Abstract

This paper describes an optical fiber based system that has been developed for the monitoring of carbon dioxide emissions in situ within engines above 500 kW. Conventional sensors, reviewed here, fail to meet monitoring requirements, such as lifespan, accuracy, and robustness. This paper describes a sensor designed as a single point reflective probe configuration using low cost, compact mid-infrared optical components, making it suitable for insertion in large-scale engines including automotive tailpipes. The response of the sensor to carbon dioxide supplied from a cylinder in the laboratory environment is presented, as well as a number of experimental results taken in situ in an exhaust of an automotive diesel engine (smaller than 500 kW). The sensor is shown to have a long term stable operation over a wide range of concentrations (2%–15% CO2) with a lower detection limit smaller than the lowest value encountered in modern day engines.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hansen, “A slippery slope: How much global warming constitutes ‘dangerous anthropogenic interference’?” Clim. Change 68, 269–279 (2005).
    [CrossRef]
  2. G. Marland, T. A. Boden, and R. J. Andres, “2006: Global, regional, and national fossil fuel CO2 emissions,” in Trends: A Compendium of Data on Global Change (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, 2006).
  3. Maritime Knowledge Center, “Air pollution and greenhouse gas (GHG) emissions from international shipping,” (International Maritime Organization, London, UK).
  4. “Objectives of the agreements concluded with the automobile industry,” European Commission website page, http://ec.europa.eu/environment/co2/co2_agreements.htm .
  5. “Kyoto protocol to the United Nations framework convention on climate change,” UNFCC website page, http://unfccc.int/resource/docs/convkp/kpeng.html .
  6. P. A. Vesilind, Environmental Pollution and Control, 3rd ed. (Butterworth-Heinemann, 1990).
  7. V. A. W. Hillier, Fundamentals of Automotive Electronics, 2nd ed. (Stanley Thornes, 1996).
  8. Continental UNINOx Sensor datasheet, http://sukorun.en.alibaba.com/product/464481498-200523631/Continental_5WK9_6614I_UNINOx_Sensor.html .
  9. W. Gopel, “Chemisorption and charge transfer at ionic semiconductor surfaces: implications in designing gas sensors,” Prog. Surf. Sci. 20, 9–103 (1985).
    [CrossRef]
  10. N. Yamazoe, “New approaches for improving semiconductor gas sensors,” Sens. Actuators B 5, 7–19 (1991).
    [CrossRef]
  11. H. Dueker, K. H. Friese, and W. D. Haecker, “Ceramic aspects of the Bosch lambda-sensor,” SAE 750223 (Society of Automotive Engineers, 1975).
  12. S. R. Morrison, “Selectivity in semiconductor gas sensors,” Sens. Actuators 12, 425–440 (1987).
    [CrossRef]
  13. Z. Zhan, D. Jiang, and J. Xu, “Investigation of a new In2O3-based selective H2 gas sensor with low power consumption,” Mater. Chem. Phys. 90, 250–254 (2005).
    [CrossRef]
  14. T. Ishihara, K. Kometani, Y. Mizuhara, and Y. Takita, “Application of a mixed oxide capacitor to the selective carbon dioxide sensor,” J. Electrochem. Soc. 139, 2881–2885 (1992).
    [CrossRef]
  15. J. Tamaki, M. Akiyama, C. Xu, N. Miura, and N. Yamazoe, “Conductivity change of SnO2 with CO2 adsorption,” Chem. Lett. 19, 1243 (1990).
    [CrossRef]
  16. Y. J. Lee, H. B. Kim, Y. R. Roh, H. M. Cho, and S. Baik, “Development of a saw gas sensor for monitoring SO2 gas,” Sens. Actuators A 64, 173–178 (1998).
    [CrossRef]
  17. E. Lewis, “Overview of the OPTO-EMI-SENSE project: optical fiber sensor network for automotive emission monitoring,” in Lecture Notes on Electrical Engineering: Sensors (Springer, 2008), Vol. 21, pp. 179–196.
  18. H. Jung, H. Choi, J. Kim, and F. W. Schwartz, “Laboratory-scale application of optic transflection dip probe (FOTDP) for in situ monitoring of gas phase ozone in unsaturated porous media,” J. Contam. Hydrol. 82, 133–144 (2006).
    [CrossRef]
  19. Chalcogenide Mid-IR optical fiber, Art Photonics website page, http://www.artphotonics.de .
  20. LME 335 detector data page, Infratec website page, http://www.infratec.de/fileadmin/media/Sensorik/pdf/LME-335.pdf .
  21. NL5LNC filament emitter data page, Ion-Optics website page, http://www.ion-optics.com/downloads/Datasheets/IRSources.pdf .
  22. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, and D. P. Edwards, The Hitran Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation) (1996), pp. 665–710, www.hitran.com .
  23. J. Mulrooney, J. Clifford, C. Fitzpatrick, and E. Lewis, “Detection of carbon dioxide emissions from a diesel engine using a mid-infrared optical fiber based sensor,” Sens. Actuators A 136, 104–110 (2007).
    [CrossRef]
  24. J. Mulrooney, J. Clifford, C. Fitzpatrick, P. Chambers, and E. Lewis, “Monitoring of carbon dioxide exhaust emissions using mid-infrared spectroscopy,” J. Opt. A 9, S87–S91 (2007).
    [CrossRef]
  25. Advance optima (AO2000 series) continuous gas analyzer datasheet, ABB website page, http://www.abb.com/product/seitp330/c1256dde004b6b1dc1256df1005210eb.aspx?productLanguage=us&country=IE .
  26. P. Fernando and G. Ernesto, “A study by ultraviolet spectroscopy on the self-association of diazines in aqueous solution,” Spectrochim. Acta Part A 59, 1223–1237 (2003).
    [CrossRef]
  27. J. Mulrooney, J. Clifford, C. Fitzpatrick, P. Chambers, and E. Lewis, “A mid-infrared optical fiber sensor for the detection of carbon monoxide exhaust emissions,” Sens. Actuators A 144, 13–17 (2008).
    [CrossRef]
  28. Fiat Croma 1.9 Emotion Aut., ADAC Autotest website page, http://www.adac.de/_ext/itr/tests/Autotest/AT1527_Fiat_Croma_19_JTD_Multijet_16V_Emotion_Automatik_RPF/Fiat_Croma_19_JTD_Multijet_16V_Emotion_Automatik_RPF .
  29. Emission test cycles, Dieselnet website page, http://www.dieselnet.com/standards/cycles/ece_eudc.html .

2008 (1)

J. Mulrooney, J. Clifford, C. Fitzpatrick, P. Chambers, and E. Lewis, “A mid-infrared optical fiber sensor for the detection of carbon monoxide exhaust emissions,” Sens. Actuators A 144, 13–17 (2008).
[CrossRef]

2007 (2)

J. Mulrooney, J. Clifford, C. Fitzpatrick, and E. Lewis, “Detection of carbon dioxide emissions from a diesel engine using a mid-infrared optical fiber based sensor,” Sens. Actuators A 136, 104–110 (2007).
[CrossRef]

J. Mulrooney, J. Clifford, C. Fitzpatrick, P. Chambers, and E. Lewis, “Monitoring of carbon dioxide exhaust emissions using mid-infrared spectroscopy,” J. Opt. A 9, S87–S91 (2007).
[CrossRef]

2006 (1)

H. Jung, H. Choi, J. Kim, and F. W. Schwartz, “Laboratory-scale application of optic transflection dip probe (FOTDP) for in situ monitoring of gas phase ozone in unsaturated porous media,” J. Contam. Hydrol. 82, 133–144 (2006).
[CrossRef]

2005 (2)

Z. Zhan, D. Jiang, and J. Xu, “Investigation of a new In2O3-based selective H2 gas sensor with low power consumption,” Mater. Chem. Phys. 90, 250–254 (2005).
[CrossRef]

J. Hansen, “A slippery slope: How much global warming constitutes ‘dangerous anthropogenic interference’?” Clim. Change 68, 269–279 (2005).
[CrossRef]

2003 (1)

P. Fernando and G. Ernesto, “A study by ultraviolet spectroscopy on the self-association of diazines in aqueous solution,” Spectrochim. Acta Part A 59, 1223–1237 (2003).
[CrossRef]

1998 (1)

Y. J. Lee, H. B. Kim, Y. R. Roh, H. M. Cho, and S. Baik, “Development of a saw gas sensor for monitoring SO2 gas,” Sens. Actuators A 64, 173–178 (1998).
[CrossRef]

1992 (1)

T. Ishihara, K. Kometani, Y. Mizuhara, and Y. Takita, “Application of a mixed oxide capacitor to the selective carbon dioxide sensor,” J. Electrochem. Soc. 139, 2881–2885 (1992).
[CrossRef]

1991 (1)

N. Yamazoe, “New approaches for improving semiconductor gas sensors,” Sens. Actuators B 5, 7–19 (1991).
[CrossRef]

1990 (1)

J. Tamaki, M. Akiyama, C. Xu, N. Miura, and N. Yamazoe, “Conductivity change of SnO2 with CO2 adsorption,” Chem. Lett. 19, 1243 (1990).
[CrossRef]

1987 (1)

S. R. Morrison, “Selectivity in semiconductor gas sensors,” Sens. Actuators 12, 425–440 (1987).
[CrossRef]

1985 (1)

W. Gopel, “Chemisorption and charge transfer at ionic semiconductor surfaces: implications in designing gas sensors,” Prog. Surf. Sci. 20, 9–103 (1985).
[CrossRef]

Akiyama, M.

J. Tamaki, M. Akiyama, C. Xu, N. Miura, and N. Yamazoe, “Conductivity change of SnO2 with CO2 adsorption,” Chem. Lett. 19, 1243 (1990).
[CrossRef]

Andres, R. J.

G. Marland, T. A. Boden, and R. J. Andres, “2006: Global, regional, and national fossil fuel CO2 emissions,” in Trends: A Compendium of Data on Global Change (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, 2006).

Baik, S.

Y. J. Lee, H. B. Kim, Y. R. Roh, H. M. Cho, and S. Baik, “Development of a saw gas sensor for monitoring SO2 gas,” Sens. Actuators A 64, 173–178 (1998).
[CrossRef]

Boden, T. A.

G. Marland, T. A. Boden, and R. J. Andres, “2006: Global, regional, and national fossil fuel CO2 emissions,” in Trends: A Compendium of Data on Global Change (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, 2006).

Chambers, P.

J. Mulrooney, J. Clifford, C. Fitzpatrick, P. Chambers, and E. Lewis, “A mid-infrared optical fiber sensor for the detection of carbon monoxide exhaust emissions,” Sens. Actuators A 144, 13–17 (2008).
[CrossRef]

J. Mulrooney, J. Clifford, C. Fitzpatrick, P. Chambers, and E. Lewis, “Monitoring of carbon dioxide exhaust emissions using mid-infrared spectroscopy,” J. Opt. A 9, S87–S91 (2007).
[CrossRef]

Cho, H. M.

Y. J. Lee, H. B. Kim, Y. R. Roh, H. M. Cho, and S. Baik, “Development of a saw gas sensor for monitoring SO2 gas,” Sens. Actuators A 64, 173–178 (1998).
[CrossRef]

Choi, H.

H. Jung, H. Choi, J. Kim, and F. W. Schwartz, “Laboratory-scale application of optic transflection dip probe (FOTDP) for in situ monitoring of gas phase ozone in unsaturated porous media,” J. Contam. Hydrol. 82, 133–144 (2006).
[CrossRef]

Clifford, J.

J. Mulrooney, J. Clifford, C. Fitzpatrick, P. Chambers, and E. Lewis, “A mid-infrared optical fiber sensor for the detection of carbon monoxide exhaust emissions,” Sens. Actuators A 144, 13–17 (2008).
[CrossRef]

J. Mulrooney, J. Clifford, C. Fitzpatrick, P. Chambers, and E. Lewis, “Monitoring of carbon dioxide exhaust emissions using mid-infrared spectroscopy,” J. Opt. A 9, S87–S91 (2007).
[CrossRef]

J. Mulrooney, J. Clifford, C. Fitzpatrick, and E. Lewis, “Detection of carbon dioxide emissions from a diesel engine using a mid-infrared optical fiber based sensor,” Sens. Actuators A 136, 104–110 (2007).
[CrossRef]

Dueker, H.

H. Dueker, K. H. Friese, and W. D. Haecker, “Ceramic aspects of the Bosch lambda-sensor,” SAE 750223 (Society of Automotive Engineers, 1975).

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, and D. P. Edwards, The Hitran Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation) (1996), pp. 665–710, www.hitran.com .

Ernesto, G.

P. Fernando and G. Ernesto, “A study by ultraviolet spectroscopy on the self-association of diazines in aqueous solution,” Spectrochim. Acta Part A 59, 1223–1237 (2003).
[CrossRef]

Fernando, P.

P. Fernando and G. Ernesto, “A study by ultraviolet spectroscopy on the self-association of diazines in aqueous solution,” Spectrochim. Acta Part A 59, 1223–1237 (2003).
[CrossRef]

Fitzpatrick, C.

J. Mulrooney, J. Clifford, C. Fitzpatrick, P. Chambers, and E. Lewis, “A mid-infrared optical fiber sensor for the detection of carbon monoxide exhaust emissions,” Sens. Actuators A 144, 13–17 (2008).
[CrossRef]

J. Mulrooney, J. Clifford, C. Fitzpatrick, and E. Lewis, “Detection of carbon dioxide emissions from a diesel engine using a mid-infrared optical fiber based sensor,” Sens. Actuators A 136, 104–110 (2007).
[CrossRef]

J. Mulrooney, J. Clifford, C. Fitzpatrick, P. Chambers, and E. Lewis, “Monitoring of carbon dioxide exhaust emissions using mid-infrared spectroscopy,” J. Opt. A 9, S87–S91 (2007).
[CrossRef]

Friese, K. H.

H. Dueker, K. H. Friese, and W. D. Haecker, “Ceramic aspects of the Bosch lambda-sensor,” SAE 750223 (Society of Automotive Engineers, 1975).

Goldman, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, and D. P. Edwards, The Hitran Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation) (1996), pp. 665–710, www.hitran.com .

Gopel, W.

W. Gopel, “Chemisorption and charge transfer at ionic semiconductor surfaces: implications in designing gas sensors,” Prog. Surf. Sci. 20, 9–103 (1985).
[CrossRef]

Haecker, W. D.

H. Dueker, K. H. Friese, and W. D. Haecker, “Ceramic aspects of the Bosch lambda-sensor,” SAE 750223 (Society of Automotive Engineers, 1975).

Hansen, J.

J. Hansen, “A slippery slope: How much global warming constitutes ‘dangerous anthropogenic interference’?” Clim. Change 68, 269–279 (2005).
[CrossRef]

Hillier, V. A. W.

V. A. W. Hillier, Fundamentals of Automotive Electronics, 2nd ed. (Stanley Thornes, 1996).

Ishihara, T.

T. Ishihara, K. Kometani, Y. Mizuhara, and Y. Takita, “Application of a mixed oxide capacitor to the selective carbon dioxide sensor,” J. Electrochem. Soc. 139, 2881–2885 (1992).
[CrossRef]

Jiang, D.

Z. Zhan, D. Jiang, and J. Xu, “Investigation of a new In2O3-based selective H2 gas sensor with low power consumption,” Mater. Chem. Phys. 90, 250–254 (2005).
[CrossRef]

Jung, H.

H. Jung, H. Choi, J. Kim, and F. W. Schwartz, “Laboratory-scale application of optic transflection dip probe (FOTDP) for in situ monitoring of gas phase ozone in unsaturated porous media,” J. Contam. Hydrol. 82, 133–144 (2006).
[CrossRef]

Kim, H. B.

Y. J. Lee, H. B. Kim, Y. R. Roh, H. M. Cho, and S. Baik, “Development of a saw gas sensor for monitoring SO2 gas,” Sens. Actuators A 64, 173–178 (1998).
[CrossRef]

Kim, J.

H. Jung, H. Choi, J. Kim, and F. W. Schwartz, “Laboratory-scale application of optic transflection dip probe (FOTDP) for in situ monitoring of gas phase ozone in unsaturated porous media,” J. Contam. Hydrol. 82, 133–144 (2006).
[CrossRef]

Kometani, K.

T. Ishihara, K. Kometani, Y. Mizuhara, and Y. Takita, “Application of a mixed oxide capacitor to the selective carbon dioxide sensor,” J. Electrochem. Soc. 139, 2881–2885 (1992).
[CrossRef]

Lee, Y. J.

Y. J. Lee, H. B. Kim, Y. R. Roh, H. M. Cho, and S. Baik, “Development of a saw gas sensor for monitoring SO2 gas,” Sens. Actuators A 64, 173–178 (1998).
[CrossRef]

Lewis, E.

J. Mulrooney, J. Clifford, C. Fitzpatrick, P. Chambers, and E. Lewis, “A mid-infrared optical fiber sensor for the detection of carbon monoxide exhaust emissions,” Sens. Actuators A 144, 13–17 (2008).
[CrossRef]

J. Mulrooney, J. Clifford, C. Fitzpatrick, P. Chambers, and E. Lewis, “Monitoring of carbon dioxide exhaust emissions using mid-infrared spectroscopy,” J. Opt. A 9, S87–S91 (2007).
[CrossRef]

J. Mulrooney, J. Clifford, C. Fitzpatrick, and E. Lewis, “Detection of carbon dioxide emissions from a diesel engine using a mid-infrared optical fiber based sensor,” Sens. Actuators A 136, 104–110 (2007).
[CrossRef]

E. Lewis, “Overview of the OPTO-EMI-SENSE project: optical fiber sensor network for automotive emission monitoring,” in Lecture Notes on Electrical Engineering: Sensors (Springer, 2008), Vol. 21, pp. 179–196.

Marland, G.

G. Marland, T. A. Boden, and R. J. Andres, “2006: Global, regional, and national fossil fuel CO2 emissions,” in Trends: A Compendium of Data on Global Change (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, 2006).

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, and D. P. Edwards, The Hitran Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation) (1996), pp. 665–710, www.hitran.com .

Miura, N.

J. Tamaki, M. Akiyama, C. Xu, N. Miura, and N. Yamazoe, “Conductivity change of SnO2 with CO2 adsorption,” Chem. Lett. 19, 1243 (1990).
[CrossRef]

Mizuhara, Y.

T. Ishihara, K. Kometani, Y. Mizuhara, and Y. Takita, “Application of a mixed oxide capacitor to the selective carbon dioxide sensor,” J. Electrochem. Soc. 139, 2881–2885 (1992).
[CrossRef]

Morrison, S. R.

S. R. Morrison, “Selectivity in semiconductor gas sensors,” Sens. Actuators 12, 425–440 (1987).
[CrossRef]

Mulrooney, J.

J. Mulrooney, J. Clifford, C. Fitzpatrick, P. Chambers, and E. Lewis, “A mid-infrared optical fiber sensor for the detection of carbon monoxide exhaust emissions,” Sens. Actuators A 144, 13–17 (2008).
[CrossRef]

J. Mulrooney, J. Clifford, C. Fitzpatrick, P. Chambers, and E. Lewis, “Monitoring of carbon dioxide exhaust emissions using mid-infrared spectroscopy,” J. Opt. A 9, S87–S91 (2007).
[CrossRef]

J. Mulrooney, J. Clifford, C. Fitzpatrick, and E. Lewis, “Detection of carbon dioxide emissions from a diesel engine using a mid-infrared optical fiber based sensor,” Sens. Actuators A 136, 104–110 (2007).
[CrossRef]

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, and D. P. Edwards, The Hitran Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation) (1996), pp. 665–710, www.hitran.com .

Roh, Y. R.

Y. J. Lee, H. B. Kim, Y. R. Roh, H. M. Cho, and S. Baik, “Development of a saw gas sensor for monitoring SO2 gas,” Sens. Actuators A 64, 173–178 (1998).
[CrossRef]

Rothman, L. S.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, and D. P. Edwards, The Hitran Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation) (1996), pp. 665–710, www.hitran.com .

Schwartz, F. W.

H. Jung, H. Choi, J. Kim, and F. W. Schwartz, “Laboratory-scale application of optic transflection dip probe (FOTDP) for in situ monitoring of gas phase ozone in unsaturated porous media,” J. Contam. Hydrol. 82, 133–144 (2006).
[CrossRef]

Takita, Y.

T. Ishihara, K. Kometani, Y. Mizuhara, and Y. Takita, “Application of a mixed oxide capacitor to the selective carbon dioxide sensor,” J. Electrochem. Soc. 139, 2881–2885 (1992).
[CrossRef]

Tamaki, J.

J. Tamaki, M. Akiyama, C. Xu, N. Miura, and N. Yamazoe, “Conductivity change of SnO2 with CO2 adsorption,” Chem. Lett. 19, 1243 (1990).
[CrossRef]

Vesilind, P. A.

P. A. Vesilind, Environmental Pollution and Control, 3rd ed. (Butterworth-Heinemann, 1990).

Xu, C.

J. Tamaki, M. Akiyama, C. Xu, N. Miura, and N. Yamazoe, “Conductivity change of SnO2 with CO2 adsorption,” Chem. Lett. 19, 1243 (1990).
[CrossRef]

Xu, J.

Z. Zhan, D. Jiang, and J. Xu, “Investigation of a new In2O3-based selective H2 gas sensor with low power consumption,” Mater. Chem. Phys. 90, 250–254 (2005).
[CrossRef]

Yamazoe, N.

N. Yamazoe, “New approaches for improving semiconductor gas sensors,” Sens. Actuators B 5, 7–19 (1991).
[CrossRef]

J. Tamaki, M. Akiyama, C. Xu, N. Miura, and N. Yamazoe, “Conductivity change of SnO2 with CO2 adsorption,” Chem. Lett. 19, 1243 (1990).
[CrossRef]

Zhan, Z.

Z. Zhan, D. Jiang, and J. Xu, “Investigation of a new In2O3-based selective H2 gas sensor with low power consumption,” Mater. Chem. Phys. 90, 250–254 (2005).
[CrossRef]

Chem. Lett. (1)

J. Tamaki, M. Akiyama, C. Xu, N. Miura, and N. Yamazoe, “Conductivity change of SnO2 with CO2 adsorption,” Chem. Lett. 19, 1243 (1990).
[CrossRef]

Clim. Change (1)

J. Hansen, “A slippery slope: How much global warming constitutes ‘dangerous anthropogenic interference’?” Clim. Change 68, 269–279 (2005).
[CrossRef]

J. Contam. Hydrol. (1)

H. Jung, H. Choi, J. Kim, and F. W. Schwartz, “Laboratory-scale application of optic transflection dip probe (FOTDP) for in situ monitoring of gas phase ozone in unsaturated porous media,” J. Contam. Hydrol. 82, 133–144 (2006).
[CrossRef]

J. Electrochem. Soc. (1)

T. Ishihara, K. Kometani, Y. Mizuhara, and Y. Takita, “Application of a mixed oxide capacitor to the selective carbon dioxide sensor,” J. Electrochem. Soc. 139, 2881–2885 (1992).
[CrossRef]

J. Opt. A (1)

J. Mulrooney, J. Clifford, C. Fitzpatrick, P. Chambers, and E. Lewis, “Monitoring of carbon dioxide exhaust emissions using mid-infrared spectroscopy,” J. Opt. A 9, S87–S91 (2007).
[CrossRef]

Mater. Chem. Phys. (1)

Z. Zhan, D. Jiang, and J. Xu, “Investigation of a new In2O3-based selective H2 gas sensor with low power consumption,” Mater. Chem. Phys. 90, 250–254 (2005).
[CrossRef]

Prog. Surf. Sci. (1)

W. Gopel, “Chemisorption and charge transfer at ionic semiconductor surfaces: implications in designing gas sensors,” Prog. Surf. Sci. 20, 9–103 (1985).
[CrossRef]

Sens. Actuators (1)

S. R. Morrison, “Selectivity in semiconductor gas sensors,” Sens. Actuators 12, 425–440 (1987).
[CrossRef]

Sens. Actuators A (3)

J. Mulrooney, J. Clifford, C. Fitzpatrick, P. Chambers, and E. Lewis, “A mid-infrared optical fiber sensor for the detection of carbon monoxide exhaust emissions,” Sens. Actuators A 144, 13–17 (2008).
[CrossRef]

J. Mulrooney, J. Clifford, C. Fitzpatrick, and E. Lewis, “Detection of carbon dioxide emissions from a diesel engine using a mid-infrared optical fiber based sensor,” Sens. Actuators A 136, 104–110 (2007).
[CrossRef]

Y. J. Lee, H. B. Kim, Y. R. Roh, H. M. Cho, and S. Baik, “Development of a saw gas sensor for monitoring SO2 gas,” Sens. Actuators A 64, 173–178 (1998).
[CrossRef]

Sens. Actuators B (1)

N. Yamazoe, “New approaches for improving semiconductor gas sensors,” Sens. Actuators B 5, 7–19 (1991).
[CrossRef]

Spectrochim. Acta Part A (1)

P. Fernando and G. Ernesto, “A study by ultraviolet spectroscopy on the self-association of diazines in aqueous solution,” Spectrochim. Acta Part A 59, 1223–1237 (2003).
[CrossRef]

Other (16)

E. Lewis, “Overview of the OPTO-EMI-SENSE project: optical fiber sensor network for automotive emission monitoring,” in Lecture Notes on Electrical Engineering: Sensors (Springer, 2008), Vol. 21, pp. 179–196.

Fiat Croma 1.9 Emotion Aut., ADAC Autotest website page, http://www.adac.de/_ext/itr/tests/Autotest/AT1527_Fiat_Croma_19_JTD_Multijet_16V_Emotion_Automatik_RPF/Fiat_Croma_19_JTD_Multijet_16V_Emotion_Automatik_RPF .

Emission test cycles, Dieselnet website page, http://www.dieselnet.com/standards/cycles/ece_eudc.html .

Advance optima (AO2000 series) continuous gas analyzer datasheet, ABB website page, http://www.abb.com/product/seitp330/c1256dde004b6b1dc1256df1005210eb.aspx?productLanguage=us&country=IE .

H. Dueker, K. H. Friese, and W. D. Haecker, “Ceramic aspects of the Bosch lambda-sensor,” SAE 750223 (Society of Automotive Engineers, 1975).

Chalcogenide Mid-IR optical fiber, Art Photonics website page, http://www.artphotonics.de .

LME 335 detector data page, Infratec website page, http://www.infratec.de/fileadmin/media/Sensorik/pdf/LME-335.pdf .

NL5LNC filament emitter data page, Ion-Optics website page, http://www.ion-optics.com/downloads/Datasheets/IRSources.pdf .

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, and D. P. Edwards, The Hitran Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation) (1996), pp. 665–710, www.hitran.com .

G. Marland, T. A. Boden, and R. J. Andres, “2006: Global, regional, and national fossil fuel CO2 emissions,” in Trends: A Compendium of Data on Global Change (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, 2006).

Maritime Knowledge Center, “Air pollution and greenhouse gas (GHG) emissions from international shipping,” (International Maritime Organization, London, UK).

“Objectives of the agreements concluded with the automobile industry,” European Commission website page, http://ec.europa.eu/environment/co2/co2_agreements.htm .

“Kyoto protocol to the United Nations framework convention on climate change,” UNFCC website page, http://unfccc.int/resource/docs/convkp/kpeng.html .

P. A. Vesilind, Environmental Pollution and Control, 3rd ed. (Butterworth-Heinemann, 1990).

V. A. W. Hillier, Fundamentals of Automotive Electronics, 2nd ed. (Stanley Thornes, 1996).

Continental UNINOx Sensor datasheet, http://sukorun.en.alibaba.com/product/464481498-200523631/Continental_5WK9_6614I_UNINOx_Sensor.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Estimated global fossil fuel carbon emissions since 1751 [2].

Fig. 2.
Fig. 2.

Multipass gas absorption probe.

Fig. 3.
Fig. 3.

CO2 absorption spectrum and filter cut-off wavelengths.

Fig. 4.
Fig. 4.

Absorption spectra of various species present within an exhaust environment.

Fig. 5.
Fig. 5.

Mid-infrared optical fiber CO2 sensor.

Fig. 6.
Fig. 6.

Photo of the engine test setup carried out in facilities in CRF, Italy.

Fig. 7.
Fig. 7.

Comparison between measured concentrations from the developed and the commercial sensors for the various speed test cycle on a Fiat Croma engine exhaust.

Fig. 8.
Fig. 8.

Comparison between measured concentrations from the developed and the commercial sensors for the EUDC test cycle on a Fiat Croma engine exhaust.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Fuel(CXHX)+AirCO2+H2O.
II0=e(εcl).
ε=σ×NA
c=αw×d×106.
α=[lnII0][w×d×106]σ×NA×l.
σ=[lnII0][w×d×106]α×NA×l.

Metrics