Abstract

In this study, a Fresnel lens with radial and azimuthal liquid crystal (LC) alignments in the odd and even zones was fabricated using the photoalignment technique based on an azo dye doped in LC cells. The lens has approximately 35% focusing efficiency as determined using a linearly polarized probe beam. In addition, the lens converts the input linear polarization into axially symmetrical polarization at the focal plane. The fabricated Fresnel lens is polarization-independent and has electrically controllable focusing efficiency. Moreover, the far-field pattern of a probe beam through the device placed between the polarizers agrees with the pattern obtained from the simulation.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Fan, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable liquid crystal grating with sub millisecond response,” Appl. Phys. Lett. 100, 111105 (2012).
    [CrossRef]
  2. S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).
  3. J. Yan, L. Rao, M. Jiao, Y. Li, H.-C. Cheng, and S.-T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21, 7870–7877 (2011).
    [CrossRef]
  4. T. Fujita, H. Nishihara, and J. Koyama, “Fabrication of micro lenses using electron-beam lithography,” Opt. Lett. 6, 613–615 (1981).
    [CrossRef]
  5. J. Jahns and S. J. Walker, “Two-dimensional array of diffractive microlenses fabricated by thin film deposition,” Appl. Opt. 29, 931–936 (1990).
    [CrossRef]
  6. G. R. Fowles, Introduction to Modern Optics, 2nd ed. (Dover, 1989), pp. 126–135.
  7. Y.-H. Fan, H. Ren, and S.-T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Opt. Express 11, 3080–3086 (2003).
    [CrossRef]
  8. D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, and S.-D. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88, 203505 (2006).
    [CrossRef]
  9. L.-C. Lin, H.-C. Jau, T.-H. Lin, and A. Y.-G. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15, 2900–2906 (2007).
    [CrossRef]
  10. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21, 1948–1950 (1996).
    [CrossRef]
  11. Y.-H. Wu, Y.-H. Lin, H. Ren, X. Nie, J.-H. Lee, and S.-T. Wu, “Axially-symmetric sheared polymer network liquid crystals,” Opt. Express 13, 4638–4644 (2005).
    [CrossRef]
  12. H. Ren, Y.-H. Lin, and S.-T. Wu, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett. 89, 051114 (2006).
    [CrossRef]
  13. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef]
  14. T. Grosjean, D. Courjon, and C. Bainier, “Smallest lithographic marks generated by optical focusing systems,” Opt. Lett. 32, 976–978 (2007).
    [CrossRef]
  15. C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E 69, 031704 (2004).
    [CrossRef]
  16. F. Simoni and O. Francescangeli, “Effects of light on molecular orientation of liquid crystals,” J. Phys. Condens. Matter 11, R439–R487 (1999).
    [CrossRef]
  17. H.-C. Jau, K.-T. Cheng, T.-H. Lin, Y.-S. Lo, J.-Y. Chen, C.-W. Hsu, and A. Y.-G. Fuh, “Photo-rewritable flexible LCD using indium zinc oxide/polycarbonate substrates,” Appl. Opt. 50, 213–217 (2011).
    [CrossRef]
  18. C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83, 4285–4287 (2003).
    [CrossRef]
  19. Y.-Y. Tzeng, S.-W. Ke, C.-L. Ting, A. Y.-G. Fuh, and T.-H. Lin, “Axially symmetric polarization converters based on photo-aligned liquid crystal films,” Opt. Express 16, 3768–3775 (2008).
    [CrossRef]
  20. S.-W. Ko, C.-L. Ting, A. Y.-G. Fuh, and T.-H. Lin, “Polarization converters based on axially symmetric twisted nematic liquid crystal,” Opt. Express 18, 3601–3607 (2010).
    [CrossRef]
  21. S.-T. Wu and C.-S. Wu, “Bisector effect on the twisted-nematic cells,” Jpn. J. Appl. Phys. 37, L1497–L1500 (1998).
    [CrossRef]
  22. S. T. Wu, “Design of a liquid crystal based tunable electrooptic filter,” Appl. Opt. 28, 48–52 (1989).
    [CrossRef]
  23. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377–3382 (2004).
    [CrossRef]
  24. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).
    [CrossRef]

2012 (1)

F. Fan, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable liquid crystal grating with sub millisecond response,” Appl. Phys. Lett. 100, 111105 (2012).
[CrossRef]

2011 (2)

J. Yan, L. Rao, M. Jiao, Y. Li, H.-C. Cheng, and S.-T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21, 7870–7877 (2011).
[CrossRef]

H.-C. Jau, K.-T. Cheng, T.-H. Lin, Y.-S. Lo, J.-Y. Chen, C.-W. Hsu, and A. Y.-G. Fuh, “Photo-rewritable flexible LCD using indium zinc oxide/polycarbonate substrates,” Appl. Opt. 50, 213–217 (2011).
[CrossRef]

2010 (1)

2008 (1)

2007 (2)

2006 (2)

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, and S.-D. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88, 203505 (2006).
[CrossRef]

H. Ren, Y.-H. Lin, and S.-T. Wu, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett. 89, 051114 (2006).
[CrossRef]

2005 (1)

2004 (2)

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377–3382 (2004).
[CrossRef]

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E 69, 031704 (2004).
[CrossRef]

2003 (3)

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83, 4285–4287 (2003).
[CrossRef]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

Y.-H. Fan, H. Ren, and S.-T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Opt. Express 11, 3080–3086 (2003).
[CrossRef]

1999 (2)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).
[CrossRef]

F. Simoni and O. Francescangeli, “Effects of light on molecular orientation of liquid crystals,” J. Phys. Condens. Matter 11, R439–R487 (1999).
[CrossRef]

1998 (1)

S.-T. Wu and C.-S. Wu, “Bisector effect on the twisted-nematic cells,” Jpn. J. Appl. Phys. 37, L1497–L1500 (1998).
[CrossRef]

1996 (1)

1990 (1)

1989 (1)

1981 (1)

Bainier, C.

Chen, J.-Y.

Cheng, H.-C.

J. Yan, L. Rao, M. Jiao, Y. Li, H.-C. Cheng, and S.-T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21, 7870–7877 (2011).
[CrossRef]

Cheng, K.-T.

H.-C. Jau, K.-T. Cheng, T.-H. Lin, Y.-S. Lo, J.-Y. Chen, C.-W. Hsu, and A. Y.-G. Fuh, “Photo-rewritable flexible LCD using indium zinc oxide/polycarbonate substrates,” Appl. Opt. 50, 213–217 (2011).
[CrossRef]

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E 69, 031704 (2004).
[CrossRef]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83, 4285–4287 (2003).
[CrossRef]

Chigrinov, V. G.

F. Fan, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable liquid crystal grating with sub millisecond response,” Appl. Phys. Lett. 100, 111105 (2012).
[CrossRef]

Courjon, D.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

Fan, F.

F. Fan, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable liquid crystal grating with sub millisecond response,” Appl. Phys. Lett. 100, 111105 (2012).
[CrossRef]

Fan, Y.-H.

Fowles, G. R.

G. R. Fowles, Introduction to Modern Optics, 2nd ed. (Dover, 1989), pp. 126–135.

Francescangeli, O.

F. Simoni and O. Francescangeli, “Effects of light on molecular orientation of liquid crystals,” J. Phys. Condens. Matter 11, R439–R487 (1999).
[CrossRef]

Fu, T.-L.

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E 69, 031704 (2004).
[CrossRef]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83, 4285–4287 (2003).
[CrossRef]

Fuh, A. Y.-G.

Fujita, T.

Grosjean, T.

Hsu, C.-W.

Jahns, J.

Jau, H.-C.

Jiao, M.

J. Yan, L. Rao, M. Jiao, Y. Li, H.-C. Cheng, and S.-T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21, 7870–7877 (2011).
[CrossRef]

Ke, S.-W.

Kim, D.-W.

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, and S.-D. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88, 203505 (2006).
[CrossRef]

Kim, H.-R.

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, and S.-D. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88, 203505 (2006).
[CrossRef]

Kim, S.-J.

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, and S.-D. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88, 203505 (2006).
[CrossRef]

Ko, S.-W.

Koyama, J.

Kwok, H. S.

F. Fan, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable liquid crystal grating with sub millisecond response,” Appl. Phys. Lett. 100, 111105 (2012).
[CrossRef]

Lee, C.-R.

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E 69, 031704 (2004).
[CrossRef]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83, 4285–4287 (2003).
[CrossRef]

Lee, J.-H.

Lee, S.-D.

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, and S.-D. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88, 203505 (2006).
[CrossRef]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

Li, Y.

J. Yan, L. Rao, M. Jiao, Y. Li, H.-C. Cheng, and S.-T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21, 7870–7877 (2011).
[CrossRef]

Lin, L.-C.

Lin, T.-H.

Lin, Y.-H.

H. Ren, Y.-H. Lin, and S.-T. Wu, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett. 89, 051114 (2006).
[CrossRef]

Y.-H. Wu, Y.-H. Lin, H. Ren, X. Nie, J.-H. Lee, and S.-T. Wu, “Axially-symmetric sheared polymer network liquid crystals,” Opt. Express 13, 4638–4644 (2005).
[CrossRef]

Lo, Y.-S.

Mo, T.-S.

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E 69, 031704 (2004).
[CrossRef]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83, 4285–4287 (2003).
[CrossRef]

Nesterov, A. V.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).
[CrossRef]

Nie, X.

Nishihara, H.

Niziev, V. G.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).
[CrossRef]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

Rao, L.

J. Yan, L. Rao, M. Jiao, Y. Li, H.-C. Cheng, and S.-T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21, 7870–7877 (2011).
[CrossRef]

Ren, H.

Schadt, M.

Simoni, F.

F. Simoni and O. Francescangeli, “Effects of light on molecular orientation of liquid crystals,” J. Phys. Condens. Matter 11, R439–R487 (1999).
[CrossRef]

Srivastava, A. K.

F. Fan, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable liquid crystal grating with sub millisecond response,” Appl. Phys. Lett. 100, 111105 (2012).
[CrossRef]

Stalder, M.

Ting, C.-L.

Tzeng, Y.-Y.

Walker, S. J.

Wu, C.-S.

S.-T. Wu and C.-S. Wu, “Bisector effect on the twisted-nematic cells,” Jpn. J. Appl. Phys. 37, L1497–L1500 (1998).
[CrossRef]

Wu, S. T.

Wu, S.-T.

J. Yan, L. Rao, M. Jiao, Y. Li, H.-C. Cheng, and S.-T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21, 7870–7877 (2011).
[CrossRef]

H. Ren, Y.-H. Lin, and S.-T. Wu, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett. 89, 051114 (2006).
[CrossRef]

Y.-H. Wu, Y.-H. Lin, H. Ren, X. Nie, J.-H. Lee, and S.-T. Wu, “Axially-symmetric sheared polymer network liquid crystals,” Opt. Express 13, 4638–4644 (2005).
[CrossRef]

Y.-H. Fan, H. Ren, and S.-T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Opt. Express 11, 3080–3086 (2003).
[CrossRef]

S.-T. Wu and C.-S. Wu, “Bisector effect on the twisted-nematic cells,” Jpn. J. Appl. Phys. 37, L1497–L1500 (1998).
[CrossRef]

Wu, Y.-H.

Yan, J.

J. Yan, L. Rao, M. Jiao, Y. Li, H.-C. Cheng, and S.-T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21, 7870–7877 (2011).
[CrossRef]

Yang, D. K.

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).

Yu, C.-J.

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, and S.-D. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88, 203505 (2006).
[CrossRef]

Zhan, Q.

Appl. Opt. (3)

Appl. Phys. Lett. (4)

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83, 4285–4287 (2003).
[CrossRef]

F. Fan, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable liquid crystal grating with sub millisecond response,” Appl. Phys. Lett. 100, 111105 (2012).
[CrossRef]

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, and S.-D. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88, 203505 (2006).
[CrossRef]

H. Ren, Y.-H. Lin, and S.-T. Wu, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett. 89, 051114 (2006).
[CrossRef]

J. Mater. Chem. (1)

J. Yan, L. Rao, M. Jiao, Y. Li, H.-C. Cheng, and S.-T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21, 7870–7877 (2011).
[CrossRef]

J. Phys. Condens. Matter (1)

F. Simoni and O. Francescangeli, “Effects of light on molecular orientation of liquid crystals,” J. Phys. Condens. Matter 11, R439–R487 (1999).
[CrossRef]

J. Phys. D (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S.-T. Wu and C.-S. Wu, “Bisector effect on the twisted-nematic cells,” Jpn. J. Appl. Phys. 37, L1497–L1500 (1998).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Phys. Rev. E (1)

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E 69, 031704 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

Other (2)

G. R. Fowles, Introduction to Modern Optics, 2nd ed. (Dover, 1989), pp. 126–135.

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Sample fabrication setup: (a) and (b) represent a half-wave plate and a half-wave plate combined with a Fresnel zone-plate photomask, respectively. Package (a) without (b) was inserted when testing the realignment ability with no heating at second illumination; package (b) without (a) was inserted when fabricating the ASDDLC Fresnel lens with heating to isotropic temperature at second illumination.

Fig. 2.
Fig. 2.

(a) POM images of the azimuthal alignment; irradiation by x-axis polarization laser beam with an intensity of 0.8W/cm2 for (b) 40, (c) 50, and (d) 60 min; (e) schematic of the ASDDLC cell LC structure; (f) schematic of the ASTNLC cell LC structure with a crossed polarizer.

Fig. 3.
Fig. 3.

(a) Schematic of the LC alignment at the odd (radial alignment) and even zones (azimuthal alignment); (b) POM images of the radial alignment at the odd zone and azimuthal alignment at the even zone.

Fig. 4.
Fig. 4.

Far-field pattern analysis setup.

Fig. 5.
Fig. 5.

Images of the far-field pattern with an applied voltage of 3.7Vrms to the lens at the focal plane placed between two polarizers, creating an angle of (a) 90°, (b) 60°, (c) 30°, (d) 0°, (e) 30°, and (f) 60°, and (g) without analyzer.

Fig. 6.
Fig. 6.

Numerical simulations of the far-field pattern at the focal plane as the phase retardation π between the odd and even zones under various angles between the polarizer and analyzer: (a) 90°, (b) 60°, (c) 30°, (d) 0°, (e) 30°, (f) 60°, and (g) without analyzer.

Fig. 7.
Fig. 7.

Variation of the focusing efficiency of the formed lens with applied voltage. Inset: focusing patterns projected on the screen as a linearly polarized probe beam passes through the ASDDLC Fresnel lens at the focal plane.

Fig. 8.
Fig. 8.

Variation of the measured first-order focusing efficiency at the focal point of the lens with varied incident polarization angles at applied voltages of 0Vrms and 3.6Vrms.

Fig. 9.
Fig. 9.

Variation of the focusing efficiency of the formed lens with applied voltage. Insets: focusing patterns projected on the screen as an axially symmetric radial polarized probe beam passes through the ASDDLC Fresnel lens at the focal plane.

Metrics