Abstract

By calculating the energy distributions of electrons reaching the photocathode surface and solving the Schrödinger equation for an electron tunneling through the surface potential barrier, we have obtained an equation to calculate the energy distributions of electrons emitted from reflection-mode Cs-covered GaAs photocathodes based on a two-minima diffusion model. According to the equation, we studied the effects of incident photon energies, diffusion lengths, and surface potential barrier on the electron energy distributions. The equation was also used to fit the measured electron energy distribution curves and the cathode performance parameters were obtained from the fitting. The Γ and L peaks in the theoretical curves are in agreement with the peaks in the experimental curves. The fitted barrier thickness 1.7 Å exactly reflects the GaAs-Cs dipole layer thickness.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kamaratos and E. Bauer, “Interaction of Cs with the GaAs(100) surface,” J. Appl. Phys. 70, 7564–7572 (1991).
    [CrossRef]
  2. G. Faraci, A. R. Pennisi, F. Gozzo, S. La Rosa, and G. Margaritondo, “Cs bonding at the Cs/GaAs(110) interface,” Phys. Rev. B 53, 3987–3992 (1996).
    [CrossRef]
  3. J. J. Zou, B. K. Chang, Y. J. Zhang, and Z. Yang, “Variation of spectral response from Cs-covered GaAs and band features contained within the spectral response,” Appl. Opt. 49, 2561–2565 (2010).
    [CrossRef]
  4. O. E. Tereshchenko, V. L. Alperovich, A. G. Zhuravlev, A. S. Terekhov, and D. Paget, “Cesium-induced surface conversion: From As-rich to Ga-rich GaAs(001) at reduced temperatures,” Phys. Rev. B 71, 1553151 (2005).
    [CrossRef]
  5. C. Hogan, D. Paget, Y. Garreau, M. Sauvage, G. Onida, L. Reining, P. Chiaradia, and V. Corradini, “Early stages of cesium adsorption on the As-rich c(2×8) reconstruction of GaAs(001): adsorption sites and Cs-induced chemical bonds,” Phys. Rev. B 68, 2053131 (2003).
    [CrossRef]
  6. G. Faraci, A. R. Pennisi, and G. Margaritondo, “Catalytic oxidation of the GaAs(110) surface promoted by a Cs overlayer,” Phys. Rev. B 53, 13851–13856 (1996).
    [CrossRef]
  7. G. V. Benemanskaya, D. V. Daineka, and G. E. Frank-Kamenetskaya, “Electronic properties of the Cs covered GaAs(100) Ga-rich surface,” Solid State Commun. 114, 285–289 (2000).
    [CrossRef]
  8. R. C. Eden, J. L. Moll, and W. E. Spicer, “Experimental evidence for optical population of the X minima in GaAs,” Phys. Rev. Lett. 18, 597–599 (1967).
    [CrossRef]
  9. D. E. Aspnes, C. G. Olson, and D. W. Lynch, “Ordering and absolute energies of the L6c and X6c conduction band minima in GaAs,” Phys. Rev. Lett. 37, 766–769 (1976).
    [CrossRef]
  10. L. W. James and J. L. Moll, “Transport properties of GaAs obtained from photoemission measurements,” Phys. Rev. 183, 740–753 (1969).
    [CrossRef]
  11. J. S. Escher and H. Schade, “Calculated energy distributions of electrons emitted from negative electron affinity GaAs: Cs-O surfaces,” J. Appl. Phys. 44, 5309–5313(1973).
    [CrossRef]
  12. D. G. Fisher, R. E. Enstrom, J. S. Escher, and B. F. Williams, “Photoelectron surface escape probability of (Ga, In)As:Cs-O in the 0.9 to ∼1.6  μm range,” J. Appl. Phys. 43, 3815–3823 (1972).
    [CrossRef]
  13. D. J. Bartelink, J. L. Moll, and N. L. Meyer, “Hot-electron emission from shallow p-n junction in silicon,” Phys. Rev. 130, 972–985 (1963).
    [CrossRef]
  14. B. F. Williams and R. E. Simon, “Direct measurement of hot electron-phonon interactions in GaP,” Phys. Rev. Lett. 18, 485–487 (1967).
    [CrossRef]
  15. A. Herrera-Gómez and W. E. Spicer, “Physics of high intensity nanosecond electron source,” Proc. SPIE 2022, 51–63(1993).
    [CrossRef]
  16. W. W. Lui and M. Fukuma, “Exact solution of the Schrodinger equation across an arbitrary one-dimension piecewise-linear potential barrier,” J. Appl. Phys. 60, 1555–1559(1986).
    [CrossRef]
  17. Z. Liu, F. Machuca, P. Pianetta, W. E. Spicer, and R. F. W. Pease, “Electron scattering study within the depletion region of the GaN (0001) and the GaAs (100) surface,” Appl. Phys. Lett. 85, 1541–1543 (2004).
    [CrossRef]
  18. W. E. Spicer and A. Herrera-Gómez, “Modern theory and application of photocathodes,” Proc. SPIE 2022, 18–33(1993).
    [CrossRef]

2010 (1)

2005 (1)

O. E. Tereshchenko, V. L. Alperovich, A. G. Zhuravlev, A. S. Terekhov, and D. Paget, “Cesium-induced surface conversion: From As-rich to Ga-rich GaAs(001) at reduced temperatures,” Phys. Rev. B 71, 1553151 (2005).
[CrossRef]

2004 (1)

Z. Liu, F. Machuca, P. Pianetta, W. E. Spicer, and R. F. W. Pease, “Electron scattering study within the depletion region of the GaN (0001) and the GaAs (100) surface,” Appl. Phys. Lett. 85, 1541–1543 (2004).
[CrossRef]

2003 (1)

C. Hogan, D. Paget, Y. Garreau, M. Sauvage, G. Onida, L. Reining, P. Chiaradia, and V. Corradini, “Early stages of cesium adsorption on the As-rich c(2×8) reconstruction of GaAs(001): adsorption sites and Cs-induced chemical bonds,” Phys. Rev. B 68, 2053131 (2003).
[CrossRef]

2000 (1)

G. V. Benemanskaya, D. V. Daineka, and G. E. Frank-Kamenetskaya, “Electronic properties of the Cs covered GaAs(100) Ga-rich surface,” Solid State Commun. 114, 285–289 (2000).
[CrossRef]

1996 (2)

G. Faraci, A. R. Pennisi, and G. Margaritondo, “Catalytic oxidation of the GaAs(110) surface promoted by a Cs overlayer,” Phys. Rev. B 53, 13851–13856 (1996).
[CrossRef]

G. Faraci, A. R. Pennisi, F. Gozzo, S. La Rosa, and G. Margaritondo, “Cs bonding at the Cs/GaAs(110) interface,” Phys. Rev. B 53, 3987–3992 (1996).
[CrossRef]

1993 (2)

W. E. Spicer and A. Herrera-Gómez, “Modern theory and application of photocathodes,” Proc. SPIE 2022, 18–33(1993).
[CrossRef]

A. Herrera-Gómez and W. E. Spicer, “Physics of high intensity nanosecond electron source,” Proc. SPIE 2022, 51–63(1993).
[CrossRef]

1991 (1)

M. Kamaratos and E. Bauer, “Interaction of Cs with the GaAs(100) surface,” J. Appl. Phys. 70, 7564–7572 (1991).
[CrossRef]

1986 (1)

W. W. Lui and M. Fukuma, “Exact solution of the Schrodinger equation across an arbitrary one-dimension piecewise-linear potential barrier,” J. Appl. Phys. 60, 1555–1559(1986).
[CrossRef]

1976 (1)

D. E. Aspnes, C. G. Olson, and D. W. Lynch, “Ordering and absolute energies of the L6c and X6c conduction band minima in GaAs,” Phys. Rev. Lett. 37, 766–769 (1976).
[CrossRef]

1973 (1)

J. S. Escher and H. Schade, “Calculated energy distributions of electrons emitted from negative electron affinity GaAs: Cs-O surfaces,” J. Appl. Phys. 44, 5309–5313(1973).
[CrossRef]

1972 (1)

D. G. Fisher, R. E. Enstrom, J. S. Escher, and B. F. Williams, “Photoelectron surface escape probability of (Ga, In)As:Cs-O in the 0.9 to ∼1.6  μm range,” J. Appl. Phys. 43, 3815–3823 (1972).
[CrossRef]

1969 (1)

L. W. James and J. L. Moll, “Transport properties of GaAs obtained from photoemission measurements,” Phys. Rev. 183, 740–753 (1969).
[CrossRef]

1967 (2)

R. C. Eden, J. L. Moll, and W. E. Spicer, “Experimental evidence for optical population of the X minima in GaAs,” Phys. Rev. Lett. 18, 597–599 (1967).
[CrossRef]

B. F. Williams and R. E. Simon, “Direct measurement of hot electron-phonon interactions in GaP,” Phys. Rev. Lett. 18, 485–487 (1967).
[CrossRef]

1963 (1)

D. J. Bartelink, J. L. Moll, and N. L. Meyer, “Hot-electron emission from shallow p-n junction in silicon,” Phys. Rev. 130, 972–985 (1963).
[CrossRef]

Alperovich, V. L.

O. E. Tereshchenko, V. L. Alperovich, A. G. Zhuravlev, A. S. Terekhov, and D. Paget, “Cesium-induced surface conversion: From As-rich to Ga-rich GaAs(001) at reduced temperatures,” Phys. Rev. B 71, 1553151 (2005).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes, C. G. Olson, and D. W. Lynch, “Ordering and absolute energies of the L6c and X6c conduction band minima in GaAs,” Phys. Rev. Lett. 37, 766–769 (1976).
[CrossRef]

Bartelink, D. J.

D. J. Bartelink, J. L. Moll, and N. L. Meyer, “Hot-electron emission from shallow p-n junction in silicon,” Phys. Rev. 130, 972–985 (1963).
[CrossRef]

Bauer, E.

M. Kamaratos and E. Bauer, “Interaction of Cs with the GaAs(100) surface,” J. Appl. Phys. 70, 7564–7572 (1991).
[CrossRef]

Benemanskaya, G. V.

G. V. Benemanskaya, D. V. Daineka, and G. E. Frank-Kamenetskaya, “Electronic properties of the Cs covered GaAs(100) Ga-rich surface,” Solid State Commun. 114, 285–289 (2000).
[CrossRef]

Chang, B. K.

Chiaradia, P.

C. Hogan, D. Paget, Y. Garreau, M. Sauvage, G. Onida, L. Reining, P. Chiaradia, and V. Corradini, “Early stages of cesium adsorption on the As-rich c(2×8) reconstruction of GaAs(001): adsorption sites and Cs-induced chemical bonds,” Phys. Rev. B 68, 2053131 (2003).
[CrossRef]

Corradini, V.

C. Hogan, D. Paget, Y. Garreau, M. Sauvage, G. Onida, L. Reining, P. Chiaradia, and V. Corradini, “Early stages of cesium adsorption on the As-rich c(2×8) reconstruction of GaAs(001): adsorption sites and Cs-induced chemical bonds,” Phys. Rev. B 68, 2053131 (2003).
[CrossRef]

Daineka, D. V.

G. V. Benemanskaya, D. V. Daineka, and G. E. Frank-Kamenetskaya, “Electronic properties of the Cs covered GaAs(100) Ga-rich surface,” Solid State Commun. 114, 285–289 (2000).
[CrossRef]

Eden, R. C.

R. C. Eden, J. L. Moll, and W. E. Spicer, “Experimental evidence for optical population of the X minima in GaAs,” Phys. Rev. Lett. 18, 597–599 (1967).
[CrossRef]

Enstrom, R. E.

D. G. Fisher, R. E. Enstrom, J. S. Escher, and B. F. Williams, “Photoelectron surface escape probability of (Ga, In)As:Cs-O in the 0.9 to ∼1.6  μm range,” J. Appl. Phys. 43, 3815–3823 (1972).
[CrossRef]

Escher, J. S.

J. S. Escher and H. Schade, “Calculated energy distributions of electrons emitted from negative electron affinity GaAs: Cs-O surfaces,” J. Appl. Phys. 44, 5309–5313(1973).
[CrossRef]

D. G. Fisher, R. E. Enstrom, J. S. Escher, and B. F. Williams, “Photoelectron surface escape probability of (Ga, In)As:Cs-O in the 0.9 to ∼1.6  μm range,” J. Appl. Phys. 43, 3815–3823 (1972).
[CrossRef]

Faraci, G.

G. Faraci, A. R. Pennisi, and G. Margaritondo, “Catalytic oxidation of the GaAs(110) surface promoted by a Cs overlayer,” Phys. Rev. B 53, 13851–13856 (1996).
[CrossRef]

G. Faraci, A. R. Pennisi, F. Gozzo, S. La Rosa, and G. Margaritondo, “Cs bonding at the Cs/GaAs(110) interface,” Phys. Rev. B 53, 3987–3992 (1996).
[CrossRef]

Fisher, D. G.

D. G. Fisher, R. E. Enstrom, J. S. Escher, and B. F. Williams, “Photoelectron surface escape probability of (Ga, In)As:Cs-O in the 0.9 to ∼1.6  μm range,” J. Appl. Phys. 43, 3815–3823 (1972).
[CrossRef]

Frank-Kamenetskaya, G. E.

G. V. Benemanskaya, D. V. Daineka, and G. E. Frank-Kamenetskaya, “Electronic properties of the Cs covered GaAs(100) Ga-rich surface,” Solid State Commun. 114, 285–289 (2000).
[CrossRef]

Fukuma, M.

W. W. Lui and M. Fukuma, “Exact solution of the Schrodinger equation across an arbitrary one-dimension piecewise-linear potential barrier,” J. Appl. Phys. 60, 1555–1559(1986).
[CrossRef]

Garreau, Y.

C. Hogan, D. Paget, Y. Garreau, M. Sauvage, G. Onida, L. Reining, P. Chiaradia, and V. Corradini, “Early stages of cesium adsorption on the As-rich c(2×8) reconstruction of GaAs(001): adsorption sites and Cs-induced chemical bonds,” Phys. Rev. B 68, 2053131 (2003).
[CrossRef]

Gozzo, F.

G. Faraci, A. R. Pennisi, F. Gozzo, S. La Rosa, and G. Margaritondo, “Cs bonding at the Cs/GaAs(110) interface,” Phys. Rev. B 53, 3987–3992 (1996).
[CrossRef]

Herrera-Gómez, A.

W. E. Spicer and A. Herrera-Gómez, “Modern theory and application of photocathodes,” Proc. SPIE 2022, 18–33(1993).
[CrossRef]

A. Herrera-Gómez and W. E. Spicer, “Physics of high intensity nanosecond electron source,” Proc. SPIE 2022, 51–63(1993).
[CrossRef]

Hogan, C.

C. Hogan, D. Paget, Y. Garreau, M. Sauvage, G. Onida, L. Reining, P. Chiaradia, and V. Corradini, “Early stages of cesium adsorption on the As-rich c(2×8) reconstruction of GaAs(001): adsorption sites and Cs-induced chemical bonds,” Phys. Rev. B 68, 2053131 (2003).
[CrossRef]

James, L. W.

L. W. James and J. L. Moll, “Transport properties of GaAs obtained from photoemission measurements,” Phys. Rev. 183, 740–753 (1969).
[CrossRef]

Kamaratos, M.

M. Kamaratos and E. Bauer, “Interaction of Cs with the GaAs(100) surface,” J. Appl. Phys. 70, 7564–7572 (1991).
[CrossRef]

La Rosa, S.

G. Faraci, A. R. Pennisi, F. Gozzo, S. La Rosa, and G. Margaritondo, “Cs bonding at the Cs/GaAs(110) interface,” Phys. Rev. B 53, 3987–3992 (1996).
[CrossRef]

Liu, Z.

Z. Liu, F. Machuca, P. Pianetta, W. E. Spicer, and R. F. W. Pease, “Electron scattering study within the depletion region of the GaN (0001) and the GaAs (100) surface,” Appl. Phys. Lett. 85, 1541–1543 (2004).
[CrossRef]

Lui, W. W.

W. W. Lui and M. Fukuma, “Exact solution of the Schrodinger equation across an arbitrary one-dimension piecewise-linear potential barrier,” J. Appl. Phys. 60, 1555–1559(1986).
[CrossRef]

Lynch, D. W.

D. E. Aspnes, C. G. Olson, and D. W. Lynch, “Ordering and absolute energies of the L6c and X6c conduction band minima in GaAs,” Phys. Rev. Lett. 37, 766–769 (1976).
[CrossRef]

Machuca, F.

Z. Liu, F. Machuca, P. Pianetta, W. E. Spicer, and R. F. W. Pease, “Electron scattering study within the depletion region of the GaN (0001) and the GaAs (100) surface,” Appl. Phys. Lett. 85, 1541–1543 (2004).
[CrossRef]

Margaritondo, G.

G. Faraci, A. R. Pennisi, F. Gozzo, S. La Rosa, and G. Margaritondo, “Cs bonding at the Cs/GaAs(110) interface,” Phys. Rev. B 53, 3987–3992 (1996).
[CrossRef]

G. Faraci, A. R. Pennisi, and G. Margaritondo, “Catalytic oxidation of the GaAs(110) surface promoted by a Cs overlayer,” Phys. Rev. B 53, 13851–13856 (1996).
[CrossRef]

Meyer, N. L.

D. J. Bartelink, J. L. Moll, and N. L. Meyer, “Hot-electron emission from shallow p-n junction in silicon,” Phys. Rev. 130, 972–985 (1963).
[CrossRef]

Moll, J. L.

L. W. James and J. L. Moll, “Transport properties of GaAs obtained from photoemission measurements,” Phys. Rev. 183, 740–753 (1969).
[CrossRef]

R. C. Eden, J. L. Moll, and W. E. Spicer, “Experimental evidence for optical population of the X minima in GaAs,” Phys. Rev. Lett. 18, 597–599 (1967).
[CrossRef]

D. J. Bartelink, J. L. Moll, and N. L. Meyer, “Hot-electron emission from shallow p-n junction in silicon,” Phys. Rev. 130, 972–985 (1963).
[CrossRef]

Olson, C. G.

D. E. Aspnes, C. G. Olson, and D. W. Lynch, “Ordering and absolute energies of the L6c and X6c conduction band minima in GaAs,” Phys. Rev. Lett. 37, 766–769 (1976).
[CrossRef]

Onida, G.

C. Hogan, D. Paget, Y. Garreau, M. Sauvage, G. Onida, L. Reining, P. Chiaradia, and V. Corradini, “Early stages of cesium adsorption on the As-rich c(2×8) reconstruction of GaAs(001): adsorption sites and Cs-induced chemical bonds,” Phys. Rev. B 68, 2053131 (2003).
[CrossRef]

Paget, D.

O. E. Tereshchenko, V. L. Alperovich, A. G. Zhuravlev, A. S. Terekhov, and D. Paget, “Cesium-induced surface conversion: From As-rich to Ga-rich GaAs(001) at reduced temperatures,” Phys. Rev. B 71, 1553151 (2005).
[CrossRef]

C. Hogan, D. Paget, Y. Garreau, M. Sauvage, G. Onida, L. Reining, P. Chiaradia, and V. Corradini, “Early stages of cesium adsorption on the As-rich c(2×8) reconstruction of GaAs(001): adsorption sites and Cs-induced chemical bonds,” Phys. Rev. B 68, 2053131 (2003).
[CrossRef]

Pease, R. F. W.

Z. Liu, F. Machuca, P. Pianetta, W. E. Spicer, and R. F. W. Pease, “Electron scattering study within the depletion region of the GaN (0001) and the GaAs (100) surface,” Appl. Phys. Lett. 85, 1541–1543 (2004).
[CrossRef]

Pennisi, A. R.

G. Faraci, A. R. Pennisi, F. Gozzo, S. La Rosa, and G. Margaritondo, “Cs bonding at the Cs/GaAs(110) interface,” Phys. Rev. B 53, 3987–3992 (1996).
[CrossRef]

G. Faraci, A. R. Pennisi, and G. Margaritondo, “Catalytic oxidation of the GaAs(110) surface promoted by a Cs overlayer,” Phys. Rev. B 53, 13851–13856 (1996).
[CrossRef]

Pianetta, P.

Z. Liu, F. Machuca, P. Pianetta, W. E. Spicer, and R. F. W. Pease, “Electron scattering study within the depletion region of the GaN (0001) and the GaAs (100) surface,” Appl. Phys. Lett. 85, 1541–1543 (2004).
[CrossRef]

Reining, L.

C. Hogan, D. Paget, Y. Garreau, M. Sauvage, G. Onida, L. Reining, P. Chiaradia, and V. Corradini, “Early stages of cesium adsorption on the As-rich c(2×8) reconstruction of GaAs(001): adsorption sites and Cs-induced chemical bonds,” Phys. Rev. B 68, 2053131 (2003).
[CrossRef]

Sauvage, M.

C. Hogan, D. Paget, Y. Garreau, M. Sauvage, G. Onida, L. Reining, P. Chiaradia, and V. Corradini, “Early stages of cesium adsorption on the As-rich c(2×8) reconstruction of GaAs(001): adsorption sites and Cs-induced chemical bonds,” Phys. Rev. B 68, 2053131 (2003).
[CrossRef]

Schade, H.

J. S. Escher and H. Schade, “Calculated energy distributions of electrons emitted from negative electron affinity GaAs: Cs-O surfaces,” J. Appl. Phys. 44, 5309–5313(1973).
[CrossRef]

Simon, R. E.

B. F. Williams and R. E. Simon, “Direct measurement of hot electron-phonon interactions in GaP,” Phys. Rev. Lett. 18, 485–487 (1967).
[CrossRef]

Spicer, W. E.

Z. Liu, F. Machuca, P. Pianetta, W. E. Spicer, and R. F. W. Pease, “Electron scattering study within the depletion region of the GaN (0001) and the GaAs (100) surface,” Appl. Phys. Lett. 85, 1541–1543 (2004).
[CrossRef]

W. E. Spicer and A. Herrera-Gómez, “Modern theory and application of photocathodes,” Proc. SPIE 2022, 18–33(1993).
[CrossRef]

A. Herrera-Gómez and W. E. Spicer, “Physics of high intensity nanosecond electron source,” Proc. SPIE 2022, 51–63(1993).
[CrossRef]

R. C. Eden, J. L. Moll, and W. E. Spicer, “Experimental evidence for optical population of the X minima in GaAs,” Phys. Rev. Lett. 18, 597–599 (1967).
[CrossRef]

Terekhov, A. S.

O. E. Tereshchenko, V. L. Alperovich, A. G. Zhuravlev, A. S. Terekhov, and D. Paget, “Cesium-induced surface conversion: From As-rich to Ga-rich GaAs(001) at reduced temperatures,” Phys. Rev. B 71, 1553151 (2005).
[CrossRef]

Tereshchenko, O. E.

O. E. Tereshchenko, V. L. Alperovich, A. G. Zhuravlev, A. S. Terekhov, and D. Paget, “Cesium-induced surface conversion: From As-rich to Ga-rich GaAs(001) at reduced temperatures,” Phys. Rev. B 71, 1553151 (2005).
[CrossRef]

Williams, B. F.

D. G. Fisher, R. E. Enstrom, J. S. Escher, and B. F. Williams, “Photoelectron surface escape probability of (Ga, In)As:Cs-O in the 0.9 to ∼1.6  μm range,” J. Appl. Phys. 43, 3815–3823 (1972).
[CrossRef]

B. F. Williams and R. E. Simon, “Direct measurement of hot electron-phonon interactions in GaP,” Phys. Rev. Lett. 18, 485–487 (1967).
[CrossRef]

Yang, Z.

Zhang, Y. J.

Zhuravlev, A. G.

O. E. Tereshchenko, V. L. Alperovich, A. G. Zhuravlev, A. S. Terekhov, and D. Paget, “Cesium-induced surface conversion: From As-rich to Ga-rich GaAs(001) at reduced temperatures,” Phys. Rev. B 71, 1553151 (2005).
[CrossRef]

Zou, J. J.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Z. Liu, F. Machuca, P. Pianetta, W. E. Spicer, and R. F. W. Pease, “Electron scattering study within the depletion region of the GaN (0001) and the GaAs (100) surface,” Appl. Phys. Lett. 85, 1541–1543 (2004).
[CrossRef]

J. Appl. Phys. (4)

M. Kamaratos and E. Bauer, “Interaction of Cs with the GaAs(100) surface,” J. Appl. Phys. 70, 7564–7572 (1991).
[CrossRef]

W. W. Lui and M. Fukuma, “Exact solution of the Schrodinger equation across an arbitrary one-dimension piecewise-linear potential barrier,” J. Appl. Phys. 60, 1555–1559(1986).
[CrossRef]

J. S. Escher and H. Schade, “Calculated energy distributions of electrons emitted from negative electron affinity GaAs: Cs-O surfaces,” J. Appl. Phys. 44, 5309–5313(1973).
[CrossRef]

D. G. Fisher, R. E. Enstrom, J. S. Escher, and B. F. Williams, “Photoelectron surface escape probability of (Ga, In)As:Cs-O in the 0.9 to ∼1.6  μm range,” J. Appl. Phys. 43, 3815–3823 (1972).
[CrossRef]

Phys. Rev. (2)

D. J. Bartelink, J. L. Moll, and N. L. Meyer, “Hot-electron emission from shallow p-n junction in silicon,” Phys. Rev. 130, 972–985 (1963).
[CrossRef]

L. W. James and J. L. Moll, “Transport properties of GaAs obtained from photoemission measurements,” Phys. Rev. 183, 740–753 (1969).
[CrossRef]

Phys. Rev. B (4)

G. Faraci, A. R. Pennisi, F. Gozzo, S. La Rosa, and G. Margaritondo, “Cs bonding at the Cs/GaAs(110) interface,” Phys. Rev. B 53, 3987–3992 (1996).
[CrossRef]

O. E. Tereshchenko, V. L. Alperovich, A. G. Zhuravlev, A. S. Terekhov, and D. Paget, “Cesium-induced surface conversion: From As-rich to Ga-rich GaAs(001) at reduced temperatures,” Phys. Rev. B 71, 1553151 (2005).
[CrossRef]

C. Hogan, D. Paget, Y. Garreau, M. Sauvage, G. Onida, L. Reining, P. Chiaradia, and V. Corradini, “Early stages of cesium adsorption on the As-rich c(2×8) reconstruction of GaAs(001): adsorption sites and Cs-induced chemical bonds,” Phys. Rev. B 68, 2053131 (2003).
[CrossRef]

G. Faraci, A. R. Pennisi, and G. Margaritondo, “Catalytic oxidation of the GaAs(110) surface promoted by a Cs overlayer,” Phys. Rev. B 53, 13851–13856 (1996).
[CrossRef]

Phys. Rev. Lett. (3)

B. F. Williams and R. E. Simon, “Direct measurement of hot electron-phonon interactions in GaP,” Phys. Rev. Lett. 18, 485–487 (1967).
[CrossRef]

R. C. Eden, J. L. Moll, and W. E. Spicer, “Experimental evidence for optical population of the X minima in GaAs,” Phys. Rev. Lett. 18, 597–599 (1967).
[CrossRef]

D. E. Aspnes, C. G. Olson, and D. W. Lynch, “Ordering and absolute energies of the L6c and X6c conduction band minima in GaAs,” Phys. Rev. Lett. 37, 766–769 (1976).
[CrossRef]

Proc. SPIE (2)

W. E. Spicer and A. Herrera-Gómez, “Modern theory and application of photocathodes,” Proc. SPIE 2022, 18–33(1993).
[CrossRef]

A. Herrera-Gómez and W. E. Spicer, “Physics of high intensity nanosecond electron source,” Proc. SPIE 2022, 51–63(1993).
[CrossRef]

Solid State Commun. (1)

G. V. Benemanskaya, D. V. Daineka, and G. E. Frank-Kamenetskaya, “Electronic properties of the Cs covered GaAs(100) Ga-rich surface,” Solid State Commun. 114, 285–289 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Band structure and electron diffusion for a typical reflection-mode GaAs–Cs photocathode. Ec is the conduction band minimum, Ev is the valence band peak level, Eg is the width of the bandgap, EF is the Fermi level, δs is the height of the surface band-bending, and d is the width of the surface band-bending.

Fig. 2.
Fig. 2.

Energy distributions for electrons reaching the cathode surface for incident photon energies between 1.6 and 3.0 eV. E is the electron energy and n(E) is the electron energy distribution. Hot electrons were not considered in the calculations. The distributions have been normalized to quantum yield.

Fig. 3.
Fig. 3.

Band structure and surface barrier for a typical reflection-mode GaAs–Cs photocathode. V1 is the start height of the barrier, V2 is the end height of the barrier (the vacuum level), and b is the thickness of the barrier.

Fig. 4.
Fig. 4.

Energy distributions for photoemitted electrons for incident photon energies between 1.6 and 3.0 eV. Let b=2Å, V2=1.2eV, LΓ=0.5μm, and LL=0.05μm. The distributions have been normalized to quantum yield.

Fig. 5.
Fig. 5.

Electron energy distributions of a GaAs–Cs cathode for electron diffusion lengths for the Γ minimum between 0.1 and 2.0 μm. Let hv=2.2eV, V2=1.2eV, b=2Å, and LL=0.05μm.

Fig. 6.
Fig. 6.

Electron energy distributions of a GaAs–Cs cathode for electron diffusion lengths for the L minimum between 30 and 60 nm. Let hv=2.2eV, V2=1.2eV, b=2Å, and LΓ=0.05μm.

Fig. 7.
Fig. 7.

Electron energy distributions of a GaAs–Cs cathode for barrier thickness b between 1 and 4 Å. Let hv=2.2eV, V2=1.2eV, LΓ=0.5μm, and LL=0.05μm.

Fig. 8.
Fig. 8.

Electron energy distributions of a GaAs–Cs cathode for vacuum level V2 between 1.1 and 1.4 eV. Let hv=2.2eV, b=2Å, LΓ=0.5μm, and LL=0.05μm.

Fig. 9.
Fig. 9.

Experimental (dashed curves, after [8]) and theoretical (solid curves) electron energy distributions for a GaAs–Cs cathode. Let V1=4.9eV, T=300K, and nA=1×1019/cm3.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

DΓd2nΓ(x)dx2nΓ(x)τΓV+nL(x)τLΓ+αI0(1R)FΓexp(αx)=0,
DLd2nL(x)dx2nL(x)τLΓ+αI0(1R)FLexp(αx)=0.
nL(x)=αI0(1R)FLτLΓ1α2LL2·[exp(αx)exp(xLL)],
nΓ(x)=αI0(1R)τΓ1α2LΓ2·(FL1α2LL2+FΓ)·[exp(αx)exp(xLΓ)]+αI0(1R)τΓ1LΓ2LL2·FL1α2LL2·[exp(xLΓ)exp(xLL)],
YL(hν)=PLFL(1R)1+1/αLL,
YΓ(hν)=PΓ(1R)1+1/αLΓ·[FΓ+FLLΓαLL(LΓ+LL)(1+1/αLL)],
V(x)=F1(xb1),
d2ψ1(x)d2x2m2[V(x)E]ψ1(x)=0.
ψ1(x)=C1+Ai(z1)+C1Bi(z1),
ψ0(x)=C0+exp[ik0(xa1)]+C0exp[ik0(xa1)]forx<a1,
ψ2(x)=C2+exp[ik2(xa2)]+C2exp[ik2(xa2)]forx>a2,
ψ1(x)|x=a2=ψ2(x)|x=a2,
dψ1(x)dx|x=a2=dψ2(x)dx|x=a2.
[C0+C0]=[M11M12M21M22][C2+C2]=12[1ik01ik0][Ai(r1(a1c1))Bi(r1(a1c1))r1Ai(r1(a1c1))r1Bi(r1(a1c1))]×[Ai(r1(a2c1))Bi(r1(a2c1))r1Ai(r1(a2c1))r1Bi(r1(a2c1))]1[11ik2ik2][C2+C2],
[C0+C0]=[M11M12M21M22][C2+0].
T(E)=k2k0|1M11|2.
P(E)=k2k0|1M11|2.
nv(E)=n(E)P(E).

Metrics