Abstract

It is demonstrated that any theoretical analysis of experimental surface plasmon resonance (SPR) curves of metallic nano bilayers preferably should be accompanied by a more sensitive technique that is less prone to experimental errors. Micro energy dispersive x-ray fluorescence has been shown to be a powerful technique for predicting SPR angle and assessing Au/Ag nanolayer composite spatial homogeneity.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. R. Boldac and J. F. Masson, “Advances in surface plasmon resonance sensing with nanoparticles and thin films: nanomaterials, surface chemistry, and hybrid plasmonic techniques,” Anal. Chem. 83, 8057–8062 (2011).
    [CrossRef]
  2. S. A. Zynio, A. V. Samoylov, E. R. Surovtseva, V. M. Mirsky, and Y. M. Shirshou, “Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance,” Sensors 2, 62–70 (2002).
    [CrossRef]
  3. X. C. Yuan, B. H. Ong, Y. G. Tan, D. W. Zhang, R. Irawan, and S. C. Tjin, “Sensitivity–stability-optimized surface plasmon resonance sensing with double metal layers,” J. Opt. A 8, 959–963 (2006).
    [CrossRef]
  4. Y. Chen, R. S. Zheng, D. G. Zhang, Y. H. Lu, P. Wong, H. Ming, Z. F. Luo, and Q. Kan, “Bimetallic chips for a surface plasmon resonance instrument,” Appl. Opt. 50, 387–391(2011).
    [CrossRef]
  5. S. Y. Wu and H. P. Ho, “Sensitivity improvement of the surface plasmon resonance optical sensor by using a gold-silver transducing layer,” in Proceedings of the 2002 IEEE Hong Kong Electron Devices Meeting (IEEE, 2002), pp. 63–68.
  6. G. Kavei, M. H. Sarrafi, and C. Falamaki, “Contact atomic force microscopy (C-AFM) as an indispensable auxiliary tool for the measurement of nano-film thickness by the XRF absorption spectroscopy technique,” Meas. Sci. Technol. 18, 1–6 (2006).
    [CrossRef]
  7. F. Eggert, W. T. Elan, and M. Haschke, “Benefits of combined evaluation of EPMA and micro-XRF spectra of same specimen in scanning electron microscopes,” Microsc. Microanal. 13, 1444–1445 (2007).
    [CrossRef]
  8. R. Tertian and F. Classe, Principles of Quantitative X-Ray Fluorescence Analysis (Heyden, 1982).

2011

O. R. Boldac and J. F. Masson, “Advances in surface plasmon resonance sensing with nanoparticles and thin films: nanomaterials, surface chemistry, and hybrid plasmonic techniques,” Anal. Chem. 83, 8057–8062 (2011).
[CrossRef]

Y. Chen, R. S. Zheng, D. G. Zhang, Y. H. Lu, P. Wong, H. Ming, Z. F. Luo, and Q. Kan, “Bimetallic chips for a surface plasmon resonance instrument,” Appl. Opt. 50, 387–391(2011).
[CrossRef]

2007

F. Eggert, W. T. Elan, and M. Haschke, “Benefits of combined evaluation of EPMA and micro-XRF spectra of same specimen in scanning electron microscopes,” Microsc. Microanal. 13, 1444–1445 (2007).
[CrossRef]

2006

X. C. Yuan, B. H. Ong, Y. G. Tan, D. W. Zhang, R. Irawan, and S. C. Tjin, “Sensitivity–stability-optimized surface plasmon resonance sensing with double metal layers,” J. Opt. A 8, 959–963 (2006).
[CrossRef]

G. Kavei, M. H. Sarrafi, and C. Falamaki, “Contact atomic force microscopy (C-AFM) as an indispensable auxiliary tool for the measurement of nano-film thickness by the XRF absorption spectroscopy technique,” Meas. Sci. Technol. 18, 1–6 (2006).
[CrossRef]

2002

S. A. Zynio, A. V. Samoylov, E. R. Surovtseva, V. M. Mirsky, and Y. M. Shirshou, “Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance,” Sensors 2, 62–70 (2002).
[CrossRef]

Boldac, O. R.

O. R. Boldac and J. F. Masson, “Advances in surface plasmon resonance sensing with nanoparticles and thin films: nanomaterials, surface chemistry, and hybrid plasmonic techniques,” Anal. Chem. 83, 8057–8062 (2011).
[CrossRef]

Chen, Y.

Classe, F.

R. Tertian and F. Classe, Principles of Quantitative X-Ray Fluorescence Analysis (Heyden, 1982).

Eggert, F.

F. Eggert, W. T. Elan, and M. Haschke, “Benefits of combined evaluation of EPMA and micro-XRF spectra of same specimen in scanning electron microscopes,” Microsc. Microanal. 13, 1444–1445 (2007).
[CrossRef]

Elan, W. T.

F. Eggert, W. T. Elan, and M. Haschke, “Benefits of combined evaluation of EPMA and micro-XRF spectra of same specimen in scanning electron microscopes,” Microsc. Microanal. 13, 1444–1445 (2007).
[CrossRef]

Falamaki, C.

G. Kavei, M. H. Sarrafi, and C. Falamaki, “Contact atomic force microscopy (C-AFM) as an indispensable auxiliary tool for the measurement of nano-film thickness by the XRF absorption spectroscopy technique,” Meas. Sci. Technol. 18, 1–6 (2006).
[CrossRef]

Haschke, M.

F. Eggert, W. T. Elan, and M. Haschke, “Benefits of combined evaluation of EPMA and micro-XRF spectra of same specimen in scanning electron microscopes,” Microsc. Microanal. 13, 1444–1445 (2007).
[CrossRef]

Ho, H. P.

S. Y. Wu and H. P. Ho, “Sensitivity improvement of the surface plasmon resonance optical sensor by using a gold-silver transducing layer,” in Proceedings of the 2002 IEEE Hong Kong Electron Devices Meeting (IEEE, 2002), pp. 63–68.

Irawan, R.

X. C. Yuan, B. H. Ong, Y. G. Tan, D. W. Zhang, R. Irawan, and S. C. Tjin, “Sensitivity–stability-optimized surface plasmon resonance sensing with double metal layers,” J. Opt. A 8, 959–963 (2006).
[CrossRef]

Kan, Q.

Kavei, G.

G. Kavei, M. H. Sarrafi, and C. Falamaki, “Contact atomic force microscopy (C-AFM) as an indispensable auxiliary tool for the measurement of nano-film thickness by the XRF absorption spectroscopy technique,” Meas. Sci. Technol. 18, 1–6 (2006).
[CrossRef]

Lu, Y. H.

Luo, Z. F.

Masson, J. F.

O. R. Boldac and J. F. Masson, “Advances in surface plasmon resonance sensing with nanoparticles and thin films: nanomaterials, surface chemistry, and hybrid plasmonic techniques,” Anal. Chem. 83, 8057–8062 (2011).
[CrossRef]

Ming, H.

Mirsky, V. M.

S. A. Zynio, A. V. Samoylov, E. R. Surovtseva, V. M. Mirsky, and Y. M. Shirshou, “Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance,” Sensors 2, 62–70 (2002).
[CrossRef]

Ong, B. H.

X. C. Yuan, B. H. Ong, Y. G. Tan, D. W. Zhang, R. Irawan, and S. C. Tjin, “Sensitivity–stability-optimized surface plasmon resonance sensing with double metal layers,” J. Opt. A 8, 959–963 (2006).
[CrossRef]

Samoylov, A. V.

S. A. Zynio, A. V. Samoylov, E. R. Surovtseva, V. M. Mirsky, and Y. M. Shirshou, “Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance,” Sensors 2, 62–70 (2002).
[CrossRef]

Sarrafi, M. H.

G. Kavei, M. H. Sarrafi, and C. Falamaki, “Contact atomic force microscopy (C-AFM) as an indispensable auxiliary tool for the measurement of nano-film thickness by the XRF absorption spectroscopy technique,” Meas. Sci. Technol. 18, 1–6 (2006).
[CrossRef]

Shirshou, Y. M.

S. A. Zynio, A. V. Samoylov, E. R. Surovtseva, V. M. Mirsky, and Y. M. Shirshou, “Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance,” Sensors 2, 62–70 (2002).
[CrossRef]

Surovtseva, E. R.

S. A. Zynio, A. V. Samoylov, E. R. Surovtseva, V. M. Mirsky, and Y. M. Shirshou, “Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance,” Sensors 2, 62–70 (2002).
[CrossRef]

Tan, Y. G.

X. C. Yuan, B. H. Ong, Y. G. Tan, D. W. Zhang, R. Irawan, and S. C. Tjin, “Sensitivity–stability-optimized surface plasmon resonance sensing with double metal layers,” J. Opt. A 8, 959–963 (2006).
[CrossRef]

Tertian, R.

R. Tertian and F. Classe, Principles of Quantitative X-Ray Fluorescence Analysis (Heyden, 1982).

Tjin, S. C.

X. C. Yuan, B. H. Ong, Y. G. Tan, D. W. Zhang, R. Irawan, and S. C. Tjin, “Sensitivity–stability-optimized surface plasmon resonance sensing with double metal layers,” J. Opt. A 8, 959–963 (2006).
[CrossRef]

Wong, P.

Wu, S. Y.

S. Y. Wu and H. P. Ho, “Sensitivity improvement of the surface plasmon resonance optical sensor by using a gold-silver transducing layer,” in Proceedings of the 2002 IEEE Hong Kong Electron Devices Meeting (IEEE, 2002), pp. 63–68.

Yuan, X. C.

X. C. Yuan, B. H. Ong, Y. G. Tan, D. W. Zhang, R. Irawan, and S. C. Tjin, “Sensitivity–stability-optimized surface plasmon resonance sensing with double metal layers,” J. Opt. A 8, 959–963 (2006).
[CrossRef]

Zhang, D. G.

Zhang, D. W.

X. C. Yuan, B. H. Ong, Y. G. Tan, D. W. Zhang, R. Irawan, and S. C. Tjin, “Sensitivity–stability-optimized surface plasmon resonance sensing with double metal layers,” J. Opt. A 8, 959–963 (2006).
[CrossRef]

Zheng, R. S.

Zynio, S. A.

S. A. Zynio, A. V. Samoylov, E. R. Surovtseva, V. M. Mirsky, and Y. M. Shirshou, “Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance,” Sensors 2, 62–70 (2002).
[CrossRef]

Anal. Chem.

O. R. Boldac and J. F. Masson, “Advances in surface plasmon resonance sensing with nanoparticles and thin films: nanomaterials, surface chemistry, and hybrid plasmonic techniques,” Anal. Chem. 83, 8057–8062 (2011).
[CrossRef]

Appl. Opt.

J. Opt. A

X. C. Yuan, B. H. Ong, Y. G. Tan, D. W. Zhang, R. Irawan, and S. C. Tjin, “Sensitivity–stability-optimized surface plasmon resonance sensing with double metal layers,” J. Opt. A 8, 959–963 (2006).
[CrossRef]

Meas. Sci. Technol.

G. Kavei, M. H. Sarrafi, and C. Falamaki, “Contact atomic force microscopy (C-AFM) as an indispensable auxiliary tool for the measurement of nano-film thickness by the XRF absorption spectroscopy technique,” Meas. Sci. Technol. 18, 1–6 (2006).
[CrossRef]

Microsc. Microanal.

F. Eggert, W. T. Elan, and M. Haschke, “Benefits of combined evaluation of EPMA and micro-XRF spectra of same specimen in scanning electron microscopes,” Microsc. Microanal. 13, 1444–1445 (2007).
[CrossRef]

Sensors

S. A. Zynio, A. V. Samoylov, E. R. Surovtseva, V. M. Mirsky, and Y. M. Shirshou, “Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance,” Sensors 2, 62–70 (2002).
[CrossRef]

Other

S. Y. Wu and H. P. Ho, “Sensitivity improvement of the surface plasmon resonance optical sensor by using a gold-silver transducing layer,” in Proceedings of the 2002 IEEE Hong Kong Electron Devices Meeting (IEEE, 2002), pp. 63–68.

R. Tertian and F. Classe, Principles of Quantitative X-Ray Fluorescence Analysis (Heyden, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Micro-EDXRF spectrum of a sample with a nominal layer thickness ratio (Au/Ag) of 30/20nm/nm: (a) total spectrum, (b) magnified section where the Ag peaks appear.

Fig. 2.
Fig. 2.

Integrated intensity versus layer thickness in the bimetallic Au/Ag composite: (a) IAu, (b) IAg.

Fig. 3.
Fig. 3.

Standard deviation due to the reproducibility of the data pertaining to the central point for the micro-EDXRF analysis as a function of Au layer thickness in the bimetallic Au/Ag composite.

Fig. 4.
Fig. 4.

Standard deviation due to the measurement of five different points for each sample in the micro-EDXRF analysis as function of Au layer thickness in the bimetallic Au/Ag composite.

Fig. 5.
Fig. 5.

(a) Variation of SPR angle as a function of Au thickness in the bimetallic Au/Ag composite and (b) the corresponding SPR curve for different Au/Ag thickness ratios (central point).

Fig. 6.
Fig. 6.

Variation of the standard deviation of the SPR angle as a function of Au thickness in the bimetallic Au/Ag composite based on the analysis of five different points for each sample (see experiment section).

Fig. 7.
Fig. 7.

Normalized standard deviations as a function of Au layer thickness for the homogeneity measurements obtained by the two methods.

Fig. 8.
Fig. 8.

Plot of calculated SPR angles by the micro-XRF method versus measured SPR angles based on (a) Au and (b) Ag characteristic peaks.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ii=Iλ(1exp[(μi,λsinψ1+μi,λisinψ2)hρ])qsinψ1Eiμi,λμi,λsinψ1+μi,λisinψ2Ci,
Ii=αihi,
(standard deviation of counts due to Ag characteristic peak+standard deviation of counts due to Au characteristic peakaverage counts due to Ag+average counts due to Au×100).

Metrics