Abstract

A fiber Bragg grating (FBG) interrogation system based on an intensity demodulation and demultiplexing of an arrayed waveguide grating (AWG) module is examined in detail. The influence of the spectral line shape of the FBG on the signal obtained from the AWG device is discussed by accomplishing the measurement and simulation of the system. The simulation of the system helps to create quickly and precisely calibration functions for nonsymmetric, tilted, or nonapodized FBGs. Experiments show that even small sidebands of nonapodized FBGs have strong influences on the signal resulted by an AWG device with a Gaussian profile.

© 2012 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Sano and T. Yoshino, “Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber Bragg grating sensors,” J. Lightwave Technol. 21, 132–139 (2003).
    [CrossRef]
  2. I. Adam, N. B. M. Hashim, M. H. Ibrahim, N. M. Kassim, A. B. Mohammad, and A. S. Mohd Supa’at, “Design of arrayed waveguide grating (AWG) for DWDM/CWDM applications based on BCB polymer,” Elektrika 10, 18–21 (2008).
  3. S. Lu, C. Yang, Y. Yan, G. Jin, Z. Zhou, W. H. Wong, and E. Y. B. Pun, “Design and fabrication of a polymeric flat focal field arrayed waveguide grating,” Opt. Express 13, 9982–9994 (2005).
    [CrossRef]
  4. J. G. Alonso, J. Z. Zaballa, G. A. Aramendia, G. D. Apaolaza, and I. S. de Ocariz, “Impact detection in aeronautical structures using fibre Bragg grating (FBG) arrays,” in Optical Sensors, OSA Technical Digest (CD) (Optical Society of America, 2010), paper SWA3.
  5. E. Kosters and T. J. van Els, “Structural health monitoring and impact detection for primary aircraft structures, high-speed, synchronous interrogation using multiple-fiber Bragg grating sensors enables design and delivery of robust inspection and analysis systems,” Sensing & Measurement, SPIE Newsroom, doi: 10.1117/2.1201003.002638 (26, March2010). .
  6. C. S. Shin, B. L. Chen, and S. K. Liaw, “An FBG-based impact event detection system for structural health monitoring,” Adv. Civil Eng. 2010, 253274 (2010).
    [CrossRef]
  7. D. C. C. Norman, D. J. Webb, and R. D. Pechstedt, “Interferometric and fibre Bragg grating sensor interrogation using an arrayed waveguide grating,” Proc. SPIE 5459, 182–183 (2004).
    [CrossRef]
  8. Y. Sano, N. Hirayama, and T. T. Yoshino, “Optical wavelength interrogator employing the free spectral range of an arrayed waveguide grating,” Proc. SPIE 4987, 197–204 (2003).
    [CrossRef]
  9. H. Su and X. G. Huang, “A novel fiber Bragg grating interrogating sensor system based on AWG demultiplexing,” Opt. Commun. 275, 196–200 (2007).
    [CrossRef]
  10. J. Burgmeier, W. Schippers, N. Emde, P. Funken, and W. Schade, “Femtosecond laser-inscribed fiber Bragg gratings for strain monitoring in power cables of offshore wind turbines,” Appl. Opt. 50, 1868–1872 (2011).
    [CrossRef]

2011 (1)

2010 (1)

C. S. Shin, B. L. Chen, and S. K. Liaw, “An FBG-based impact event detection system for structural health monitoring,” Adv. Civil Eng. 2010, 253274 (2010).
[CrossRef]

2008 (1)

I. Adam, N. B. M. Hashim, M. H. Ibrahim, N. M. Kassim, A. B. Mohammad, and A. S. Mohd Supa’at, “Design of arrayed waveguide grating (AWG) for DWDM/CWDM applications based on BCB polymer,” Elektrika 10, 18–21 (2008).

2007 (1)

H. Su and X. G. Huang, “A novel fiber Bragg grating interrogating sensor system based on AWG demultiplexing,” Opt. Commun. 275, 196–200 (2007).
[CrossRef]

2005 (1)

2004 (1)

D. C. C. Norman, D. J. Webb, and R. D. Pechstedt, “Interferometric and fibre Bragg grating sensor interrogation using an arrayed waveguide grating,” Proc. SPIE 5459, 182–183 (2004).
[CrossRef]

2003 (2)

Y. Sano, N. Hirayama, and T. T. Yoshino, “Optical wavelength interrogator employing the free spectral range of an arrayed waveguide grating,” Proc. SPIE 4987, 197–204 (2003).
[CrossRef]

Y. Sano and T. Yoshino, “Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber Bragg grating sensors,” J. Lightwave Technol. 21, 132–139 (2003).
[CrossRef]

Adam, I.

I. Adam, N. B. M. Hashim, M. H. Ibrahim, N. M. Kassim, A. B. Mohammad, and A. S. Mohd Supa’at, “Design of arrayed waveguide grating (AWG) for DWDM/CWDM applications based on BCB polymer,” Elektrika 10, 18–21 (2008).

Alonso, J. G.

J. G. Alonso, J. Z. Zaballa, G. A. Aramendia, G. D. Apaolaza, and I. S. de Ocariz, “Impact detection in aeronautical structures using fibre Bragg grating (FBG) arrays,” in Optical Sensors, OSA Technical Digest (CD) (Optical Society of America, 2010), paper SWA3.

Apaolaza, G. D.

J. G. Alonso, J. Z. Zaballa, G. A. Aramendia, G. D. Apaolaza, and I. S. de Ocariz, “Impact detection in aeronautical structures using fibre Bragg grating (FBG) arrays,” in Optical Sensors, OSA Technical Digest (CD) (Optical Society of America, 2010), paper SWA3.

Aramendia, G. A.

J. G. Alonso, J. Z. Zaballa, G. A. Aramendia, G. D. Apaolaza, and I. S. de Ocariz, “Impact detection in aeronautical structures using fibre Bragg grating (FBG) arrays,” in Optical Sensors, OSA Technical Digest (CD) (Optical Society of America, 2010), paper SWA3.

Burgmeier, J.

Chen, B. L.

C. S. Shin, B. L. Chen, and S. K. Liaw, “An FBG-based impact event detection system for structural health monitoring,” Adv. Civil Eng. 2010, 253274 (2010).
[CrossRef]

de Ocariz, I. S.

J. G. Alonso, J. Z. Zaballa, G. A. Aramendia, G. D. Apaolaza, and I. S. de Ocariz, “Impact detection in aeronautical structures using fibre Bragg grating (FBG) arrays,” in Optical Sensors, OSA Technical Digest (CD) (Optical Society of America, 2010), paper SWA3.

Emde, N.

Funken, P.

Hashim, N. B. M.

I. Adam, N. B. M. Hashim, M. H. Ibrahim, N. M. Kassim, A. B. Mohammad, and A. S. Mohd Supa’at, “Design of arrayed waveguide grating (AWG) for DWDM/CWDM applications based on BCB polymer,” Elektrika 10, 18–21 (2008).

Hirayama, N.

Y. Sano, N. Hirayama, and T. T. Yoshino, “Optical wavelength interrogator employing the free spectral range of an arrayed waveguide grating,” Proc. SPIE 4987, 197–204 (2003).
[CrossRef]

Huang, X. G.

H. Su and X. G. Huang, “A novel fiber Bragg grating interrogating sensor system based on AWG demultiplexing,” Opt. Commun. 275, 196–200 (2007).
[CrossRef]

Ibrahim, M. H.

I. Adam, N. B. M. Hashim, M. H. Ibrahim, N. M. Kassim, A. B. Mohammad, and A. S. Mohd Supa’at, “Design of arrayed waveguide grating (AWG) for DWDM/CWDM applications based on BCB polymer,” Elektrika 10, 18–21 (2008).

Jin, G.

Kassim, N. M.

I. Adam, N. B. M. Hashim, M. H. Ibrahim, N. M. Kassim, A. B. Mohammad, and A. S. Mohd Supa’at, “Design of arrayed waveguide grating (AWG) for DWDM/CWDM applications based on BCB polymer,” Elektrika 10, 18–21 (2008).

Kosters, E.

E. Kosters and T. J. van Els, “Structural health monitoring and impact detection for primary aircraft structures, high-speed, synchronous interrogation using multiple-fiber Bragg grating sensors enables design and delivery of robust inspection and analysis systems,” Sensing & Measurement, SPIE Newsroom, doi: 10.1117/2.1201003.002638 (26, March2010). .

Liaw, S. K.

C. S. Shin, B. L. Chen, and S. K. Liaw, “An FBG-based impact event detection system for structural health monitoring,” Adv. Civil Eng. 2010, 253274 (2010).
[CrossRef]

Lu, S.

Mohammad, A. B.

I. Adam, N. B. M. Hashim, M. H. Ibrahim, N. M. Kassim, A. B. Mohammad, and A. S. Mohd Supa’at, “Design of arrayed waveguide grating (AWG) for DWDM/CWDM applications based on BCB polymer,” Elektrika 10, 18–21 (2008).

Mohd Supa’at, A. S.

I. Adam, N. B. M. Hashim, M. H. Ibrahim, N. M. Kassim, A. B. Mohammad, and A. S. Mohd Supa’at, “Design of arrayed waveguide grating (AWG) for DWDM/CWDM applications based on BCB polymer,” Elektrika 10, 18–21 (2008).

Norman, D. C. C.

D. C. C. Norman, D. J. Webb, and R. D. Pechstedt, “Interferometric and fibre Bragg grating sensor interrogation using an arrayed waveguide grating,” Proc. SPIE 5459, 182–183 (2004).
[CrossRef]

Pechstedt, R. D.

D. C. C. Norman, D. J. Webb, and R. D. Pechstedt, “Interferometric and fibre Bragg grating sensor interrogation using an arrayed waveguide grating,” Proc. SPIE 5459, 182–183 (2004).
[CrossRef]

Pun, E. Y. B.

Sano, Y.

Y. Sano and T. Yoshino, “Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber Bragg grating sensors,” J. Lightwave Technol. 21, 132–139 (2003).
[CrossRef]

Y. Sano, N. Hirayama, and T. T. Yoshino, “Optical wavelength interrogator employing the free spectral range of an arrayed waveguide grating,” Proc. SPIE 4987, 197–204 (2003).
[CrossRef]

Schade, W.

Schippers, W.

Shin, C. S.

C. S. Shin, B. L. Chen, and S. K. Liaw, “An FBG-based impact event detection system for structural health monitoring,” Adv. Civil Eng. 2010, 253274 (2010).
[CrossRef]

Su, H.

H. Su and X. G. Huang, “A novel fiber Bragg grating interrogating sensor system based on AWG demultiplexing,” Opt. Commun. 275, 196–200 (2007).
[CrossRef]

van Els, T. J.

E. Kosters and T. J. van Els, “Structural health monitoring and impact detection for primary aircraft structures, high-speed, synchronous interrogation using multiple-fiber Bragg grating sensors enables design and delivery of robust inspection and analysis systems,” Sensing & Measurement, SPIE Newsroom, doi: 10.1117/2.1201003.002638 (26, March2010). .

Webb, D. J.

D. C. C. Norman, D. J. Webb, and R. D. Pechstedt, “Interferometric and fibre Bragg grating sensor interrogation using an arrayed waveguide grating,” Proc. SPIE 5459, 182–183 (2004).
[CrossRef]

Wong, W. H.

Yan, Y.

Yang, C.

Yoshino, T.

Yoshino, T. T.

Y. Sano, N. Hirayama, and T. T. Yoshino, “Optical wavelength interrogator employing the free spectral range of an arrayed waveguide grating,” Proc. SPIE 4987, 197–204 (2003).
[CrossRef]

Zaballa, J. Z.

J. G. Alonso, J. Z. Zaballa, G. A. Aramendia, G. D. Apaolaza, and I. S. de Ocariz, “Impact detection in aeronautical structures using fibre Bragg grating (FBG) arrays,” in Optical Sensors, OSA Technical Digest (CD) (Optical Society of America, 2010), paper SWA3.

Zhou, Z.

Adv. Civil Eng. (1)

C. S. Shin, B. L. Chen, and S. K. Liaw, “An FBG-based impact event detection system for structural health monitoring,” Adv. Civil Eng. 2010, 253274 (2010).
[CrossRef]

Appl. Opt. (1)

Elektrika (1)

I. Adam, N. B. M. Hashim, M. H. Ibrahim, N. M. Kassim, A. B. Mohammad, and A. S. Mohd Supa’at, “Design of arrayed waveguide grating (AWG) for DWDM/CWDM applications based on BCB polymer,” Elektrika 10, 18–21 (2008).

J. Lightwave Technol. (1)

Opt. Commun. (1)

H. Su and X. G. Huang, “A novel fiber Bragg grating interrogating sensor system based on AWG demultiplexing,” Opt. Commun. 275, 196–200 (2007).
[CrossRef]

Opt. Express (1)

Proc. SPIE (2)

D. C. C. Norman, D. J. Webb, and R. D. Pechstedt, “Interferometric and fibre Bragg grating sensor interrogation using an arrayed waveguide grating,” Proc. SPIE 5459, 182–183 (2004).
[CrossRef]

Y. Sano, N. Hirayama, and T. T. Yoshino, “Optical wavelength interrogator employing the free spectral range of an arrayed waveguide grating,” Proc. SPIE 4987, 197–204 (2003).
[CrossRef]

Other (2)

J. G. Alonso, J. Z. Zaballa, G. A. Aramendia, G. D. Apaolaza, and I. S. de Ocariz, “Impact detection in aeronautical structures using fibre Bragg grating (FBG) arrays,” in Optical Sensors, OSA Technical Digest (CD) (Optical Society of America, 2010), paper SWA3.

E. Kosters and T. J. van Els, “Structural health monitoring and impact detection for primary aircraft structures, high-speed, synchronous interrogation using multiple-fiber Bragg grating sensors enables design and delivery of robust inspection and analysis systems,” Sensing & Measurement, SPIE Newsroom, doi: 10.1117/2.1201003.002638 (26, March2010). .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics