Abstract

Most existing target acquisition (TA) models neglect the influence of background clutter, which results in inaccurate prediction of TA performance in a complicated environment. In this paper, all the background clutter is first quantitatively characterized by the distribution of edge clutter metric, and its effects on the target detection probability are analyzed. Further, a novel TA model is developed by combining this proposed clutter metric and the target task performance metric based on probability statistics theory. Moreover, this proposed model is validated by the search_2 dataset, and experiment results show that it is more consistent with the subjective detection probability than other models.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. D. Vaughan, “Soldier-in-the-loop target acquisition performance prediction through 2001: integration of perceptual and cognitive models,” Army Resrach Lab Technical Report ARL-TR-3883 (Human Research and Engineering Directorate, Army Research Laboratory, Aberdeen Proving Ground, Maryland, 2006).
  2. L. B. Scott and J. A. D’Agostino, “NVEOD FLIR’92 thermal imaging systems performance model,” Proc. SPIE 1689, 194–203 (1992).
    [CrossRef]
  3. W. Wittenstein, “Thermal range model TRM3,” Proc. SPIE 3436, 413–424 (1998).
    [CrossRef]
  4. Night Vision Thermal Imaging Systems Performance Model (U.S. Army Night Vision and Electronic Sensors Directorate, 2001).
  5. P. Bijl and J. M. Valeton, “TOD: a new method to characterize electro-optical system performance,” Proc. SPIE 3377, 182–193 (1998).
    [CrossRef]
  6. T. C. Edwards, R. H. Vollmerhausen, and R. G. Drigger, “NVESD time-limited search model,” Proc. SPIE 5076, 53–59 (2003).
    [CrossRef]
  7. R. H. Vollmerhausen, E. Jacobs, and R. G. Driggers, “New metric for predicting target acquisition performance,” Opt. Eng. 43, 2806–2818 (2004).
  8. R. H. Vollmerhausen and E. Jacobs, “The targeting task performance (TTP) metric: a new model for predicting target acquisition performance,” Technical Report AMSEL-NV-TR-230 (Modeling and Simulation Division, Night Vision and Electronic Sensors Directorate, U. S. Army CERDEC, Fort Belvoir, Virginia, 2004).
  9. R. K. Moore, H. A. Camp, S. Moyer, and C. E. Halford, “Masked target transform volume clutter metric applied to vehicle search,” Proc. SPIE 7662, 76620M (2010).
    [CrossRef]
  10. H. A. Camp, S. Moyer, and R. K. Moore, “Comparing masked target transform volume (MTTV) clutter metric to human observer evaluation of visual clutter,” Proc. SPIE 7662, 76620A (2010).
    [CrossRef]
  11. D. E. Schmieder and M. R. Weathersby, “Detection performance in clutter with variable resolution,” IEEE Trans. Aerosp. Electron. Syst. 19, 622–630 (1983).
    [CrossRef]
  12. T. Meitzler, G. Gerhart, and H. Singh, “A relative clutter metric,” IEEE Trans. Aerosp. Electron. Syst. 34, 968–976 (1998).
    [CrossRef]
  13. C. Yang, J.-Q. Zhang, and X. Xu, “Quaternion phase-correlation-based clutter metric for color images,” Opt. Eng. 46, 127008 (2007).
    [CrossRef]
  14. H. Chang and J. Zhang, “New metrics for clutter affecting human target acquisition,” IEEE Trans. Aerosp. Electron. Syst. 42, 361–368 (2006).
    [CrossRef]
  15. C. Yang, J. Wu, Q. Li, and J.-Q. Zhang, “Sparse-representation-based clutter metric,” Appl. Opt. 50, 1601–1605 (2011).
    [CrossRef]
  16. Q. Li, J.-Q. Zhang, and C. Yang, “Structure of edge background clutter metric,” J. Xidian Univ. 39, 95–99 (2012).
  17. P. Bijl and M. A. Hogervorst, “NVThermIP vs TOD: matching the target acquisition range criteria,” Proc. SPIE 6543, 65430C (2007).
    [CrossRef]
  18. R. H. Vollmerhausen and A. L. Robinson, “Modeling target acquisition tasks associated with security and surveillance,” Appl. Opt. 46, 4209–4221 (2007).
    [CrossRef]
  19. R. H. Vollmerhausen, S. Moyer, K. Krapels, R. G. Driggers, J. G. Hixson, and A. L. Robinson, “Predicting the probability of facial identification using a specific object model,” Appl. Opt. 47, 751–759 (2008).
    [CrossRef]
  20. P. G. J. Barten, Contrast Sensitivity of the Human Eye and its Effects on Image Quality (SPIE, 1999).
  21. A. Toet, P. Bijl, and J. M. Valeton, “Image dataset for testing search and detection models,” Opt. Eng. 40, 1760–1767 (2001).
    [CrossRef]
  22. A. Toet, P. Bijl, F. L. Kooi, and J. M. Valeton, “A high-resolution image data set for testing search and detection models,” Report TM-98-A020 (TNO Human Factors Research Institute, 1998).

2012 (1)

Q. Li, J.-Q. Zhang, and C. Yang, “Structure of edge background clutter metric,” J. Xidian Univ. 39, 95–99 (2012).

2011 (1)

2010 (2)

R. K. Moore, H. A. Camp, S. Moyer, and C. E. Halford, “Masked target transform volume clutter metric applied to vehicle search,” Proc. SPIE 7662, 76620M (2010).
[CrossRef]

H. A. Camp, S. Moyer, and R. K. Moore, “Comparing masked target transform volume (MTTV) clutter metric to human observer evaluation of visual clutter,” Proc. SPIE 7662, 76620A (2010).
[CrossRef]

2008 (1)

2007 (3)

P. Bijl and M. A. Hogervorst, “NVThermIP vs TOD: matching the target acquisition range criteria,” Proc. SPIE 6543, 65430C (2007).
[CrossRef]

R. H. Vollmerhausen and A. L. Robinson, “Modeling target acquisition tasks associated with security and surveillance,” Appl. Opt. 46, 4209–4221 (2007).
[CrossRef]

C. Yang, J.-Q. Zhang, and X. Xu, “Quaternion phase-correlation-based clutter metric for color images,” Opt. Eng. 46, 127008 (2007).
[CrossRef]

2006 (1)

H. Chang and J. Zhang, “New metrics for clutter affecting human target acquisition,” IEEE Trans. Aerosp. Electron. Syst. 42, 361–368 (2006).
[CrossRef]

2004 (1)

R. H. Vollmerhausen, E. Jacobs, and R. G. Driggers, “New metric for predicting target acquisition performance,” Opt. Eng. 43, 2806–2818 (2004).

2003 (1)

T. C. Edwards, R. H. Vollmerhausen, and R. G. Drigger, “NVESD time-limited search model,” Proc. SPIE 5076, 53–59 (2003).
[CrossRef]

2001 (1)

A. Toet, P. Bijl, and J. M. Valeton, “Image dataset for testing search and detection models,” Opt. Eng. 40, 1760–1767 (2001).
[CrossRef]

1998 (3)

W. Wittenstein, “Thermal range model TRM3,” Proc. SPIE 3436, 413–424 (1998).
[CrossRef]

P. Bijl and J. M. Valeton, “TOD: a new method to characterize electro-optical system performance,” Proc. SPIE 3377, 182–193 (1998).
[CrossRef]

T. Meitzler, G. Gerhart, and H. Singh, “A relative clutter metric,” IEEE Trans. Aerosp. Electron. Syst. 34, 968–976 (1998).
[CrossRef]

1992 (1)

L. B. Scott and J. A. D’Agostino, “NVEOD FLIR’92 thermal imaging systems performance model,” Proc. SPIE 1689, 194–203 (1992).
[CrossRef]

1983 (1)

D. E. Schmieder and M. R. Weathersby, “Detection performance in clutter with variable resolution,” IEEE Trans. Aerosp. Electron. Syst. 19, 622–630 (1983).
[CrossRef]

Barten, P. G. J.

P. G. J. Barten, Contrast Sensitivity of the Human Eye and its Effects on Image Quality (SPIE, 1999).

Bijl, P.

P. Bijl and M. A. Hogervorst, “NVThermIP vs TOD: matching the target acquisition range criteria,” Proc. SPIE 6543, 65430C (2007).
[CrossRef]

A. Toet, P. Bijl, and J. M. Valeton, “Image dataset for testing search and detection models,” Opt. Eng. 40, 1760–1767 (2001).
[CrossRef]

P. Bijl and J. M. Valeton, “TOD: a new method to characterize electro-optical system performance,” Proc. SPIE 3377, 182–193 (1998).
[CrossRef]

A. Toet, P. Bijl, F. L. Kooi, and J. M. Valeton, “A high-resolution image data set for testing search and detection models,” Report TM-98-A020 (TNO Human Factors Research Institute, 1998).

Camp, H. A.

R. K. Moore, H. A. Camp, S. Moyer, and C. E. Halford, “Masked target transform volume clutter metric applied to vehicle search,” Proc. SPIE 7662, 76620M (2010).
[CrossRef]

H. A. Camp, S. Moyer, and R. K. Moore, “Comparing masked target transform volume (MTTV) clutter metric to human observer evaluation of visual clutter,” Proc. SPIE 7662, 76620A (2010).
[CrossRef]

Chang, H.

H. Chang and J. Zhang, “New metrics for clutter affecting human target acquisition,” IEEE Trans. Aerosp. Electron. Syst. 42, 361–368 (2006).
[CrossRef]

D’Agostino, J. A.

L. B. Scott and J. A. D’Agostino, “NVEOD FLIR’92 thermal imaging systems performance model,” Proc. SPIE 1689, 194–203 (1992).
[CrossRef]

Drigger, R. G.

T. C. Edwards, R. H. Vollmerhausen, and R. G. Drigger, “NVESD time-limited search model,” Proc. SPIE 5076, 53–59 (2003).
[CrossRef]

Driggers, R. G.

R. H. Vollmerhausen, S. Moyer, K. Krapels, R. G. Driggers, J. G. Hixson, and A. L. Robinson, “Predicting the probability of facial identification using a specific object model,” Appl. Opt. 47, 751–759 (2008).
[CrossRef]

R. H. Vollmerhausen, E. Jacobs, and R. G. Driggers, “New metric for predicting target acquisition performance,” Opt. Eng. 43, 2806–2818 (2004).

Edwards, T. C.

T. C. Edwards, R. H. Vollmerhausen, and R. G. Drigger, “NVESD time-limited search model,” Proc. SPIE 5076, 53–59 (2003).
[CrossRef]

Gerhart, G.

T. Meitzler, G. Gerhart, and H. Singh, “A relative clutter metric,” IEEE Trans. Aerosp. Electron. Syst. 34, 968–976 (1998).
[CrossRef]

Halford, C. E.

R. K. Moore, H. A. Camp, S. Moyer, and C. E. Halford, “Masked target transform volume clutter metric applied to vehicle search,” Proc. SPIE 7662, 76620M (2010).
[CrossRef]

Hixson, J. G.

Hogervorst, M. A.

P. Bijl and M. A. Hogervorst, “NVThermIP vs TOD: matching the target acquisition range criteria,” Proc. SPIE 6543, 65430C (2007).
[CrossRef]

Jacobs, E.

R. H. Vollmerhausen, E. Jacobs, and R. G. Driggers, “New metric for predicting target acquisition performance,” Opt. Eng. 43, 2806–2818 (2004).

R. H. Vollmerhausen and E. Jacobs, “The targeting task performance (TTP) metric: a new model for predicting target acquisition performance,” Technical Report AMSEL-NV-TR-230 (Modeling and Simulation Division, Night Vision and Electronic Sensors Directorate, U. S. Army CERDEC, Fort Belvoir, Virginia, 2004).

Kooi, F. L.

A. Toet, P. Bijl, F. L. Kooi, and J. M. Valeton, “A high-resolution image data set for testing search and detection models,” Report TM-98-A020 (TNO Human Factors Research Institute, 1998).

Krapels, K.

Li, Q.

Q. Li, J.-Q. Zhang, and C. Yang, “Structure of edge background clutter metric,” J. Xidian Univ. 39, 95–99 (2012).

C. Yang, J. Wu, Q. Li, and J.-Q. Zhang, “Sparse-representation-based clutter metric,” Appl. Opt. 50, 1601–1605 (2011).
[CrossRef]

Meitzler, T.

T. Meitzler, G. Gerhart, and H. Singh, “A relative clutter metric,” IEEE Trans. Aerosp. Electron. Syst. 34, 968–976 (1998).
[CrossRef]

Moore, R. K.

H. A. Camp, S. Moyer, and R. K. Moore, “Comparing masked target transform volume (MTTV) clutter metric to human observer evaluation of visual clutter,” Proc. SPIE 7662, 76620A (2010).
[CrossRef]

R. K. Moore, H. A. Camp, S. Moyer, and C. E. Halford, “Masked target transform volume clutter metric applied to vehicle search,” Proc. SPIE 7662, 76620M (2010).
[CrossRef]

Moyer, S.

R. K. Moore, H. A. Camp, S. Moyer, and C. E. Halford, “Masked target transform volume clutter metric applied to vehicle search,” Proc. SPIE 7662, 76620M (2010).
[CrossRef]

H. A. Camp, S. Moyer, and R. K. Moore, “Comparing masked target transform volume (MTTV) clutter metric to human observer evaluation of visual clutter,” Proc. SPIE 7662, 76620A (2010).
[CrossRef]

R. H. Vollmerhausen, S. Moyer, K. Krapels, R. G. Driggers, J. G. Hixson, and A. L. Robinson, “Predicting the probability of facial identification using a specific object model,” Appl. Opt. 47, 751–759 (2008).
[CrossRef]

Robinson, A. L.

Schmieder, D. E.

D. E. Schmieder and M. R. Weathersby, “Detection performance in clutter with variable resolution,” IEEE Trans. Aerosp. Electron. Syst. 19, 622–630 (1983).
[CrossRef]

Scott, L. B.

L. B. Scott and J. A. D’Agostino, “NVEOD FLIR’92 thermal imaging systems performance model,” Proc. SPIE 1689, 194–203 (1992).
[CrossRef]

Singh, H.

T. Meitzler, G. Gerhart, and H. Singh, “A relative clutter metric,” IEEE Trans. Aerosp. Electron. Syst. 34, 968–976 (1998).
[CrossRef]

Toet, A.

A. Toet, P. Bijl, and J. M. Valeton, “Image dataset for testing search and detection models,” Opt. Eng. 40, 1760–1767 (2001).
[CrossRef]

A. Toet, P. Bijl, F. L. Kooi, and J. M. Valeton, “A high-resolution image data set for testing search and detection models,” Report TM-98-A020 (TNO Human Factors Research Institute, 1998).

Valeton, J. M.

A. Toet, P. Bijl, and J. M. Valeton, “Image dataset for testing search and detection models,” Opt. Eng. 40, 1760–1767 (2001).
[CrossRef]

P. Bijl and J. M. Valeton, “TOD: a new method to characterize electro-optical system performance,” Proc. SPIE 3377, 182–193 (1998).
[CrossRef]

A. Toet, P. Bijl, F. L. Kooi, and J. M. Valeton, “A high-resolution image data set for testing search and detection models,” Report TM-98-A020 (TNO Human Factors Research Institute, 1998).

Vaughan, B. D.

B. D. Vaughan, “Soldier-in-the-loop target acquisition performance prediction through 2001: integration of perceptual and cognitive models,” Army Resrach Lab Technical Report ARL-TR-3883 (Human Research and Engineering Directorate, Army Research Laboratory, Aberdeen Proving Ground, Maryland, 2006).

Vollmerhausen, R. H.

R. H. Vollmerhausen, S. Moyer, K. Krapels, R. G. Driggers, J. G. Hixson, and A. L. Robinson, “Predicting the probability of facial identification using a specific object model,” Appl. Opt. 47, 751–759 (2008).
[CrossRef]

R. H. Vollmerhausen and A. L. Robinson, “Modeling target acquisition tasks associated with security and surveillance,” Appl. Opt. 46, 4209–4221 (2007).
[CrossRef]

R. H. Vollmerhausen, E. Jacobs, and R. G. Driggers, “New metric for predicting target acquisition performance,” Opt. Eng. 43, 2806–2818 (2004).

T. C. Edwards, R. H. Vollmerhausen, and R. G. Drigger, “NVESD time-limited search model,” Proc. SPIE 5076, 53–59 (2003).
[CrossRef]

R. H. Vollmerhausen and E. Jacobs, “The targeting task performance (TTP) metric: a new model for predicting target acquisition performance,” Technical Report AMSEL-NV-TR-230 (Modeling and Simulation Division, Night Vision and Electronic Sensors Directorate, U. S. Army CERDEC, Fort Belvoir, Virginia, 2004).

Weathersby, M. R.

D. E. Schmieder and M. R. Weathersby, “Detection performance in clutter with variable resolution,” IEEE Trans. Aerosp. Electron. Syst. 19, 622–630 (1983).
[CrossRef]

Wittenstein, W.

W. Wittenstein, “Thermal range model TRM3,” Proc. SPIE 3436, 413–424 (1998).
[CrossRef]

Wu, J.

Xu, X.

C. Yang, J.-Q. Zhang, and X. Xu, “Quaternion phase-correlation-based clutter metric for color images,” Opt. Eng. 46, 127008 (2007).
[CrossRef]

Yang, C.

Q. Li, J.-Q. Zhang, and C. Yang, “Structure of edge background clutter metric,” J. Xidian Univ. 39, 95–99 (2012).

C. Yang, J. Wu, Q. Li, and J.-Q. Zhang, “Sparse-representation-based clutter metric,” Appl. Opt. 50, 1601–1605 (2011).
[CrossRef]

C. Yang, J.-Q. Zhang, and X. Xu, “Quaternion phase-correlation-based clutter metric for color images,” Opt. Eng. 46, 127008 (2007).
[CrossRef]

Zhang, J.

H. Chang and J. Zhang, “New metrics for clutter affecting human target acquisition,” IEEE Trans. Aerosp. Electron. Syst. 42, 361–368 (2006).
[CrossRef]

Zhang, J.-Q.

Q. Li, J.-Q. Zhang, and C. Yang, “Structure of edge background clutter metric,” J. Xidian Univ. 39, 95–99 (2012).

C. Yang, J. Wu, Q. Li, and J.-Q. Zhang, “Sparse-representation-based clutter metric,” Appl. Opt. 50, 1601–1605 (2011).
[CrossRef]

C. Yang, J.-Q. Zhang, and X. Xu, “Quaternion phase-correlation-based clutter metric for color images,” Opt. Eng. 46, 127008 (2007).
[CrossRef]

Appl. Opt. (3)

IEEE Trans. Aerosp. Electron. Syst. (3)

D. E. Schmieder and M. R. Weathersby, “Detection performance in clutter with variable resolution,” IEEE Trans. Aerosp. Electron. Syst. 19, 622–630 (1983).
[CrossRef]

T. Meitzler, G. Gerhart, and H. Singh, “A relative clutter metric,” IEEE Trans. Aerosp. Electron. Syst. 34, 968–976 (1998).
[CrossRef]

H. Chang and J. Zhang, “New metrics for clutter affecting human target acquisition,” IEEE Trans. Aerosp. Electron. Syst. 42, 361–368 (2006).
[CrossRef]

J. Xidian Univ. (1)

Q. Li, J.-Q. Zhang, and C. Yang, “Structure of edge background clutter metric,” J. Xidian Univ. 39, 95–99 (2012).

Opt. Eng. (3)

C. Yang, J.-Q. Zhang, and X. Xu, “Quaternion phase-correlation-based clutter metric for color images,” Opt. Eng. 46, 127008 (2007).
[CrossRef]

R. H. Vollmerhausen, E. Jacobs, and R. G. Driggers, “New metric for predicting target acquisition performance,” Opt. Eng. 43, 2806–2818 (2004).

A. Toet, P. Bijl, and J. M. Valeton, “Image dataset for testing search and detection models,” Opt. Eng. 40, 1760–1767 (2001).
[CrossRef]

Proc. SPIE (7)

R. K. Moore, H. A. Camp, S. Moyer, and C. E. Halford, “Masked target transform volume clutter metric applied to vehicle search,” Proc. SPIE 7662, 76620M (2010).
[CrossRef]

H. A. Camp, S. Moyer, and R. K. Moore, “Comparing masked target transform volume (MTTV) clutter metric to human observer evaluation of visual clutter,” Proc. SPIE 7662, 76620A (2010).
[CrossRef]

L. B. Scott and J. A. D’Agostino, “NVEOD FLIR’92 thermal imaging systems performance model,” Proc. SPIE 1689, 194–203 (1992).
[CrossRef]

W. Wittenstein, “Thermal range model TRM3,” Proc. SPIE 3436, 413–424 (1998).
[CrossRef]

P. Bijl and J. M. Valeton, “TOD: a new method to characterize electro-optical system performance,” Proc. SPIE 3377, 182–193 (1998).
[CrossRef]

T. C. Edwards, R. H. Vollmerhausen, and R. G. Drigger, “NVESD time-limited search model,” Proc. SPIE 5076, 53–59 (2003).
[CrossRef]

P. Bijl and M. A. Hogervorst, “NVThermIP vs TOD: matching the target acquisition range criteria,” Proc. SPIE 6543, 65430C (2007).
[CrossRef]

Other (5)

P. G. J. Barten, Contrast Sensitivity of the Human Eye and its Effects on Image Quality (SPIE, 1999).

B. D. Vaughan, “Soldier-in-the-loop target acquisition performance prediction through 2001: integration of perceptual and cognitive models,” Army Resrach Lab Technical Report ARL-TR-3883 (Human Research and Engineering Directorate, Army Research Laboratory, Aberdeen Proving Ground, Maryland, 2006).

Night Vision Thermal Imaging Systems Performance Model (U.S. Army Night Vision and Electronic Sensors Directorate, 2001).

R. H. Vollmerhausen and E. Jacobs, “The targeting task performance (TTP) metric: a new model for predicting target acquisition performance,” Technical Report AMSEL-NV-TR-230 (Modeling and Simulation Division, Night Vision and Electronic Sensors Directorate, U. S. Army CERDEC, Fort Belvoir, Virginia, 2004).

A. Toet, P. Bijl, F. L. Kooi, and J. M. Valeton, “A high-resolution image data set for testing search and detection models,” Report TM-98-A020 (TNO Human Factors Research Institute, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

General diagram of TA performance model.

Fig. 2.
Fig. 2.

Relationships between model predictors and detection probabilities: (a), (c), (e) variations of detection probabilities with Johnson, TTP, and TTPC predictions respectively and (b), (d), (f) illustrations of the differences between Johnson, TTP, and TTPC predictions and subjective detection probabilities.

Fig. 3.
Fig. 3.

Validity analysis of TTP and TTPC: (a) absolute differences between TTP predictions and subjective detection probabilities from minimum to maximum, (b) absolute differences between TTP predictions and subjective detection probabilities in the same order as (a), and (c) DOE values in the same order as (a) and (b).

Tables (1)

Tables Icon

Table 1. Performance Comparison between Different Prediction Modelsa

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

CTFsys(ξ)=CTF(ξ)Hsys(ξ)1kcon2+α2σ(ξ)2L2.
Nresolved=ATGTTTPR,
TTP=ξlowξcutCTGTCTFsys(ξ)dξ,
CTGT=τCTGT-0,
CTGT-0=(utgtuscene)2+σtgt22uscene.
Pt=(Nresolved/N50)E1+(Nresolved/N50)E,
E=A+B(Nresolved/V50),
Dt=(t1,t2,,tk,,t6)T,
Dbr=(br1,br2,,brk,,br6)T.
Cr=(BNr+TN)2DtDbr2.
DOE=r=1NCr/N.
PC=1(DOE/C50)W1+(DOE/C50)W.
P=(Pt+PCPtPC)·PtPt+PC.

Metrics