Abstract

By calculating the energy distributions of electrons reaching the photocathode surface and solving the Schrödinger equation for an electron tunneling through the surface potential barrier, we have obtained an equation to calculate the energy distributions of electrons emitted from reflection-mode Cs-covered GaAs photocathodes based on a two-minima diffusion model. According to the equation, we studied the effects of incident photon energies, diffusion lengths, and surface potential barrier on the electron energy distributions. The equation was also used to fit the measured electron energy distribution curves and the cathode performance parameters were obtained from the fitting. The Γ and L peaks in the theoretical curves are in agreement with the peaks in the experimental curves. The fitted barrier thickness 1.7 Å exactly reflects the GaAs-Cs dipole layer thickness.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription