Abstract

A fiber Bragg grating (FBG) interrogation system based on an intensity demodulation and demultiplexing of an arrayed waveguide grating (AWG) module is examined in detail. The influence of the spectral line shape of the FBG on the signal obtained from the AWG device is discussed by accomplishing the measurement and simulation of the system. The simulation of the system helps to create quickly and precisely calibration functions for nonsymmetric, tilted, or nonapodized FBGs. Experiments show that even small sidebands of nonapodized FBGs have strong influences on the signal resulted by an AWG device with a Gaussian profile.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Sano and T. Yoshino, “Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber Bragg grating sensors,” J. Lightwave Technol. 21, 132–139 (2003).
    [CrossRef]
  2. I. Adam, N. B. M. Hashim, M. H. Ibrahim, N. M. Kassim, A. B. Mohammad, and A. S. Mohd Supa’at, “Design of arrayed waveguide grating (AWG) for DWDM/CWDM applications based on BCB polymer,” Elektrika 10, 18–21 (2008).
  3. S. Lu, C. Yang, Y. Yan, G. Jin, Z. Zhou, W. H. Wong, and E. Y. B. Pun, “Design and fabrication of a polymeric flat focal field arrayed waveguide grating,” Opt. Express 13, 9982–9994 (2005).
    [CrossRef]
  4. J. G. Alonso, J. Z. Zaballa, G. A. Aramendia, G. D. Apaolaza, and I. S. de Ocariz, “Impact detection in aeronautical structures using fibre Bragg grating (FBG) arrays,” in Optical Sensors, OSA Technical Digest (CD) (Optical Society of America, 2010), paper SWA3.
  5. E. Kosters and T. J. van Els, “Structural health monitoring and impact detection for primary aircraft structures, high-speed, synchronous interrogation using multiple-fiber Bragg grating sensors enables design and delivery of robust inspection and analysis systems,” Sensing & Measurement, SPIE Newsroom, doi: 10.1117/2.1201003.002638 (26, March2010). .
    [CrossRef]
  6. C. S. Shin, B. L. Chen, and S. K. Liaw, “An FBG-based impact event detection system for structural health monitoring,” Adv. Civil Eng. 2010, 253274 (2010).
    [CrossRef]
  7. D. C. C. Norman, D. J. Webb, and R. D. Pechstedt, “Interferometric and fibre Bragg grating sensor interrogation using an arrayed waveguide grating,” Proc. SPIE 5459, 182–183 (2004).
    [CrossRef]
  8. Y. Sano, N. Hirayama, and T. T. Yoshino, “Optical wavelength interrogator employing the free spectral range of an arrayed waveguide grating,” Proc. SPIE 4987, 197–204 (2003).
    [CrossRef]
  9. H. Su and X. G. Huang, “A novel fiber Bragg grating interrogating sensor system based on AWG demultiplexing,” Opt. Commun. 275, 196–200 (2007).
    [CrossRef]
  10. J. Burgmeier, W. Schippers, N. Emde, P. Funken, and W. Schade, “Femtosecond laser-inscribed fiber Bragg gratings for strain monitoring in power cables of offshore wind turbines,” Appl. Opt. 50, 1868–1872 (2011).
    [CrossRef]

2011 (1)

2010 (1)

C. S. Shin, B. L. Chen, and S. K. Liaw, “An FBG-based impact event detection system for structural health monitoring,” Adv. Civil Eng. 2010, 253274 (2010).
[CrossRef]

2008 (1)

I. Adam, N. B. M. Hashim, M. H. Ibrahim, N. M. Kassim, A. B. Mohammad, and A. S. Mohd Supa’at, “Design of arrayed waveguide grating (AWG) for DWDM/CWDM applications based on BCB polymer,” Elektrika 10, 18–21 (2008).

2007 (1)

H. Su and X. G. Huang, “A novel fiber Bragg grating interrogating sensor system based on AWG demultiplexing,” Opt. Commun. 275, 196–200 (2007).
[CrossRef]

2005 (1)

2004 (1)

D. C. C. Norman, D. J. Webb, and R. D. Pechstedt, “Interferometric and fibre Bragg grating sensor interrogation using an arrayed waveguide grating,” Proc. SPIE 5459, 182–183 (2004).
[CrossRef]

2003 (2)

Y. Sano, N. Hirayama, and T. T. Yoshino, “Optical wavelength interrogator employing the free spectral range of an arrayed waveguide grating,” Proc. SPIE 4987, 197–204 (2003).
[CrossRef]

Y. Sano and T. Yoshino, “Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber Bragg grating sensors,” J. Lightwave Technol. 21, 132–139 (2003).
[CrossRef]

Adam, I.

I. Adam, N. B. M. Hashim, M. H. Ibrahim, N. M. Kassim, A. B. Mohammad, and A. S. Mohd Supa’at, “Design of arrayed waveguide grating (AWG) for DWDM/CWDM applications based on BCB polymer,” Elektrika 10, 18–21 (2008).

Alonso, J. G.

J. G. Alonso, J. Z. Zaballa, G. A. Aramendia, G. D. Apaolaza, and I. S. de Ocariz, “Impact detection in aeronautical structures using fibre Bragg grating (FBG) arrays,” in Optical Sensors, OSA Technical Digest (CD) (Optical Society of America, 2010), paper SWA3.

Apaolaza, G. D.

J. G. Alonso, J. Z. Zaballa, G. A. Aramendia, G. D. Apaolaza, and I. S. de Ocariz, “Impact detection in aeronautical structures using fibre Bragg grating (FBG) arrays,” in Optical Sensors, OSA Technical Digest (CD) (Optical Society of America, 2010), paper SWA3.

Aramendia, G. A.

J. G. Alonso, J. Z. Zaballa, G. A. Aramendia, G. D. Apaolaza, and I. S. de Ocariz, “Impact detection in aeronautical structures using fibre Bragg grating (FBG) arrays,” in Optical Sensors, OSA Technical Digest (CD) (Optical Society of America, 2010), paper SWA3.

Burgmeier, J.

Chen, B. L.

C. S. Shin, B. L. Chen, and S. K. Liaw, “An FBG-based impact event detection system for structural health monitoring,” Adv. Civil Eng. 2010, 253274 (2010).
[CrossRef]

de Ocariz, I. S.

J. G. Alonso, J. Z. Zaballa, G. A. Aramendia, G. D. Apaolaza, and I. S. de Ocariz, “Impact detection in aeronautical structures using fibre Bragg grating (FBG) arrays,” in Optical Sensors, OSA Technical Digest (CD) (Optical Society of America, 2010), paper SWA3.

Emde, N.

Funken, P.

Hashim, N. B. M.

I. Adam, N. B. M. Hashim, M. H. Ibrahim, N. M. Kassim, A. B. Mohammad, and A. S. Mohd Supa’at, “Design of arrayed waveguide grating (AWG) for DWDM/CWDM applications based on BCB polymer,” Elektrika 10, 18–21 (2008).

Hirayama, N.

Y. Sano, N. Hirayama, and T. T. Yoshino, “Optical wavelength interrogator employing the free spectral range of an arrayed waveguide grating,” Proc. SPIE 4987, 197–204 (2003).
[CrossRef]

Huang, X. G.

H. Su and X. G. Huang, “A novel fiber Bragg grating interrogating sensor system based on AWG demultiplexing,” Opt. Commun. 275, 196–200 (2007).
[CrossRef]

Ibrahim, M. H.

I. Adam, N. B. M. Hashim, M. H. Ibrahim, N. M. Kassim, A. B. Mohammad, and A. S. Mohd Supa’at, “Design of arrayed waveguide grating (AWG) for DWDM/CWDM applications based on BCB polymer,” Elektrika 10, 18–21 (2008).

Jin, G.

Kassim, N. M.

I. Adam, N. B. M. Hashim, M. H. Ibrahim, N. M. Kassim, A. B. Mohammad, and A. S. Mohd Supa’at, “Design of arrayed waveguide grating (AWG) for DWDM/CWDM applications based on BCB polymer,” Elektrika 10, 18–21 (2008).

Kosters, E.

E. Kosters and T. J. van Els, “Structural health monitoring and impact detection for primary aircraft structures, high-speed, synchronous interrogation using multiple-fiber Bragg grating sensors enables design and delivery of robust inspection and analysis systems,” Sensing & Measurement, SPIE Newsroom, doi: 10.1117/2.1201003.002638 (26, March2010). .
[CrossRef]

Liaw, S. K.

C. S. Shin, B. L. Chen, and S. K. Liaw, “An FBG-based impact event detection system for structural health monitoring,” Adv. Civil Eng. 2010, 253274 (2010).
[CrossRef]

Lu, S.

Mohammad, A. B.

I. Adam, N. B. M. Hashim, M. H. Ibrahim, N. M. Kassim, A. B. Mohammad, and A. S. Mohd Supa’at, “Design of arrayed waveguide grating (AWG) for DWDM/CWDM applications based on BCB polymer,” Elektrika 10, 18–21 (2008).

Mohd Supa’at, A. S.

I. Adam, N. B. M. Hashim, M. H. Ibrahim, N. M. Kassim, A. B. Mohammad, and A. S. Mohd Supa’at, “Design of arrayed waveguide grating (AWG) for DWDM/CWDM applications based on BCB polymer,” Elektrika 10, 18–21 (2008).

Norman, D. C. C.

D. C. C. Norman, D. J. Webb, and R. D. Pechstedt, “Interferometric and fibre Bragg grating sensor interrogation using an arrayed waveguide grating,” Proc. SPIE 5459, 182–183 (2004).
[CrossRef]

Pechstedt, R. D.

D. C. C. Norman, D. J. Webb, and R. D. Pechstedt, “Interferometric and fibre Bragg grating sensor interrogation using an arrayed waveguide grating,” Proc. SPIE 5459, 182–183 (2004).
[CrossRef]

Pun, E. Y. B.

Sano, Y.

Y. Sano and T. Yoshino, “Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber Bragg grating sensors,” J. Lightwave Technol. 21, 132–139 (2003).
[CrossRef]

Y. Sano, N. Hirayama, and T. T. Yoshino, “Optical wavelength interrogator employing the free spectral range of an arrayed waveguide grating,” Proc. SPIE 4987, 197–204 (2003).
[CrossRef]

Schade, W.

Schippers, W.

Shin, C. S.

C. S. Shin, B. L. Chen, and S. K. Liaw, “An FBG-based impact event detection system for structural health monitoring,” Adv. Civil Eng. 2010, 253274 (2010).
[CrossRef]

Su, H.

H. Su and X. G. Huang, “A novel fiber Bragg grating interrogating sensor system based on AWG demultiplexing,” Opt. Commun. 275, 196–200 (2007).
[CrossRef]

van Els, T. J.

E. Kosters and T. J. van Els, “Structural health monitoring and impact detection for primary aircraft structures, high-speed, synchronous interrogation using multiple-fiber Bragg grating sensors enables design and delivery of robust inspection and analysis systems,” Sensing & Measurement, SPIE Newsroom, doi: 10.1117/2.1201003.002638 (26, March2010). .
[CrossRef]

Webb, D. J.

D. C. C. Norman, D. J. Webb, and R. D. Pechstedt, “Interferometric and fibre Bragg grating sensor interrogation using an arrayed waveguide grating,” Proc. SPIE 5459, 182–183 (2004).
[CrossRef]

Wong, W. H.

Yan, Y.

Yang, C.

Yoshino, T.

Yoshino, T. T.

Y. Sano, N. Hirayama, and T. T. Yoshino, “Optical wavelength interrogator employing the free spectral range of an arrayed waveguide grating,” Proc. SPIE 4987, 197–204 (2003).
[CrossRef]

Zaballa, J. Z.

J. G. Alonso, J. Z. Zaballa, G. A. Aramendia, G. D. Apaolaza, and I. S. de Ocariz, “Impact detection in aeronautical structures using fibre Bragg grating (FBG) arrays,” in Optical Sensors, OSA Technical Digest (CD) (Optical Society of America, 2010), paper SWA3.

Zhou, Z.

Adv. Civil Eng. (1)

C. S. Shin, B. L. Chen, and S. K. Liaw, “An FBG-based impact event detection system for structural health monitoring,” Adv. Civil Eng. 2010, 253274 (2010).
[CrossRef]

Appl. Opt. (1)

Elektrika (1)

I. Adam, N. B. M. Hashim, M. H. Ibrahim, N. M. Kassim, A. B. Mohammad, and A. S. Mohd Supa’at, “Design of arrayed waveguide grating (AWG) for DWDM/CWDM applications based on BCB polymer,” Elektrika 10, 18–21 (2008).

J. Lightwave Technol. (1)

Opt. Commun. (1)

H. Su and X. G. Huang, “A novel fiber Bragg grating interrogating sensor system based on AWG demultiplexing,” Opt. Commun. 275, 196–200 (2007).
[CrossRef]

Opt. Express (1)

Proc. SPIE (2)

D. C. C. Norman, D. J. Webb, and R. D. Pechstedt, “Interferometric and fibre Bragg grating sensor interrogation using an arrayed waveguide grating,” Proc. SPIE 5459, 182–183 (2004).
[CrossRef]

Y. Sano, N. Hirayama, and T. T. Yoshino, “Optical wavelength interrogator employing the free spectral range of an arrayed waveguide grating,” Proc. SPIE 4987, 197–204 (2003).
[CrossRef]

Other (2)

J. G. Alonso, J. Z. Zaballa, G. A. Aramendia, G. D. Apaolaza, and I. S. de Ocariz, “Impact detection in aeronautical structures using fibre Bragg grating (FBG) arrays,” in Optical Sensors, OSA Technical Digest (CD) (Optical Society of America, 2010), paper SWA3.

E. Kosters and T. J. van Els, “Structural health monitoring and impact detection for primary aircraft structures, high-speed, synchronous interrogation using multiple-fiber Bragg grating sensors enables design and delivery of robust inspection and analysis systems,” Sensing & Measurement, SPIE Newsroom, doi: 10.1117/2.1201003.002638 (26, March2010). .
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic of the intensity interrogation applied on FBG interrogators based on AWG technology. The measurement of the wavelength shift of a sensing FBG is converted into the measurement of intensity change.

Fig. 2.
Fig. 2.

Experimental setup of the measurement system based on AWG technology, including a conventional spectrometer for signal comparison.

Fig. 3.
Fig. 3.

Determination of the calibration parameters by fitting a sigmoidal function to the Bragg wavelength recorded by the reference spectrometer. In this case the parameters are exemplary: A1=0.88266, A2=0.99263, dλ=0.16221nm, λ0=1538.13638nm (central wavelength between AWG channel 7 and 8). (Inset) Spectrum of the applied nonapodized FBG sensor.

Fig. 4.
Fig. 4.

Comparison between measured and simulated AWG transmission spectra for channels 7 and 8 of a telecom AWG (channel wavelength λ7=1537.76nm, λ8=1538.55nm).

Fig. 5.
Fig. 5.

Result of a simulation for an FBG reflection spectrum with Gaussian shape and two different sources of the AWG transmission spectra (simulated Gaussian AWG spectra and measured AWG spectra, respectively, as pictured in Fig. 4).

Fig. 6.
Fig. 6.

(a) Comparison of the simulated sigmoidal function with the ratios S determined by measurement and (b) recalculation of the simulated and fitted sigmoid curve.

Fig. 7.
Fig. 7.

Results of simulations of sigmoid functions based on four FBG reflection spectra [two with Gaussian shape with half-widths of 0.3 and 0.6 nm, one spectrum with sinc shape with a half-width of 0.3 nm, and a loaded (nonapodized) FBG reflection spectrum, shown in the inset]; the AWG transmission spectra were Gaussian shaped.

Fig. 8.
Fig. 8.

RMS deviation against wavelength for different noise levels simulated with a Gaussian-shaped FBG reflection spectrum and a full width at half-maximum of 0.3 nm.

Fig. 9.
Fig. 9.

Noise measurements of the FBG interrogator based on an AWG module connected with an FBG sensor.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Pn=(1L)0IS(λ)·RFBG(λ)·TAWG,n(λ)dλ,
S=P2P1P2+P1.
λ=λo+dλ·ln(A1SSA2),
S=A2+A1A21+exp(λλ0dλ).
TAWG,n(λ)=2ln(2)FWHMπ·exp(4ln(2)·(λλnFWHM)2).

Metrics