Abstract

The refractive index (RI) of polymer nanocomposite of poly(vinyl alcohol) films with TiO2 nanoparticle inclusions with low concentration up to 1.2 wt. % was investigated. Accurate refractometric measurements, by a specially designed laser microrefractometer, were performed at wavelengths 532 and 632.8 nm. The influence of TiO2 concentration on the RI dispersion curves was predicted based on the well-known Sellmeier model. The theoretical analysis, in a small filling factor approximation, was performed, and a relation between the effective RI of the nanocomposite and weight concentrations of the TiO2 nanofiller was derived. The experimental values were approximated by two different functions (linear and a quadratic polynom). The polynomial approximation yields better result, where R2=0.90.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Wang and G. Wilkes, “New Ti-PTMO and Tr-PTMO creamer hybrid materials prepared by the sol-gel method: synthesis and characterization,” J. Polym. Sci. A 29, 905–909 (1991).
    [CrossRef]
  2. S. Lee, H.-J. Shin, S.-M. Yoon, D. Vi, J.-Y. Choi, and U. Paik, “Refractive index engineering of transparent ZrO2-polydimethilsiloxane nanocomposites,” J. Mater. Chem. 18, 1751–1755 (2008).
    [CrossRef]
  3. D. R. Lide, Handbook of Chemistry and Physics (CRS, 1995).
  4. B. Wang, G. Wilkes, J. Hedrick, S. Liptak, and J. McGrath, “New high refractive index organic/inorganic hybrid materials from sol-gel processing,” Macromolecules 24, 1751–1755 (1991).
    [CrossRef]
  5. H.-W. Su and W. C. Chen, “High refractive index polyimide-nanocrystalline-titania hybrid optical materials,” J. Mater. Chem. 18, 1139–1145 (2008).
    [CrossRef]
  6. L.-H. Lee and W.-C. Chen, “High-refractive-index thin films prepared from trialkoxilane-capped poly(methyl methacrylate)-titania materials,” Chem. Mater. 13, 1137–1142 (2001).
    [CrossRef]
  7. W.-L. Chang, H.-W. Su, and W.-C. Chen, “Synthesis and properties of photosensitive polyimide-nanocrystalline titania optical thin films,” Eur. Polym. J. 45, 2749–2759 (2009).
    [CrossRef]
  8. J. L. H. Chau, Y.-M. Lin, A.-K. Li, W.-F. Su, K.-S. Chang, S. L.-C. Hsu, and T.-L. Li, “Transparent high refractive index nanocomposite thin films,” Mater. Lett. 61, 2908–2910 (2007).
    [CrossRef]
  9. C.-C. Chang and W.-C. Chen, “High-refractive-index thin films prepared from aminoalkoxysilane-capped pyromellitic dianhydride-titania hybrid materials,” J. Polym. Sci. A 39, 3419–3427 (2001).
    [CrossRef]
  10. Y. Imai, A. Terahara, Y. Hakuta, K. Matsui, H. Hayashi, and N. Ueno, “Transparent poly(bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles,” Eur. Polym. J. 45, 630–638 (2009).
    [CrossRef]
  11. S. Sainov, “Laser microrefractometer,” Rev. Sci. Instrum. 62, 3106–3107 (1991).
    [CrossRef]
  12. A. Reyes-Coronado, A. García-Valenzuela, C. Sánchez-Pérez, and R. G. Barrera, “Measurement of the effective refractive index of a turbid colloidal suspension using light refraction,” New J. Phys. 7, 89 (2005).
    [CrossRef]
  13. J. Lafait, S. Berthier, Ch. Andraud, V. Reilon, and J. Boulenguez, “Physical colors in cultural heritage: surface plasmons in glass,” C. R. Physique 10, 649–659 (2009).
    [CrossRef]
  14. D. A. G. Bruggeman, “Berechnung verschieder physikalischer Konstanten von heterogenen Substanzen,” Ann. Phys. 416, 636–664 (1935).
    [CrossRef]
  15. D. E. Aspnes, “Local-field effects and effective-medium theory: a microscopic perspective,” Am. J. Phys. 50, 704–709 (1982).
    [CrossRef]
  16. V. I. Odelevskii, “Calculation of general conductivity of heterogeneous systems,” J. Tech. Phys. 21, 667–685 (1953), in Russian.
  17. J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Phil. Trans. R. Soc. A 203, 385–420 (1904).
    [CrossRef]
  18. R. Ruppin, “Validity range of Maxwell-Garnett theory,” Phys. Status Solidi B 87, 619–624 (1978).
    [CrossRef]
  19. C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513–3534 (1977).
    [CrossRef]
  20. J. D. Jackson, Classical Electrodynamics (Wiley, 1962).
  21. L. Jylhä and A. Sihvola, “Equation for the effective permittivity of particle-filled composites for material design applications,” J. Phys. D. 40, 4966–4973 (2007).
    [CrossRef]
  22. R. J. Jimenéz Riobóo, A. De Andrés, A. Kubacka, M. Fernández-García, M. L. Cerrada, C. Serrano, and M. Fernández-García, “Macromolecular nanotechnology—influence of nanoparticles on elastic and optical properties of a polymer matrix: hypersonic studies on ethylene–vinyl alcohol copolymer–titania nanocomposites,” Eur. Polym. J. 46, 397–403 (2010).
    [CrossRef]
  23. A. García-Valenzuela, R. G. Barrera, C. Sánchez-Pérez, A. Reyes-Coronado, and E. R. Méndez, “Coherent reflection of light from a turbid suspension of particles in an internal-reflection configuration: theory versus experiment,” Opt. Express 13, 6723–6737 (2005).
    [CrossRef]
  24. Ul. Diebold, “The surface science of titania dioxide,” Surf. Sci. Rep. 48, 53–229 (2003).
    [CrossRef]
  25. J. Singh, Optical Properties of Condensed Matter and Applications (Wiley-VCH, 2006).

2010

R. J. Jimenéz Riobóo, A. De Andrés, A. Kubacka, M. Fernández-García, M. L. Cerrada, C. Serrano, and M. Fernández-García, “Macromolecular nanotechnology—influence of nanoparticles on elastic and optical properties of a polymer matrix: hypersonic studies on ethylene–vinyl alcohol copolymer–titania nanocomposites,” Eur. Polym. J. 46, 397–403 (2010).
[CrossRef]

2009

W.-L. Chang, H.-W. Su, and W.-C. Chen, “Synthesis and properties of photosensitive polyimide-nanocrystalline titania optical thin films,” Eur. Polym. J. 45, 2749–2759 (2009).
[CrossRef]

Y. Imai, A. Terahara, Y. Hakuta, K. Matsui, H. Hayashi, and N. Ueno, “Transparent poly(bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles,” Eur. Polym. J. 45, 630–638 (2009).
[CrossRef]

J. Lafait, S. Berthier, Ch. Andraud, V. Reilon, and J. Boulenguez, “Physical colors in cultural heritage: surface plasmons in glass,” C. R. Physique 10, 649–659 (2009).
[CrossRef]

2008

S. Lee, H.-J. Shin, S.-M. Yoon, D. Vi, J.-Y. Choi, and U. Paik, “Refractive index engineering of transparent ZrO2-polydimethilsiloxane nanocomposites,” J. Mater. Chem. 18, 1751–1755 (2008).
[CrossRef]

H.-W. Su and W. C. Chen, “High refractive index polyimide-nanocrystalline-titania hybrid optical materials,” J. Mater. Chem. 18, 1139–1145 (2008).
[CrossRef]

2007

J. L. H. Chau, Y.-M. Lin, A.-K. Li, W.-F. Su, K.-S. Chang, S. L.-C. Hsu, and T.-L. Li, “Transparent high refractive index nanocomposite thin films,” Mater. Lett. 61, 2908–2910 (2007).
[CrossRef]

L. Jylhä and A. Sihvola, “Equation for the effective permittivity of particle-filled composites for material design applications,” J. Phys. D. 40, 4966–4973 (2007).
[CrossRef]

2005

A. García-Valenzuela, R. G. Barrera, C. Sánchez-Pérez, A. Reyes-Coronado, and E. R. Méndez, “Coherent reflection of light from a turbid suspension of particles in an internal-reflection configuration: theory versus experiment,” Opt. Express 13, 6723–6737 (2005).
[CrossRef]

A. Reyes-Coronado, A. García-Valenzuela, C. Sánchez-Pérez, and R. G. Barrera, “Measurement of the effective refractive index of a turbid colloidal suspension using light refraction,” New J. Phys. 7, 89 (2005).
[CrossRef]

2003

Ul. Diebold, “The surface science of titania dioxide,” Surf. Sci. Rep. 48, 53–229 (2003).
[CrossRef]

2001

C.-C. Chang and W.-C. Chen, “High-refractive-index thin films prepared from aminoalkoxysilane-capped pyromellitic dianhydride-titania hybrid materials,” J. Polym. Sci. A 39, 3419–3427 (2001).
[CrossRef]

L.-H. Lee and W.-C. Chen, “High-refractive-index thin films prepared from trialkoxilane-capped poly(methyl methacrylate)-titania materials,” Chem. Mater. 13, 1137–1142 (2001).
[CrossRef]

1991

B. Wang, G. Wilkes, J. Hedrick, S. Liptak, and J. McGrath, “New high refractive index organic/inorganic hybrid materials from sol-gel processing,” Macromolecules 24, 1751–1755 (1991).
[CrossRef]

S. Sainov, “Laser microrefractometer,” Rev. Sci. Instrum. 62, 3106–3107 (1991).
[CrossRef]

B. Wang and G. Wilkes, “New Ti-PTMO and Tr-PTMO creamer hybrid materials prepared by the sol-gel method: synthesis and characterization,” J. Polym. Sci. A 29, 905–909 (1991).
[CrossRef]

1982

D. E. Aspnes, “Local-field effects and effective-medium theory: a microscopic perspective,” Am. J. Phys. 50, 704–709 (1982).
[CrossRef]

1978

R. Ruppin, “Validity range of Maxwell-Garnett theory,” Phys. Status Solidi B 87, 619–624 (1978).
[CrossRef]

1977

C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513–3534 (1977).
[CrossRef]

1953

V. I. Odelevskii, “Calculation of general conductivity of heterogeneous systems,” J. Tech. Phys. 21, 667–685 (1953), in Russian.

1935

D. A. G. Bruggeman, “Berechnung verschieder physikalischer Konstanten von heterogenen Substanzen,” Ann. Phys. 416, 636–664 (1935).
[CrossRef]

1904

J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Phil. Trans. R. Soc. A 203, 385–420 (1904).
[CrossRef]

Andraud, Ch.

J. Lafait, S. Berthier, Ch. Andraud, V. Reilon, and J. Boulenguez, “Physical colors in cultural heritage: surface plasmons in glass,” C. R. Physique 10, 649–659 (2009).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes, “Local-field effects and effective-medium theory: a microscopic perspective,” Am. J. Phys. 50, 704–709 (1982).
[CrossRef]

Barrera, R. G.

A. Reyes-Coronado, A. García-Valenzuela, C. Sánchez-Pérez, and R. G. Barrera, “Measurement of the effective refractive index of a turbid colloidal suspension using light refraction,” New J. Phys. 7, 89 (2005).
[CrossRef]

A. García-Valenzuela, R. G. Barrera, C. Sánchez-Pérez, A. Reyes-Coronado, and E. R. Méndez, “Coherent reflection of light from a turbid suspension of particles in an internal-reflection configuration: theory versus experiment,” Opt. Express 13, 6723–6737 (2005).
[CrossRef]

Berthier, S.

J. Lafait, S. Berthier, Ch. Andraud, V. Reilon, and J. Boulenguez, “Physical colors in cultural heritage: surface plasmons in glass,” C. R. Physique 10, 649–659 (2009).
[CrossRef]

Boulenguez, J.

J. Lafait, S. Berthier, Ch. Andraud, V. Reilon, and J. Boulenguez, “Physical colors in cultural heritage: surface plasmons in glass,” C. R. Physique 10, 649–659 (2009).
[CrossRef]

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechnung verschieder physikalischer Konstanten von heterogenen Substanzen,” Ann. Phys. 416, 636–664 (1935).
[CrossRef]

Cerrada, M. L.

R. J. Jimenéz Riobóo, A. De Andrés, A. Kubacka, M. Fernández-García, M. L. Cerrada, C. Serrano, and M. Fernández-García, “Macromolecular nanotechnology—influence of nanoparticles on elastic and optical properties of a polymer matrix: hypersonic studies on ethylene–vinyl alcohol copolymer–titania nanocomposites,” Eur. Polym. J. 46, 397–403 (2010).
[CrossRef]

Chang, C.-C.

C.-C. Chang and W.-C. Chen, “High-refractive-index thin films prepared from aminoalkoxysilane-capped pyromellitic dianhydride-titania hybrid materials,” J. Polym. Sci. A 39, 3419–3427 (2001).
[CrossRef]

Chang, K.-S.

J. L. H. Chau, Y.-M. Lin, A.-K. Li, W.-F. Su, K.-S. Chang, S. L.-C. Hsu, and T.-L. Li, “Transparent high refractive index nanocomposite thin films,” Mater. Lett. 61, 2908–2910 (2007).
[CrossRef]

Chang, W.-L.

W.-L. Chang, H.-W. Su, and W.-C. Chen, “Synthesis and properties of photosensitive polyimide-nanocrystalline titania optical thin films,” Eur. Polym. J. 45, 2749–2759 (2009).
[CrossRef]

Chau, J. L. H.

J. L. H. Chau, Y.-M. Lin, A.-K. Li, W.-F. Su, K.-S. Chang, S. L.-C. Hsu, and T.-L. Li, “Transparent high refractive index nanocomposite thin films,” Mater. Lett. 61, 2908–2910 (2007).
[CrossRef]

Chen, W. C.

H.-W. Su and W. C. Chen, “High refractive index polyimide-nanocrystalline-titania hybrid optical materials,” J. Mater. Chem. 18, 1139–1145 (2008).
[CrossRef]

Chen, W.-C.

W.-L. Chang, H.-W. Su, and W.-C. Chen, “Synthesis and properties of photosensitive polyimide-nanocrystalline titania optical thin films,” Eur. Polym. J. 45, 2749–2759 (2009).
[CrossRef]

L.-H. Lee and W.-C. Chen, “High-refractive-index thin films prepared from trialkoxilane-capped poly(methyl methacrylate)-titania materials,” Chem. Mater. 13, 1137–1142 (2001).
[CrossRef]

C.-C. Chang and W.-C. Chen, “High-refractive-index thin films prepared from aminoalkoxysilane-capped pyromellitic dianhydride-titania hybrid materials,” J. Polym. Sci. A 39, 3419–3427 (2001).
[CrossRef]

Choi, J.-Y.

S. Lee, H.-J. Shin, S.-M. Yoon, D. Vi, J.-Y. Choi, and U. Paik, “Refractive index engineering of transparent ZrO2-polydimethilsiloxane nanocomposites,” J. Mater. Chem. 18, 1751–1755 (2008).
[CrossRef]

De Andrés, A.

R. J. Jimenéz Riobóo, A. De Andrés, A. Kubacka, M. Fernández-García, M. L. Cerrada, C. Serrano, and M. Fernández-García, “Macromolecular nanotechnology—influence of nanoparticles on elastic and optical properties of a polymer matrix: hypersonic studies on ethylene–vinyl alcohol copolymer–titania nanocomposites,” Eur. Polym. J. 46, 397–403 (2010).
[CrossRef]

Diebold, Ul.

Ul. Diebold, “The surface science of titania dioxide,” Surf. Sci. Rep. 48, 53–229 (2003).
[CrossRef]

Fernández-García, M.

R. J. Jimenéz Riobóo, A. De Andrés, A. Kubacka, M. Fernández-García, M. L. Cerrada, C. Serrano, and M. Fernández-García, “Macromolecular nanotechnology—influence of nanoparticles on elastic and optical properties of a polymer matrix: hypersonic studies on ethylene–vinyl alcohol copolymer–titania nanocomposites,” Eur. Polym. J. 46, 397–403 (2010).
[CrossRef]

R. J. Jimenéz Riobóo, A. De Andrés, A. Kubacka, M. Fernández-García, M. L. Cerrada, C. Serrano, and M. Fernández-García, “Macromolecular nanotechnology—influence of nanoparticles on elastic and optical properties of a polymer matrix: hypersonic studies on ethylene–vinyl alcohol copolymer–titania nanocomposites,” Eur. Polym. J. 46, 397–403 (2010).
[CrossRef]

García-Valenzuela, A.

A. García-Valenzuela, R. G. Barrera, C. Sánchez-Pérez, A. Reyes-Coronado, and E. R. Méndez, “Coherent reflection of light from a turbid suspension of particles in an internal-reflection configuration: theory versus experiment,” Opt. Express 13, 6723–6737 (2005).
[CrossRef]

A. Reyes-Coronado, A. García-Valenzuela, C. Sánchez-Pérez, and R. G. Barrera, “Measurement of the effective refractive index of a turbid colloidal suspension using light refraction,” New J. Phys. 7, 89 (2005).
[CrossRef]

Granqvist, C. G.

C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513–3534 (1977).
[CrossRef]

Hakuta, Y.

Y. Imai, A. Terahara, Y. Hakuta, K. Matsui, H. Hayashi, and N. Ueno, “Transparent poly(bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles,” Eur. Polym. J. 45, 630–638 (2009).
[CrossRef]

Hayashi, H.

Y. Imai, A. Terahara, Y. Hakuta, K. Matsui, H. Hayashi, and N. Ueno, “Transparent poly(bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles,” Eur. Polym. J. 45, 630–638 (2009).
[CrossRef]

Hedrick, J.

B. Wang, G. Wilkes, J. Hedrick, S. Liptak, and J. McGrath, “New high refractive index organic/inorganic hybrid materials from sol-gel processing,” Macromolecules 24, 1751–1755 (1991).
[CrossRef]

Hsu, S. L.-C.

J. L. H. Chau, Y.-M. Lin, A.-K. Li, W.-F. Su, K.-S. Chang, S. L.-C. Hsu, and T.-L. Li, “Transparent high refractive index nanocomposite thin films,” Mater. Lett. 61, 2908–2910 (2007).
[CrossRef]

Hunderi, O.

C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513–3534 (1977).
[CrossRef]

Imai, Y.

Y. Imai, A. Terahara, Y. Hakuta, K. Matsui, H. Hayashi, and N. Ueno, “Transparent poly(bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles,” Eur. Polym. J. 45, 630–638 (2009).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1962).

Jimenéz Riobóo, R. J.

R. J. Jimenéz Riobóo, A. De Andrés, A. Kubacka, M. Fernández-García, M. L. Cerrada, C. Serrano, and M. Fernández-García, “Macromolecular nanotechnology—influence of nanoparticles on elastic and optical properties of a polymer matrix: hypersonic studies on ethylene–vinyl alcohol copolymer–titania nanocomposites,” Eur. Polym. J. 46, 397–403 (2010).
[CrossRef]

Jylhä, L.

L. Jylhä and A. Sihvola, “Equation for the effective permittivity of particle-filled composites for material design applications,” J. Phys. D. 40, 4966–4973 (2007).
[CrossRef]

Kubacka, A.

R. J. Jimenéz Riobóo, A. De Andrés, A. Kubacka, M. Fernández-García, M. L. Cerrada, C. Serrano, and M. Fernández-García, “Macromolecular nanotechnology—influence of nanoparticles on elastic and optical properties of a polymer matrix: hypersonic studies on ethylene–vinyl alcohol copolymer–titania nanocomposites,” Eur. Polym. J. 46, 397–403 (2010).
[CrossRef]

Lafait, J.

J. Lafait, S. Berthier, Ch. Andraud, V. Reilon, and J. Boulenguez, “Physical colors in cultural heritage: surface plasmons in glass,” C. R. Physique 10, 649–659 (2009).
[CrossRef]

Lee, L.-H.

L.-H. Lee and W.-C. Chen, “High-refractive-index thin films prepared from trialkoxilane-capped poly(methyl methacrylate)-titania materials,” Chem. Mater. 13, 1137–1142 (2001).
[CrossRef]

Lee, S.

S. Lee, H.-J. Shin, S.-M. Yoon, D. Vi, J.-Y. Choi, and U. Paik, “Refractive index engineering of transparent ZrO2-polydimethilsiloxane nanocomposites,” J. Mater. Chem. 18, 1751–1755 (2008).
[CrossRef]

Li, A.-K.

J. L. H. Chau, Y.-M. Lin, A.-K. Li, W.-F. Su, K.-S. Chang, S. L.-C. Hsu, and T.-L. Li, “Transparent high refractive index nanocomposite thin films,” Mater. Lett. 61, 2908–2910 (2007).
[CrossRef]

Li, T.-L.

J. L. H. Chau, Y.-M. Lin, A.-K. Li, W.-F. Su, K.-S. Chang, S. L.-C. Hsu, and T.-L. Li, “Transparent high refractive index nanocomposite thin films,” Mater. Lett. 61, 2908–2910 (2007).
[CrossRef]

Lide, D. R.

D. R. Lide, Handbook of Chemistry and Physics (CRS, 1995).

Lin, Y.-M.

J. L. H. Chau, Y.-M. Lin, A.-K. Li, W.-F. Su, K.-S. Chang, S. L.-C. Hsu, and T.-L. Li, “Transparent high refractive index nanocomposite thin films,” Mater. Lett. 61, 2908–2910 (2007).
[CrossRef]

Liptak, S.

B. Wang, G. Wilkes, J. Hedrick, S. Liptak, and J. McGrath, “New high refractive index organic/inorganic hybrid materials from sol-gel processing,” Macromolecules 24, 1751–1755 (1991).
[CrossRef]

Matsui, K.

Y. Imai, A. Terahara, Y. Hakuta, K. Matsui, H. Hayashi, and N. Ueno, “Transparent poly(bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles,” Eur. Polym. J. 45, 630–638 (2009).
[CrossRef]

Maxwell Garnett, J. C.

J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Phil. Trans. R. Soc. A 203, 385–420 (1904).
[CrossRef]

McGrath, J.

B. Wang, G. Wilkes, J. Hedrick, S. Liptak, and J. McGrath, “New high refractive index organic/inorganic hybrid materials from sol-gel processing,” Macromolecules 24, 1751–1755 (1991).
[CrossRef]

Méndez, E. R.

Odelevskii, V. I.

V. I. Odelevskii, “Calculation of general conductivity of heterogeneous systems,” J. Tech. Phys. 21, 667–685 (1953), in Russian.

Paik, U.

S. Lee, H.-J. Shin, S.-M. Yoon, D. Vi, J.-Y. Choi, and U. Paik, “Refractive index engineering of transparent ZrO2-polydimethilsiloxane nanocomposites,” J. Mater. Chem. 18, 1751–1755 (2008).
[CrossRef]

Reilon, V.

J. Lafait, S. Berthier, Ch. Andraud, V. Reilon, and J. Boulenguez, “Physical colors in cultural heritage: surface plasmons in glass,” C. R. Physique 10, 649–659 (2009).
[CrossRef]

Reyes-Coronado, A.

A. Reyes-Coronado, A. García-Valenzuela, C. Sánchez-Pérez, and R. G. Barrera, “Measurement of the effective refractive index of a turbid colloidal suspension using light refraction,” New J. Phys. 7, 89 (2005).
[CrossRef]

A. García-Valenzuela, R. G. Barrera, C. Sánchez-Pérez, A. Reyes-Coronado, and E. R. Méndez, “Coherent reflection of light from a turbid suspension of particles in an internal-reflection configuration: theory versus experiment,” Opt. Express 13, 6723–6737 (2005).
[CrossRef]

Ruppin, R.

R. Ruppin, “Validity range of Maxwell-Garnett theory,” Phys. Status Solidi B 87, 619–624 (1978).
[CrossRef]

Sainov, S.

S. Sainov, “Laser microrefractometer,” Rev. Sci. Instrum. 62, 3106–3107 (1991).
[CrossRef]

Sánchez-Pérez, C.

A. Reyes-Coronado, A. García-Valenzuela, C. Sánchez-Pérez, and R. G. Barrera, “Measurement of the effective refractive index of a turbid colloidal suspension using light refraction,” New J. Phys. 7, 89 (2005).
[CrossRef]

A. García-Valenzuela, R. G. Barrera, C. Sánchez-Pérez, A. Reyes-Coronado, and E. R. Méndez, “Coherent reflection of light from a turbid suspension of particles in an internal-reflection configuration: theory versus experiment,” Opt. Express 13, 6723–6737 (2005).
[CrossRef]

Serrano, C.

R. J. Jimenéz Riobóo, A. De Andrés, A. Kubacka, M. Fernández-García, M. L. Cerrada, C. Serrano, and M. Fernández-García, “Macromolecular nanotechnology—influence of nanoparticles on elastic and optical properties of a polymer matrix: hypersonic studies on ethylene–vinyl alcohol copolymer–titania nanocomposites,” Eur. Polym. J. 46, 397–403 (2010).
[CrossRef]

Shin, H.-J.

S. Lee, H.-J. Shin, S.-M. Yoon, D. Vi, J.-Y. Choi, and U. Paik, “Refractive index engineering of transparent ZrO2-polydimethilsiloxane nanocomposites,” J. Mater. Chem. 18, 1751–1755 (2008).
[CrossRef]

Sihvola, A.

L. Jylhä and A. Sihvola, “Equation for the effective permittivity of particle-filled composites for material design applications,” J. Phys. D. 40, 4966–4973 (2007).
[CrossRef]

Singh, J.

J. Singh, Optical Properties of Condensed Matter and Applications (Wiley-VCH, 2006).

Su, H.-W.

W.-L. Chang, H.-W. Su, and W.-C. Chen, “Synthesis and properties of photosensitive polyimide-nanocrystalline titania optical thin films,” Eur. Polym. J. 45, 2749–2759 (2009).
[CrossRef]

H.-W. Su and W. C. Chen, “High refractive index polyimide-nanocrystalline-titania hybrid optical materials,” J. Mater. Chem. 18, 1139–1145 (2008).
[CrossRef]

Su, W.-F.

J. L. H. Chau, Y.-M. Lin, A.-K. Li, W.-F. Su, K.-S. Chang, S. L.-C. Hsu, and T.-L. Li, “Transparent high refractive index nanocomposite thin films,” Mater. Lett. 61, 2908–2910 (2007).
[CrossRef]

Terahara, A.

Y. Imai, A. Terahara, Y. Hakuta, K. Matsui, H. Hayashi, and N. Ueno, “Transparent poly(bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles,” Eur. Polym. J. 45, 630–638 (2009).
[CrossRef]

Ueno, N.

Y. Imai, A. Terahara, Y. Hakuta, K. Matsui, H. Hayashi, and N. Ueno, “Transparent poly(bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles,” Eur. Polym. J. 45, 630–638 (2009).
[CrossRef]

Vi, D.

S. Lee, H.-J. Shin, S.-M. Yoon, D. Vi, J.-Y. Choi, and U. Paik, “Refractive index engineering of transparent ZrO2-polydimethilsiloxane nanocomposites,” J. Mater. Chem. 18, 1751–1755 (2008).
[CrossRef]

Wang, B.

B. Wang and G. Wilkes, “New Ti-PTMO and Tr-PTMO creamer hybrid materials prepared by the sol-gel method: synthesis and characterization,” J. Polym. Sci. A 29, 905–909 (1991).
[CrossRef]

B. Wang, G. Wilkes, J. Hedrick, S. Liptak, and J. McGrath, “New high refractive index organic/inorganic hybrid materials from sol-gel processing,” Macromolecules 24, 1751–1755 (1991).
[CrossRef]

Wilkes, G.

B. Wang, G. Wilkes, J. Hedrick, S. Liptak, and J. McGrath, “New high refractive index organic/inorganic hybrid materials from sol-gel processing,” Macromolecules 24, 1751–1755 (1991).
[CrossRef]

B. Wang and G. Wilkes, “New Ti-PTMO and Tr-PTMO creamer hybrid materials prepared by the sol-gel method: synthesis and characterization,” J. Polym. Sci. A 29, 905–909 (1991).
[CrossRef]

Yoon, S.-M.

S. Lee, H.-J. Shin, S.-M. Yoon, D. Vi, J.-Y. Choi, and U. Paik, “Refractive index engineering of transparent ZrO2-polydimethilsiloxane nanocomposites,” J. Mater. Chem. 18, 1751–1755 (2008).
[CrossRef]

Am. J. Phys.

D. E. Aspnes, “Local-field effects and effective-medium theory: a microscopic perspective,” Am. J. Phys. 50, 704–709 (1982).
[CrossRef]

Ann. Phys.

D. A. G. Bruggeman, “Berechnung verschieder physikalischer Konstanten von heterogenen Substanzen,” Ann. Phys. 416, 636–664 (1935).
[CrossRef]

C. R. Physique

J. Lafait, S. Berthier, Ch. Andraud, V. Reilon, and J. Boulenguez, “Physical colors in cultural heritage: surface plasmons in glass,” C. R. Physique 10, 649–659 (2009).
[CrossRef]

Chem. Mater.

L.-H. Lee and W.-C. Chen, “High-refractive-index thin films prepared from trialkoxilane-capped poly(methyl methacrylate)-titania materials,” Chem. Mater. 13, 1137–1142 (2001).
[CrossRef]

Eur. Polym. J.

W.-L. Chang, H.-W. Su, and W.-C. Chen, “Synthesis and properties of photosensitive polyimide-nanocrystalline titania optical thin films,” Eur. Polym. J. 45, 2749–2759 (2009).
[CrossRef]

Y. Imai, A. Terahara, Y. Hakuta, K. Matsui, H. Hayashi, and N. Ueno, “Transparent poly(bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles,” Eur. Polym. J. 45, 630–638 (2009).
[CrossRef]

R. J. Jimenéz Riobóo, A. De Andrés, A. Kubacka, M. Fernández-García, M. L. Cerrada, C. Serrano, and M. Fernández-García, “Macromolecular nanotechnology—influence of nanoparticles on elastic and optical properties of a polymer matrix: hypersonic studies on ethylene–vinyl alcohol copolymer–titania nanocomposites,” Eur. Polym. J. 46, 397–403 (2010).
[CrossRef]

J. Mater. Chem.

H.-W. Su and W. C. Chen, “High refractive index polyimide-nanocrystalline-titania hybrid optical materials,” J. Mater. Chem. 18, 1139–1145 (2008).
[CrossRef]

S. Lee, H.-J. Shin, S.-M. Yoon, D. Vi, J.-Y. Choi, and U. Paik, “Refractive index engineering of transparent ZrO2-polydimethilsiloxane nanocomposites,” J. Mater. Chem. 18, 1751–1755 (2008).
[CrossRef]

J. Phys. D.

L. Jylhä and A. Sihvola, “Equation for the effective permittivity of particle-filled composites for material design applications,” J. Phys. D. 40, 4966–4973 (2007).
[CrossRef]

J. Polym. Sci. A

B. Wang and G. Wilkes, “New Ti-PTMO and Tr-PTMO creamer hybrid materials prepared by the sol-gel method: synthesis and characterization,” J. Polym. Sci. A 29, 905–909 (1991).
[CrossRef]

C.-C. Chang and W.-C. Chen, “High-refractive-index thin films prepared from aminoalkoxysilane-capped pyromellitic dianhydride-titania hybrid materials,” J. Polym. Sci. A 39, 3419–3427 (2001).
[CrossRef]

J. Tech. Phys.

V. I. Odelevskii, “Calculation of general conductivity of heterogeneous systems,” J. Tech. Phys. 21, 667–685 (1953), in Russian.

Macromolecules

B. Wang, G. Wilkes, J. Hedrick, S. Liptak, and J. McGrath, “New high refractive index organic/inorganic hybrid materials from sol-gel processing,” Macromolecules 24, 1751–1755 (1991).
[CrossRef]

Mater. Lett.

J. L. H. Chau, Y.-M. Lin, A.-K. Li, W.-F. Su, K.-S. Chang, S. L.-C. Hsu, and T.-L. Li, “Transparent high refractive index nanocomposite thin films,” Mater. Lett. 61, 2908–2910 (2007).
[CrossRef]

New J. Phys.

A. Reyes-Coronado, A. García-Valenzuela, C. Sánchez-Pérez, and R. G. Barrera, “Measurement of the effective refractive index of a turbid colloidal suspension using light refraction,” New J. Phys. 7, 89 (2005).
[CrossRef]

Opt. Express

Phil. Trans. R. Soc. A

J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Phil. Trans. R. Soc. A 203, 385–420 (1904).
[CrossRef]

Phys. Rev. B

C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513–3534 (1977).
[CrossRef]

Phys. Status Solidi B

R. Ruppin, “Validity range of Maxwell-Garnett theory,” Phys. Status Solidi B 87, 619–624 (1978).
[CrossRef]

Rev. Sci. Instrum.

S. Sainov, “Laser microrefractometer,” Rev. Sci. Instrum. 62, 3106–3107 (1991).
[CrossRef]

Surf. Sci. Rep.

Ul. Diebold, “The surface science of titania dioxide,” Surf. Sci. Rep. 48, 53–229 (2003).
[CrossRef]

Other

J. Singh, Optical Properties of Condensed Matter and Applications (Wiley-VCH, 2006).

J. D. Jackson, Classical Electrodynamics (Wiley, 1962).

D. R. Lide, Handbook of Chemistry and Physics (CRS, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Dependences of the relative RI difference on the concentration for the PVA matrix with TiO2 nanoparticles at 532 and 632.8 nm.

Fig. 2.
Fig. 2.

Dispersion curves of the layers for different TiO2 concentrations up to 1.2 wt. %.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

n=Nsin[Aarcsin(sinφcr/N)],
Δn=Ncos[Aarcsin(sinφcr/N)](N2sin2φcr)1/2cosφcrΔφcr.
f[(ni2ne2)/(ni2+2ne2)]+(1f)[(nm2ne2)/(nm2+2ne2)]=0,
f=Vi/(Vi+Vm).
ne4Bne2/2ni2nm2/2=0,whereB=3f(ni2nm2)+(2nm2ni2).
4ne2=B+B2+8ni2nm2.
(B2+8ni2nm2)12=(2nm2+ni2)[1+6f(ni2nm2)(2nm2ni2)(2nm2+ni2)2]12.
ne2=nm2(1+3f[(ni2nm2)/(ni2+2nm2)]).
ne2=nm2[1+3f(ni2nm2)/((ni2+2nm2)f(ni2nm2))].
ne=nm{1+(3f/2)[(ni2nm2)/(ni2+2nm2)]}.
f=V/Vm(1+Vi/Vm)=Vi/Vm(1Vi/Vm).
Vi/Vm=(Viρiρm)/(Vmρmρi)=(Miρm)/(Mmρi)=C(ρm/ρi),
f=(Cρm/ρi)(1Cρm/ρi).
(nenm)/nm=aCa(ρm/ρi)C2=aCbC2,
ni21=sλi2/(λi2λs2),i=1,2,

Metrics