Abstract

The effectiveness of a pulsed radiofrequency modulated lidar and associated processing for underwater target detection at grazing incidence was experimentally assessed in a wave basin 50 m long and 20 m deep, under different conditions of swell produced within this facility to benefit from a controlled interface. This paper reports our experiments and offline data processing results, and describes significant improvements in the probability of detection that demonstrate the interest of using such a technique in this context.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. C. Guenther, “Airborne laser hydrography: System design and performance factors,” NOAA Professional Paper Series(National Ocean Service, 1985).
  2. G. C. Guenther, “Airborne lidar bathymetry,” in Digital Elevation Model Technologies and Applications: The DEM Users Manual, D. F. Maune, ed. (American Society for Photogrammetry and Remote Sensing, 2007), pp. 253–320.
  3. J. Lotrian, J. Cariou, and Y. Guern, “Attenuation measurement in liquids by analysis of space-time structure of backscattered laser light pulses,” Appl. Opt. 29, 1593–1594 (1990).
    [CrossRef]
  4. L. J. Mullen, A. J. C. Vieira, and P. R. Herczfeld, “Application of RADAR technology to aerial LIDAR systems for enhancement of shallow underwater target detection,” IEEE Trans. Microwave Theory Tech. 43, 2370–2377 (1995).
    [CrossRef]
  5. F. Pellen, X. Intes, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Determination of sea-water frequency response by backscattering transfer function measurement,” J. Phys. D 33, 349–354 (2000).
    [CrossRef]
  6. J. Liang, K. Yang, M. Xia, X. Zhang, X. Lei, Y. Zheng, and D. Tan, “Monte Carlo simulation for modulated pulse bathymetric light detecting and ranging systems,” J. Opt. A: Pure Appl. Opt. 8, 415–422 (2006).
    [CrossRef]
  7. L. De Dominicis, M. Ferri de Collibus, G. Fornetti, M. Guarneri, M. Nuvoli, R. Ricci, and M. Francucci, “Improving underwater imaging in an amplitude modulated laser system with radio frequency control technique,” JEOS RP 5, 10004 (2010).
    [CrossRef]
  8. F. Pellen, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Radio frequency modulation on optical carrier for target detection enhancement in sea water,” J. Phys. D: Appl. Phys. 34, 1122–1130 (2001).
    [CrossRef]
  9. L. J. Mullen, P. R. Herczfeld, R. Fischl, and V. M. Contarino, “Evaluation of hybrid lidar-radar for ocean exploration,” in 26th European Microwave Conference (IEEE, 1996), pp. 1015–1018.
  10. V. M. Contarino, P. R. Herczfeld, and L. J. Mullen, “Modulator LIDAR system,” U.S. patent 5,822,047 (13October1998).
  11. F. Pellen, Y. Guern, P. Olivard, J. Cariou, and J. Lotrian, “Loss of radio frequency modulation on optical carrier in high scattering medium: effects of multiple scattering and field of view selection,” J. Phys. D Appl. Phys. 34, 49–51 (2001).
    [CrossRef]
  12. V. Jezequel, F. Audo, F. Pellen, and B. Le Jeune, “Experimentally based simulations on modulated lidar for shallow underwater target detection and localization,” Proc. SPIE 7825, 78250E (2010).
    [CrossRef]
  13. B. Billard, R. H. Abbot, and M. F. Penny, “Airborne estimation of sea turbidity parameters from the WRELADS laser airborne depth sounder,” Appl. Opt. 25, 2080–2088 (1986).
    [CrossRef]
  14. L. J. Mullen, B. Cochenour, A. Laux, and D. Alley, “Optical modulation techniques for underwater detection, ranging and imaging,” Proc. SPIE 8030, 803008 (2011).
    [CrossRef]
  15. L. J. Mullen, A. Laux, B. Cochenour, E. P. Zege, I. L. Katsev, and A. S. Prikhach, “Demodulation techniques for the amplitude modulated laser imager,” Appl. Opt. 46, 7374–7383 (2007).
    [CrossRef]
  16. D. C. Kao, T. J. Kane, and L. J. Mullen, “Development of an amplitude-modulated Nd:YAG pulsed laser with modulation frequency tunability up to 60 GHz by dual seed injection,” Opt. Lett. 29, 1203–1205 (2004).
    [CrossRef]
  17. B. Cochenour, L. Mullen, and J. Muth, “Modulated pulse laser with pseudorandom coding capabilities for underwater ranging, detection, and imaging,” Appl. Opt. 50, 6168–6178 (2011).
    [CrossRef]
  18. F. M. Caimi, F. R. Dalgleish, T. E. Giddings, J. J. Shirron, C. Mazel, and K. Chiang, “Pulse versus CW laser line scan imaging detection methods: simulation results,” in Oceans 2007 (IEEE, 2007), pp. 1–4.
  19. H. M. Tulldahl and M. Petterson, “Lidar for shallow underwater target detection,” Proc. SPIE 6739, 673906 (2007).
    [CrossRef]
  20. M. I. Skolnik, Radar Handbook, 3rd ed. (McGraw-Hill, 2008).

2011 (2)

L. J. Mullen, B. Cochenour, A. Laux, and D. Alley, “Optical modulation techniques for underwater detection, ranging and imaging,” Proc. SPIE 8030, 803008 (2011).
[CrossRef]

B. Cochenour, L. Mullen, and J. Muth, “Modulated pulse laser with pseudorandom coding capabilities for underwater ranging, detection, and imaging,” Appl. Opt. 50, 6168–6178 (2011).
[CrossRef]

2010 (2)

V. Jezequel, F. Audo, F. Pellen, and B. Le Jeune, “Experimentally based simulations on modulated lidar for shallow underwater target detection and localization,” Proc. SPIE 7825, 78250E (2010).
[CrossRef]

L. De Dominicis, M. Ferri de Collibus, G. Fornetti, M. Guarneri, M. Nuvoli, R. Ricci, and M. Francucci, “Improving underwater imaging in an amplitude modulated laser system with radio frequency control technique,” JEOS RP 5, 10004 (2010).
[CrossRef]

2007 (2)

2006 (1)

J. Liang, K. Yang, M. Xia, X. Zhang, X. Lei, Y. Zheng, and D. Tan, “Monte Carlo simulation for modulated pulse bathymetric light detecting and ranging systems,” J. Opt. A: Pure Appl. Opt. 8, 415–422 (2006).
[CrossRef]

2004 (1)

2001 (2)

F. Pellen, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Radio frequency modulation on optical carrier for target detection enhancement in sea water,” J. Phys. D: Appl. Phys. 34, 1122–1130 (2001).
[CrossRef]

F. Pellen, Y. Guern, P. Olivard, J. Cariou, and J. Lotrian, “Loss of radio frequency modulation on optical carrier in high scattering medium: effects of multiple scattering and field of view selection,” J. Phys. D Appl. Phys. 34, 49–51 (2001).
[CrossRef]

2000 (1)

F. Pellen, X. Intes, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Determination of sea-water frequency response by backscattering transfer function measurement,” J. Phys. D 33, 349–354 (2000).
[CrossRef]

1995 (1)

L. J. Mullen, A. J. C. Vieira, and P. R. Herczfeld, “Application of RADAR technology to aerial LIDAR systems for enhancement of shallow underwater target detection,” IEEE Trans. Microwave Theory Tech. 43, 2370–2377 (1995).
[CrossRef]

1990 (1)

1986 (1)

Abbot, R. H.

Alley, D.

L. J. Mullen, B. Cochenour, A. Laux, and D. Alley, “Optical modulation techniques for underwater detection, ranging and imaging,” Proc. SPIE 8030, 803008 (2011).
[CrossRef]

Audo, F.

V. Jezequel, F. Audo, F. Pellen, and B. Le Jeune, “Experimentally based simulations on modulated lidar for shallow underwater target detection and localization,” Proc. SPIE 7825, 78250E (2010).
[CrossRef]

Billard, B.

Caimi, F. M.

F. M. Caimi, F. R. Dalgleish, T. E. Giddings, J. J. Shirron, C. Mazel, and K. Chiang, “Pulse versus CW laser line scan imaging detection methods: simulation results,” in Oceans 2007 (IEEE, 2007), pp. 1–4.

Cariou, J.

F. Pellen, Y. Guern, P. Olivard, J. Cariou, and J. Lotrian, “Loss of radio frequency modulation on optical carrier in high scattering medium: effects of multiple scattering and field of view selection,” J. Phys. D Appl. Phys. 34, 49–51 (2001).
[CrossRef]

F. Pellen, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Radio frequency modulation on optical carrier for target detection enhancement in sea water,” J. Phys. D: Appl. Phys. 34, 1122–1130 (2001).
[CrossRef]

F. Pellen, X. Intes, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Determination of sea-water frequency response by backscattering transfer function measurement,” J. Phys. D 33, 349–354 (2000).
[CrossRef]

J. Lotrian, J. Cariou, and Y. Guern, “Attenuation measurement in liquids by analysis of space-time structure of backscattered laser light pulses,” Appl. Opt. 29, 1593–1594 (1990).
[CrossRef]

Chiang, K.

F. M. Caimi, F. R. Dalgleish, T. E. Giddings, J. J. Shirron, C. Mazel, and K. Chiang, “Pulse versus CW laser line scan imaging detection methods: simulation results,” in Oceans 2007 (IEEE, 2007), pp. 1–4.

Cochenour, B.

Contarino, V. M.

L. J. Mullen, P. R. Herczfeld, R. Fischl, and V. M. Contarino, “Evaluation of hybrid lidar-radar for ocean exploration,” in 26th European Microwave Conference (IEEE, 1996), pp. 1015–1018.

V. M. Contarino, P. R. Herczfeld, and L. J. Mullen, “Modulator LIDAR system,” U.S. patent 5,822,047 (13October1998).

Dalgleish, F. R.

F. M. Caimi, F. R. Dalgleish, T. E. Giddings, J. J. Shirron, C. Mazel, and K. Chiang, “Pulse versus CW laser line scan imaging detection methods: simulation results,” in Oceans 2007 (IEEE, 2007), pp. 1–4.

De Dominicis, L.

L. De Dominicis, M. Ferri de Collibus, G. Fornetti, M. Guarneri, M. Nuvoli, R. Ricci, and M. Francucci, “Improving underwater imaging in an amplitude modulated laser system with radio frequency control technique,” JEOS RP 5, 10004 (2010).
[CrossRef]

Ferri de Collibus, M.

L. De Dominicis, M. Ferri de Collibus, G. Fornetti, M. Guarneri, M. Nuvoli, R. Ricci, and M. Francucci, “Improving underwater imaging in an amplitude modulated laser system with radio frequency control technique,” JEOS RP 5, 10004 (2010).
[CrossRef]

Fischl, R.

L. J. Mullen, P. R. Herczfeld, R. Fischl, and V. M. Contarino, “Evaluation of hybrid lidar-radar for ocean exploration,” in 26th European Microwave Conference (IEEE, 1996), pp. 1015–1018.

Fornetti, G.

L. De Dominicis, M. Ferri de Collibus, G. Fornetti, M. Guarneri, M. Nuvoli, R. Ricci, and M. Francucci, “Improving underwater imaging in an amplitude modulated laser system with radio frequency control technique,” JEOS RP 5, 10004 (2010).
[CrossRef]

Francucci, M.

L. De Dominicis, M. Ferri de Collibus, G. Fornetti, M. Guarneri, M. Nuvoli, R. Ricci, and M. Francucci, “Improving underwater imaging in an amplitude modulated laser system with radio frequency control technique,” JEOS RP 5, 10004 (2010).
[CrossRef]

Giddings, T. E.

F. M. Caimi, F. R. Dalgleish, T. E. Giddings, J. J. Shirron, C. Mazel, and K. Chiang, “Pulse versus CW laser line scan imaging detection methods: simulation results,” in Oceans 2007 (IEEE, 2007), pp. 1–4.

Guarneri, M.

L. De Dominicis, M. Ferri de Collibus, G. Fornetti, M. Guarneri, M. Nuvoli, R. Ricci, and M. Francucci, “Improving underwater imaging in an amplitude modulated laser system with radio frequency control technique,” JEOS RP 5, 10004 (2010).
[CrossRef]

Guenther, G. C.

G. C. Guenther, “Airborne laser hydrography: System design and performance factors,” NOAA Professional Paper Series(National Ocean Service, 1985).

G. C. Guenther, “Airborne lidar bathymetry,” in Digital Elevation Model Technologies and Applications: The DEM Users Manual, D. F. Maune, ed. (American Society for Photogrammetry and Remote Sensing, 2007), pp. 253–320.

Guern, Y.

F. Pellen, Y. Guern, P. Olivard, J. Cariou, and J. Lotrian, “Loss of radio frequency modulation on optical carrier in high scattering medium: effects of multiple scattering and field of view selection,” J. Phys. D Appl. Phys. 34, 49–51 (2001).
[CrossRef]

F. Pellen, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Radio frequency modulation on optical carrier for target detection enhancement in sea water,” J. Phys. D: Appl. Phys. 34, 1122–1130 (2001).
[CrossRef]

F. Pellen, X. Intes, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Determination of sea-water frequency response by backscattering transfer function measurement,” J. Phys. D 33, 349–354 (2000).
[CrossRef]

J. Lotrian, J. Cariou, and Y. Guern, “Attenuation measurement in liquids by analysis of space-time structure of backscattered laser light pulses,” Appl. Opt. 29, 1593–1594 (1990).
[CrossRef]

Herczfeld, P. R.

L. J. Mullen, A. J. C. Vieira, and P. R. Herczfeld, “Application of RADAR technology to aerial LIDAR systems for enhancement of shallow underwater target detection,” IEEE Trans. Microwave Theory Tech. 43, 2370–2377 (1995).
[CrossRef]

L. J. Mullen, P. R. Herczfeld, R. Fischl, and V. M. Contarino, “Evaluation of hybrid lidar-radar for ocean exploration,” in 26th European Microwave Conference (IEEE, 1996), pp. 1015–1018.

V. M. Contarino, P. R. Herczfeld, and L. J. Mullen, “Modulator LIDAR system,” U.S. patent 5,822,047 (13October1998).

Intes, X.

F. Pellen, X. Intes, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Determination of sea-water frequency response by backscattering transfer function measurement,” J. Phys. D 33, 349–354 (2000).
[CrossRef]

Jezequel, V.

V. Jezequel, F. Audo, F. Pellen, and B. Le Jeune, “Experimentally based simulations on modulated lidar for shallow underwater target detection and localization,” Proc. SPIE 7825, 78250E (2010).
[CrossRef]

Kane, T. J.

Kao, D. C.

Katsev, I. L.

Laux, A.

L. J. Mullen, B. Cochenour, A. Laux, and D. Alley, “Optical modulation techniques for underwater detection, ranging and imaging,” Proc. SPIE 8030, 803008 (2011).
[CrossRef]

L. J. Mullen, A. Laux, B. Cochenour, E. P. Zege, I. L. Katsev, and A. S. Prikhach, “Demodulation techniques for the amplitude modulated laser imager,” Appl. Opt. 46, 7374–7383 (2007).
[CrossRef]

Le Jeune, B.

V. Jezequel, F. Audo, F. Pellen, and B. Le Jeune, “Experimentally based simulations on modulated lidar for shallow underwater target detection and localization,” Proc. SPIE 7825, 78250E (2010).
[CrossRef]

Lei, X.

J. Liang, K. Yang, M. Xia, X. Zhang, X. Lei, Y. Zheng, and D. Tan, “Monte Carlo simulation for modulated pulse bathymetric light detecting and ranging systems,” J. Opt. A: Pure Appl. Opt. 8, 415–422 (2006).
[CrossRef]

Liang, J.

J. Liang, K. Yang, M. Xia, X. Zhang, X. Lei, Y. Zheng, and D. Tan, “Monte Carlo simulation for modulated pulse bathymetric light detecting and ranging systems,” J. Opt. A: Pure Appl. Opt. 8, 415–422 (2006).
[CrossRef]

Lotrian, J.

F. Pellen, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Radio frequency modulation on optical carrier for target detection enhancement in sea water,” J. Phys. D: Appl. Phys. 34, 1122–1130 (2001).
[CrossRef]

F. Pellen, Y. Guern, P. Olivard, J. Cariou, and J. Lotrian, “Loss of radio frequency modulation on optical carrier in high scattering medium: effects of multiple scattering and field of view selection,” J. Phys. D Appl. Phys. 34, 49–51 (2001).
[CrossRef]

F. Pellen, X. Intes, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Determination of sea-water frequency response by backscattering transfer function measurement,” J. Phys. D 33, 349–354 (2000).
[CrossRef]

J. Lotrian, J. Cariou, and Y. Guern, “Attenuation measurement in liquids by analysis of space-time structure of backscattered laser light pulses,” Appl. Opt. 29, 1593–1594 (1990).
[CrossRef]

Mazel, C.

F. M. Caimi, F. R. Dalgleish, T. E. Giddings, J. J. Shirron, C. Mazel, and K. Chiang, “Pulse versus CW laser line scan imaging detection methods: simulation results,” in Oceans 2007 (IEEE, 2007), pp. 1–4.

Mullen, L.

Mullen, L. J.

L. J. Mullen, B. Cochenour, A. Laux, and D. Alley, “Optical modulation techniques for underwater detection, ranging and imaging,” Proc. SPIE 8030, 803008 (2011).
[CrossRef]

L. J. Mullen, A. Laux, B. Cochenour, E. P. Zege, I. L. Katsev, and A. S. Prikhach, “Demodulation techniques for the amplitude modulated laser imager,” Appl. Opt. 46, 7374–7383 (2007).
[CrossRef]

D. C. Kao, T. J. Kane, and L. J. Mullen, “Development of an amplitude-modulated Nd:YAG pulsed laser with modulation frequency tunability up to 60 GHz by dual seed injection,” Opt. Lett. 29, 1203–1205 (2004).
[CrossRef]

L. J. Mullen, A. J. C. Vieira, and P. R. Herczfeld, “Application of RADAR technology to aerial LIDAR systems for enhancement of shallow underwater target detection,” IEEE Trans. Microwave Theory Tech. 43, 2370–2377 (1995).
[CrossRef]

L. J. Mullen, P. R. Herczfeld, R. Fischl, and V. M. Contarino, “Evaluation of hybrid lidar-radar for ocean exploration,” in 26th European Microwave Conference (IEEE, 1996), pp. 1015–1018.

V. M. Contarino, P. R. Herczfeld, and L. J. Mullen, “Modulator LIDAR system,” U.S. patent 5,822,047 (13October1998).

Muth, J.

Nuvoli, M.

L. De Dominicis, M. Ferri de Collibus, G. Fornetti, M. Guarneri, M. Nuvoli, R. Ricci, and M. Francucci, “Improving underwater imaging in an amplitude modulated laser system with radio frequency control technique,” JEOS RP 5, 10004 (2010).
[CrossRef]

Olivard, P.

F. Pellen, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Radio frequency modulation on optical carrier for target detection enhancement in sea water,” J. Phys. D: Appl. Phys. 34, 1122–1130 (2001).
[CrossRef]

F. Pellen, Y. Guern, P. Olivard, J. Cariou, and J. Lotrian, “Loss of radio frequency modulation on optical carrier in high scattering medium: effects of multiple scattering and field of view selection,” J. Phys. D Appl. Phys. 34, 49–51 (2001).
[CrossRef]

F. Pellen, X. Intes, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Determination of sea-water frequency response by backscattering transfer function measurement,” J. Phys. D 33, 349–354 (2000).
[CrossRef]

Pellen, F.

V. Jezequel, F. Audo, F. Pellen, and B. Le Jeune, “Experimentally based simulations on modulated lidar for shallow underwater target detection and localization,” Proc. SPIE 7825, 78250E (2010).
[CrossRef]

F. Pellen, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Radio frequency modulation on optical carrier for target detection enhancement in sea water,” J. Phys. D: Appl. Phys. 34, 1122–1130 (2001).
[CrossRef]

F. Pellen, Y. Guern, P. Olivard, J. Cariou, and J. Lotrian, “Loss of radio frequency modulation on optical carrier in high scattering medium: effects of multiple scattering and field of view selection,” J. Phys. D Appl. Phys. 34, 49–51 (2001).
[CrossRef]

F. Pellen, X. Intes, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Determination of sea-water frequency response by backscattering transfer function measurement,” J. Phys. D 33, 349–354 (2000).
[CrossRef]

Penny, M. F.

Petterson, M.

H. M. Tulldahl and M. Petterson, “Lidar for shallow underwater target detection,” Proc. SPIE 6739, 673906 (2007).
[CrossRef]

Prikhach, A. S.

Ricci, R.

L. De Dominicis, M. Ferri de Collibus, G. Fornetti, M. Guarneri, M. Nuvoli, R. Ricci, and M. Francucci, “Improving underwater imaging in an amplitude modulated laser system with radio frequency control technique,” JEOS RP 5, 10004 (2010).
[CrossRef]

Shirron, J. J.

F. M. Caimi, F. R. Dalgleish, T. E. Giddings, J. J. Shirron, C. Mazel, and K. Chiang, “Pulse versus CW laser line scan imaging detection methods: simulation results,” in Oceans 2007 (IEEE, 2007), pp. 1–4.

Skolnik, M. I.

M. I. Skolnik, Radar Handbook, 3rd ed. (McGraw-Hill, 2008).

Tan, D.

J. Liang, K. Yang, M. Xia, X. Zhang, X. Lei, Y. Zheng, and D. Tan, “Monte Carlo simulation for modulated pulse bathymetric light detecting and ranging systems,” J. Opt. A: Pure Appl. Opt. 8, 415–422 (2006).
[CrossRef]

Tulldahl, H. M.

H. M. Tulldahl and M. Petterson, “Lidar for shallow underwater target detection,” Proc. SPIE 6739, 673906 (2007).
[CrossRef]

Vieira, A. J. C.

L. J. Mullen, A. J. C. Vieira, and P. R. Herczfeld, “Application of RADAR technology to aerial LIDAR systems for enhancement of shallow underwater target detection,” IEEE Trans. Microwave Theory Tech. 43, 2370–2377 (1995).
[CrossRef]

Xia, M.

J. Liang, K. Yang, M. Xia, X. Zhang, X. Lei, Y. Zheng, and D. Tan, “Monte Carlo simulation for modulated pulse bathymetric light detecting and ranging systems,” J. Opt. A: Pure Appl. Opt. 8, 415–422 (2006).
[CrossRef]

Yang, K.

J. Liang, K. Yang, M. Xia, X. Zhang, X. Lei, Y. Zheng, and D. Tan, “Monte Carlo simulation for modulated pulse bathymetric light detecting and ranging systems,” J. Opt. A: Pure Appl. Opt. 8, 415–422 (2006).
[CrossRef]

Zege, E. P.

Zhang, X.

J. Liang, K. Yang, M. Xia, X. Zhang, X. Lei, Y. Zheng, and D. Tan, “Monte Carlo simulation for modulated pulse bathymetric light detecting and ranging systems,” J. Opt. A: Pure Appl. Opt. 8, 415–422 (2006).
[CrossRef]

Zheng, Y.

J. Liang, K. Yang, M. Xia, X. Zhang, X. Lei, Y. Zheng, and D. Tan, “Monte Carlo simulation for modulated pulse bathymetric light detecting and ranging systems,” J. Opt. A: Pure Appl. Opt. 8, 415–422 (2006).
[CrossRef]

Appl. Opt. (4)

IEEE Trans. Microwave Theory Tech. (1)

L. J. Mullen, A. J. C. Vieira, and P. R. Herczfeld, “Application of RADAR technology to aerial LIDAR systems for enhancement of shallow underwater target detection,” IEEE Trans. Microwave Theory Tech. 43, 2370–2377 (1995).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

J. Liang, K. Yang, M. Xia, X. Zhang, X. Lei, Y. Zheng, and D. Tan, “Monte Carlo simulation for modulated pulse bathymetric light detecting and ranging systems,” J. Opt. A: Pure Appl. Opt. 8, 415–422 (2006).
[CrossRef]

J. Phys. D (1)

F. Pellen, X. Intes, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Determination of sea-water frequency response by backscattering transfer function measurement,” J. Phys. D 33, 349–354 (2000).
[CrossRef]

J. Phys. D Appl. Phys. (1)

F. Pellen, Y. Guern, P. Olivard, J. Cariou, and J. Lotrian, “Loss of radio frequency modulation on optical carrier in high scattering medium: effects of multiple scattering and field of view selection,” J. Phys. D Appl. Phys. 34, 49–51 (2001).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

F. Pellen, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Radio frequency modulation on optical carrier for target detection enhancement in sea water,” J. Phys. D: Appl. Phys. 34, 1122–1130 (2001).
[CrossRef]

JEOS RP (1)

L. De Dominicis, M. Ferri de Collibus, G. Fornetti, M. Guarneri, M. Nuvoli, R. Ricci, and M. Francucci, “Improving underwater imaging in an amplitude modulated laser system with radio frequency control technique,” JEOS RP 5, 10004 (2010).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (3)

H. M. Tulldahl and M. Petterson, “Lidar for shallow underwater target detection,” Proc. SPIE 6739, 673906 (2007).
[CrossRef]

L. J. Mullen, B. Cochenour, A. Laux, and D. Alley, “Optical modulation techniques for underwater detection, ranging and imaging,” Proc. SPIE 8030, 803008 (2011).
[CrossRef]

V. Jezequel, F. Audo, F. Pellen, and B. Le Jeune, “Experimentally based simulations on modulated lidar for shallow underwater target detection and localization,” Proc. SPIE 7825, 78250E (2010).
[CrossRef]

Other (6)

G. C. Guenther, “Airborne laser hydrography: System design and performance factors,” NOAA Professional Paper Series(National Ocean Service, 1985).

G. C. Guenther, “Airborne lidar bathymetry,” in Digital Elevation Model Technologies and Applications: The DEM Users Manual, D. F. Maune, ed. (American Society for Photogrammetry and Remote Sensing, 2007), pp. 253–320.

F. M. Caimi, F. R. Dalgleish, T. E. Giddings, J. J. Shirron, C. Mazel, and K. Chiang, “Pulse versus CW laser line scan imaging detection methods: simulation results,” in Oceans 2007 (IEEE, 2007), pp. 1–4.

L. J. Mullen, P. R. Herczfeld, R. Fischl, and V. M. Contarino, “Evaluation of hybrid lidar-radar for ocean exploration,” in 26th European Microwave Conference (IEEE, 1996), pp. 1015–1018.

V. M. Contarino, P. R. Herczfeld, and L. J. Mullen, “Modulator LIDAR system,” U.S. patent 5,822,047 (13October1998).

M. I. Skolnik, Radar Handbook, 3rd ed. (McGraw-Hill, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

Target Ht(t) and seawater transfer functions Hm(t); fm, modulation frequency; fL, limit frequency; fc, water cutoff frequency.

Fig. 2.
Fig. 2.

Block diagram of the modulated lidar experiment. MCP-PMT, microchannel plate photomultiplier tube.

Fig. 3.
Fig. 3.

Optical delay line modulator for the generation of a 2ns 4 pulse train modulated at a microwave frequency. A, D, and G: 50/50 beam splitters; B, C, E, and F: mirrors.

Fig. 4.
Fig. 4.

Detection system.

Fig. 5.
Fig. 5.

100 ps optical pulse generated by the Nd:YAG laser, recorded by the MCP-PMT and digitized by a real-time oscilloscope.

Fig. 6.
Fig. 6.

Recording of the 2ns long, 2.2 GHz modulated optical pulse.

Fig. 7.
Fig. 7.

IFREMER wave-basin geometry (side and top views).

Fig. 8.
Fig. 8.

Wave maker operating range (dots represent the 11 pairs of selected periods and amplitudes).

Fig. 9.
Fig. 9.

Example of a recorded backscattered signal (blue) for a green 60 cm diameter spherical target immersed at 7 m in a regular swell with a 1.5 s period and 20 cm amplitude, shown with the filtering result (red).

Fig. 10.
Fig. 10.

75 s swell session (60 cm green spherical target at 7 m depth in a 1.5 s, 20 cm swell) before processing.

Fig. 11.
Fig. 11.

75 s swell session (60 cm green spherical target at 7 m depth in a 1.5 s, 20 cm swell) after processing.

Fig. 12.
Fig. 12.

75 s duration swell session combined representation (D=7m, T=1.5s, A=20cm) (a) before and (b) after processing.

Fig. 13.
Fig. 13.

Acquisition-averaged view (D=7m, T=1.5s, A=20cm) before and after processing.

Fig. 14.
Fig. 14.

Representation of reference areas in an experimental signal (ΔtTarget, target area; ΔtBackground, background noise area; ΔtBackscattering, backscattering noise area).

Fig. 15.
Fig. 15.

Comparison of the SDNR values of the 22 “postprocessing positive shots” before (*) and after (+) processing (60 cm spherical green target D=7m, T=1.5s, A=20cm).

Fig. 16.
Fig. 16.

Comparison of the SBNR values of the 22 “postprocessing positive shots” before (*) and after (+) processing (60 cm spherical green target D=7m, T=1.5s, A=20cm).

Fig. 17.
Fig. 17.

POD before (continuous line) and after (dashed line) processing plotted against swell amplitude for different swell periods (upward-pointing triangle, 3 s; square, 2.2 s; diamond, 1.5 s; circle, 1 s).

Tables (3)

Tables Icon

Table 1. Sensor Parameters

Tables Icon

Table 2. Experiment Geometric Characteristics

Tables Icon

Table 3. Results for a 60 cm Spherical Green Target Immersed at 7 m Depth with Regular Swell (D=7m, T=1.5s, A=20cm)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ED(t)=iEMi(t)+ET(t),
PL(t)=P(t)*hL(t)=P(t)*[hM(t)+hT(t)],
{hM(t)=ηFArR2ρ·exp(α·v·t)·u(t)hT(t)=ηFArR2ρT·exp(α·v·tT)·δ(ttT),
{HM(f)=ηFArR2ρ1αv+j2πfHT(f)=ηFArR2ρTexp(α·v·tT)exp(j·2π·f·tT).
SDNR=1ΔtTargetΔtTarget|s(t)|2dt1ΔtBackgroudΔtBackground|s(t)|2dt.
SBNR=1ΔtTargetΔtTarget|s(t)|2dt1ΔtBackscatteringΔtBackscattering|s(t)|2dt,
POD=Number of shots with detected targetTotal number of shots.

Metrics