, 388 (2006).
[CrossRef]

Electron. Lett.

L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Tunable gaussian filter based on tapered liquid crystal photonic bandgap fibre,” Electron. Lett. 42, 1270–1271 (2006).
[CrossRef]

L. Scolari, C. B. Olausson, J. Weirich, D. Turchinovich, T. T. Alkeskjold, A. Bjarklev, and L. Eskildsen, “Tunable polarisation-maintaining filter based on liquid crystal photonic bandgap fibre,” Electron. Lett. 44, 1189–1190 (2008).
[CrossRef]

IEEE J. Quantum Electron.

S. Mujumdar, A. F. Koenderink, R. Wüest, and V. Sandoghdar, “Nano-optomechanical characterization and manipulation of photonic crystals,” IEEE J. Quantum Electron. 13, 253–261 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

L. J. Kauppinen, T. J. Pinkert, H. J. W. M. Hoekstra, and R. M. de Ridder, “Photonic crystal cavity-based Y splitter for mechano-optical switching,” IEEE Photon. Technol. Lett. 22, 966–968 (2010).
[CrossRef]

J. Korean Phys. Soc.

H. Kim and M. J. Kim, “Design and characterization of dual-band-pass filters for optical communication,” J. Korean Phys. Soc. 53, 1607–1611 (2008).
[CrossRef]

J. Phys. Conf. Ser.

M. Noshad, A. Abbasi, R. Ranjbar, and R. Kheradmand, “Novel all-optical logic gates based on photonic crystal structure,” J. Phys. Conf. Ser. 350, 012007 (2012).
[CrossRef]

Jpn. J. Appl. Phys.

K. Inoue, Y. Sugimoto, N. Ikeda, Y. Tanaka, K. Asakawa, H. Sasaki, and K. Ishida, “Ultra-small photonic-crystal-waveguide-based Y-splitters useful in the near-infrared wavelength region,” Jpn. J. Appl. Phys. 43, 446–448 (2004).

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, and A. W. Domanski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39, 1021–1032 (2007).
[CrossRef]

Photon. Nanostr. Fundam. Appl.

J. Amet, F. Baida, G. Burr, and M. P. Bernal, “The superprism effect in lithium niobate photonic crystals for ultra-fast, ultra-compact electro-optical switching,” Photon. Nanostr. Fundam. Appl. 6, 47–59 (2008).
[CrossRef]

Phys. Rev. B

H. Takeda and K. Yoshino, “Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals utilizing liquid crystals as linear defects,” Phys. Rev. B 67, 073106 (2003).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Phys. Rev. Lett.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

Solid-State Electron.

W. Zhou, D. Mackie, M. Taysinglara, G. Dang, P. Newman, and S. Svensson, “Novel reconfigurable semiconductor photonic crystal-MEMS device,” Solid-State Electron. 50, 908–913 (2006).
[CrossRef]

Other

T. Takahata, K. Hoshiro, K. Matsumoto, and I. Shimoyama, “Photonic crystal attenuator with a flexible waveguide and nano-rods,” in International Conference on Micro Electro Mechanical Systems, MEMS 2006 (IEEE, 2006), pp. 834–837.

T. Richter, R. Ludwig, J. K. Fischer, S. Watanabe, R. Okabe, T. Kato, and C. Schubert, “All-optical level equalization of data packets using a fiber-optic parametric amplifier,” in 36th European Conference and Exhibition on Optical Communication, ECOC 2010 (IEEE, 2010), pp. 1–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of coupling between input and output waveguides.

Fig. 2.
Fig. 2.

(a) Transmission efficiency dependence on the rotation angle. (b) Device structure.

Fig. 3.
Fig. 3.

Light propagation scheme at λ1 for the rotation angles of (a) 0° and (b) 90°.

Fig. 4.
Fig. 4.

Transmission spectrum of the dual channel cavity for the rotation angle of 60°.

Fig. 5.
Fig. 5.

Variation of the resonance wavelength versus the changes of (a) major radius, when the minor radius is fixed to 0.27a and (b) minor radius, when the major radius is fixed to 0.32a.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

POut(λ1)=α(θ)2PIn(λ1),
POut(λ1)=β(θ)2PIn(λ1).
Tλ1(θ)=α(θ)2sin2(θ),
Tλ2(θ)=β(θ)2cos2(θ).

Metrics