Abstract

A quantitative study of the focus tuning by a liquid crystal lens in an imaging system composed of a camera module and the liquid crystal lens that performs the focusing function is reported. The resolving capability of the imaging system is investigated by analyzing the image of an ISO12233 chart formed by the system. Measurements show that with the focus tuning by the liquid crystal lens, the resolving power of the system can be very close to that of the camera module.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
    [CrossRef]
  2. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
    [CrossRef]
  3. H. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15, 5931–5936 (2007).
    [CrossRef]
  4. H. Ren and S. T. Wu, “Tunable-focus liquid microlens array using dielectrophoretic effect,” Opt. Express 16, 2646–2652 (2008).
    [CrossRef]
  5. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
    [CrossRef]
  6. S. T. Kowel, D. S. Cleverly, and P. G. Kornreich, “Focusing by electrical modulation of refraction in a liquid crystal cell,” Appl. Opt. 23, 278–289 (1984).
    [CrossRef]
  7. T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
    [CrossRef]
  8. N. A. Riza and M. C. DeJule, “Three-terminal adaptive nematic liquid-crystal lens device,” Opt. Lett. 19, 1013–1015(1994).
    [CrossRef]
  9. A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23, 992–994, (1998).
    [CrossRef]
  10. M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41, L571–L573 (2002).
    [CrossRef]
  11. B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41, L1232–L1233 (2002).
    [CrossRef]
  12. H. Ren and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82, 22–24 (2003).
    [CrossRef]
  13. B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43, 3420–3425 (2004).
    [CrossRef]
  14. M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43, 6407–6412 (2004).
    [CrossRef]
  15. V. V. Presnyakov and T. V. Galstian, “Electrically tunable polymer stabilized liquid-crystal lens,” J. Appl. Phys. 97, 103101 (2005).
    [CrossRef]
  16. G. Q. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103, 6100–6104 (2006).
    [CrossRef]
  17. M. Ye, Y. Yokoyama, and S. Sato, “Liquid crystal lens prepared utilizing patterned molecular orientations on cell walls,” Appl. Phys. Lett. 89, 141112 (2006).
    [CrossRef]
  18. H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, “A negative–positive tunable liquid-crystal microlens array by printing,” Opt. Express 17, 4317–4323 (2009).
    [CrossRef]
  19. K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express 18, 13981–13992 (2010).
    [CrossRef]
  20. S. Valyukh, V. Chigrinov, and H. S. Kwok, “A liquid crystal lens with non-uniform anchoring energy,” in SID Symposium(Wiley, 2008), pp. 659–662.
  21. L. Li, L. Shi, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Liquid crystal lenses: liquid crystals promise compact lenses with variable focus,” Laser Focus World, http://www.laserfocusworld.com/articles/2010/12/liquid-crystals-promise-compact-lenses-with-variable-focus.html .
  22. B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martinez, S. R. Restaino, D. M. Payne, J. Harriman, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908 (2006).
    [CrossRef]
  23. M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys. 46, 6776–6777 (2007).
    [CrossRef]
  24. M. Ye, M. Noguchi, B. Wang, and S. Sato, “Zoom lens system without moving elements realised using liquid crystal lenses,” Electron. Lett. 45, 646–648 (2009).
    [CrossRef]
  25. H. C. Lin and Y. H. Lin, “An electrically tunable focusing picoprojector adopting a liquid crystal lens,” Jpn. J. Appl. Phys. 49, 102502 (2010).
    [CrossRef]
  26. H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97, 063505 (2010).
    [CrossRef]
  27. Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19, 4714–4721(2011).
    [CrossRef]
  28. M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys. 49, 100204 (2010).
    [CrossRef]
  29. M. Ye, B. Wang, and S. Sato, “Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material,” Opt. Express 16, 4302–4308 (2008).
    [CrossRef]
  30. Y. Li, Y. F. Liu, Q. Li, and S. T. Wu, “Polarization independent blu-phase liquid crystal cylindrical lens with a resistive film,” Appl. Opt. 51, 2568–2572 (2012).
    [CrossRef]
  31. M. Born and E. Wolf, Principles of Optics (Pergamon, 1975).
  32. I. C. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, 1993).
  33. B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with stacked structure of liquid-crystal layers,” Opt. Commun. 250, 266–273 (2005).
    [CrossRef]
  34. B. Wang, M. Ye, and S. Sato, “Properties of liquid crystal lens with stacked structure of liquid crystal layers,” Jpn. J. Appl. Phys. 45, 7813–7818 (2006).
    [CrossRef]
  35. H. Yoshida, “Evaluation methods of characteristics and image quality for home-use cameras,” ITEJ 63, 735–740 (2009) (in Japanese).
    [CrossRef]

2012 (1)

2011 (1)

2010 (4)

K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express 18, 13981–13992 (2010).
[CrossRef]

H. C. Lin and Y. H. Lin, “An electrically tunable focusing picoprojector adopting a liquid crystal lens,” Jpn. J. Appl. Phys. 49, 102502 (2010).
[CrossRef]

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97, 063505 (2010).
[CrossRef]

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys. 49, 100204 (2010).
[CrossRef]

2009 (3)

M. Ye, M. Noguchi, B. Wang, and S. Sato, “Zoom lens system without moving elements realised using liquid crystal lenses,” Electron. Lett. 45, 646–648 (2009).
[CrossRef]

H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, “A negative–positive tunable liquid-crystal microlens array by printing,” Opt. Express 17, 4317–4323 (2009).
[CrossRef]

H. Yoshida, “Evaluation methods of characteristics and image quality for home-use cameras,” ITEJ 63, 735–740 (2009) (in Japanese).
[CrossRef]

2008 (2)

2007 (2)

H. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15, 5931–5936 (2007).
[CrossRef]

M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys. 46, 6776–6777 (2007).
[CrossRef]

2006 (4)

G. Q. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103, 6100–6104 (2006).
[CrossRef]

M. Ye, Y. Yokoyama, and S. Sato, “Liquid crystal lens prepared utilizing patterned molecular orientations on cell walls,” Appl. Phys. Lett. 89, 141112 (2006).
[CrossRef]

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martinez, S. R. Restaino, D. M. Payne, J. Harriman, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908 (2006).
[CrossRef]

B. Wang, M. Ye, and S. Sato, “Properties of liquid crystal lens with stacked structure of liquid crystal layers,” Jpn. J. Appl. Phys. 45, 7813–7818 (2006).
[CrossRef]

2005 (2)

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with stacked structure of liquid-crystal layers,” Opt. Commun. 250, 266–273 (2005).
[CrossRef]

V. V. Presnyakov and T. V. Galstian, “Electrically tunable polymer stabilized liquid-crystal lens,” J. Appl. Phys. 97, 103101 (2005).
[CrossRef]

2004 (3)

2003 (1)

H. Ren and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82, 22–24 (2003).
[CrossRef]

2002 (2)

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41, L571–L573 (2002).
[CrossRef]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41, L1232–L1233 (2002).
[CrossRef]

2000 (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

1998 (1)

1994 (1)

1989 (1)

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
[CrossRef]

1984 (1)

1979 (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
[CrossRef]

Asatryan, K.

Ayras, P.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103, 6100–6104 (2006).
[CrossRef]

Bagramyan, A.

Bagwell, B. E.

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martinez, S. R. Restaino, D. M. Payne, J. Harriman, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908 (2006).
[CrossRef]

Batchko, R.

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martinez, S. R. Restaino, D. M. Payne, J. Harriman, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908 (2006).
[CrossRef]

Berge, B.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1975).

Bos, P. J.

L. Li, L. Shi, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Liquid crystal lenses: liquid crystals promise compact lenses with variable focus,” Laser Focus World, http://www.laserfocusworld.com/articles/2010/12/liquid-crystals-promise-compact-lenses-with-variable-focus.html .

Bryant, D.

L. Li, L. Shi, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Liquid crystal lenses: liquid crystals promise compact lenses with variable focus,” Laser Focus World, http://www.laserfocusworld.com/articles/2010/12/liquid-crystals-promise-compact-lenses-with-variable-focus.html .

Chen, M. S.

Chigrinov, V.

S. Valyukh, V. Chigrinov, and H. S. Kwok, “A liquid crystal lens with non-uniform anchoring energy,” in SID Symposium(Wiley, 2008), pp. 659–662.

Cleverly, D. S.

Dai, H. T.

DeJule, M. C.

Duston, D.

L. Li, L. Shi, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Liquid crystal lenses: liquid crystals promise compact lenses with variable focus,” Laser Focus World, http://www.laserfocusworld.com/articles/2010/12/liquid-crystals-promise-compact-lenses-with-variable-focus.html .

Galstian, T.

Galstian, T. V.

V. V. Presnyakov and T. V. Galstian, “Electrically tunable polymer stabilized liquid-crystal lens,” J. Appl. Phys. 97, 103101 (2005).
[CrossRef]

Giridhar, M. S.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103, 6100–6104 (2006).
[CrossRef]

Guralnik, I. R.

Haddock, J. N.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103, 6100–6104 (2006).
[CrossRef]

Harriman, J.

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martinez, S. R. Restaino, D. M. Payne, J. Harriman, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908 (2006).
[CrossRef]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Heugten, T. V.

L. Li, L. Shi, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Liquid crystal lenses: liquid crystals promise compact lenses with variable focus,” Laser Focus World, http://www.laserfocusworld.com/articles/2010/12/liquid-crystals-promise-compact-lenses-with-variable-focus.html .

Honkanen, S.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103, 6100–6104 (2006).
[CrossRef]

Honma, M.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41, L1232–L1233 (2002).
[CrossRef]

Kawamura, M.

M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys. 46, 6776–6777 (2007).
[CrossRef]

Khoo, I. C.

I. C. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, 1993).

Kippelen, B.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103, 6100–6104 (2006).
[CrossRef]

Kornreich, P. G.

Kowel, S. T.

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Kwok, H. S.

S. Valyukh, V. Chigrinov, and H. S. Kwok, “A liquid crystal lens with non-uniform anchoring energy,” in SID Symposium(Wiley, 2008), pp. 659–662.

Li, G. Q.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103, 6100–6104 (2006).
[CrossRef]

Li, L.

L. Li, L. Shi, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Liquid crystal lenses: liquid crystals promise compact lenses with variable focus,” Laser Focus World, http://www.laserfocusworld.com/articles/2010/12/liquid-crystals-promise-compact-lenses-with-variable-focus.html .

Li, Q.

Li, Y.

Lin, H. C.

Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19, 4714–4721(2011).
[CrossRef]

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97, 063505 (2010).
[CrossRef]

H. C. Lin and Y. H. Lin, “An electrically tunable focusing picoprojector adopting a liquid crystal lens,” Jpn. J. Appl. Phys. 49, 102502 (2010).
[CrossRef]

Lin, Y. H.

Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19, 4714–4721(2011).
[CrossRef]

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97, 063505 (2010).
[CrossRef]

H. C. Lin and Y. H. Lin, “An electrically tunable focusing picoprojector adopting a liquid crystal lens,” Jpn. J. Appl. Phys. 49, 102502 (2010).
[CrossRef]

Liu, Y. F.

Liu, Y. J.

Loktev, M. Yu.

Luo, D.

Mansell, J. D.

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martinez, S. R. Restaino, D. M. Payne, J. Harriman, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908 (2006).
[CrossRef]

Martinez, T.

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martinez, S. R. Restaino, D. M. Payne, J. Harriman, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908 (2006).
[CrossRef]

Mathine, D. L.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103, 6100–6104 (2006).
[CrossRef]

Meredith, G. R.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103, 6100–6104 (2006).
[CrossRef]

Naumov, A. F.

Noguchi, M.

M. Ye, M. Noguchi, B. Wang, and S. Sato, “Zoom lens system without moving elements realised using liquid crystal lenses,” Electron. Lett. 45, 646–648 (2009).
[CrossRef]

Nose, T.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41, L1232–L1233 (2002).
[CrossRef]

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
[CrossRef]

Payne, D. M.

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martinez, S. R. Restaino, D. M. Payne, J. Harriman, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908 (2006).
[CrossRef]

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

Peyghambarian, N.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103, 6100–6104 (2006).
[CrossRef]

Presnyakov, V.

Presnyakov, V. V.

V. V. Presnyakov and T. V. Galstian, “Electrically tunable polymer stabilized liquid-crystal lens,” J. Appl. Phys. 97, 103101 (2005).
[CrossRef]

Ren, H.

Restaino, S. R.

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martinez, S. R. Restaino, D. M. Payne, J. Harriman, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908 (2006).
[CrossRef]

Riza, N. A.

Sato, S.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys. 49, 100204 (2010).
[CrossRef]

M. Ye, M. Noguchi, B. Wang, and S. Sato, “Zoom lens system without moving elements realised using liquid crystal lenses,” Electron. Lett. 45, 646–648 (2009).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material,” Opt. Express 16, 4302–4308 (2008).
[CrossRef]

M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys. 46, 6776–6777 (2007).
[CrossRef]

B. Wang, M. Ye, and S. Sato, “Properties of liquid crystal lens with stacked structure of liquid crystal layers,” Jpn. J. Appl. Phys. 45, 7813–7818 (2006).
[CrossRef]

M. Ye, Y. Yokoyama, and S. Sato, “Liquid crystal lens prepared utilizing patterned molecular orientations on cell walls,” Appl. Phys. Lett. 89, 141112 (2006).
[CrossRef]

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with stacked structure of liquid-crystal layers,” Opt. Commun. 250, 266–273 (2005).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43, 6407–6412 (2004).
[CrossRef]

B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43, 3420–3425 (2004).
[CrossRef]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41, L1232–L1233 (2002).
[CrossRef]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41, L571–L573 (2002).
[CrossRef]

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
[CrossRef]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
[CrossRef]

Schwiegerling, J.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103, 6100–6104 (2006).
[CrossRef]

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martinez, S. R. Restaino, D. M. Payne, J. Harriman, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908 (2006).
[CrossRef]

Serati, S.

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martinez, S. R. Restaino, D. M. Payne, J. Harriman, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908 (2006).
[CrossRef]

Sharp, G.

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martinez, S. R. Restaino, D. M. Payne, J. Harriman, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908 (2006).
[CrossRef]

Shi, L.

L. Li, L. Shi, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Liquid crystal lenses: liquid crystals promise compact lenses with variable focus,” Laser Focus World, http://www.laserfocusworld.com/articles/2010/12/liquid-crystals-promise-compact-lenses-with-variable-focus.html .

Sun, X. W.

Takahashi, S.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys. 49, 100204 (2010).
[CrossRef]

Tork, A.

Uchida, M.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys. 49, 100204 (2010).
[CrossRef]

Valley, P.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103, 6100–6104 (2006).
[CrossRef]

Valyukh, S.

S. Valyukh, V. Chigrinov, and H. S. Kwok, “A liquid crystal lens with non-uniform anchoring energy,” in SID Symposium(Wiley, 2008), pp. 659–662.

Vdovin, G.

Wang, B.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys. 49, 100204 (2010).
[CrossRef]

M. Ye, M. Noguchi, B. Wang, and S. Sato, “Zoom lens system without moving elements realised using liquid crystal lenses,” Electron. Lett. 45, 646–648 (2009).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material,” Opt. Express 16, 4302–4308 (2008).
[CrossRef]

M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys. 46, 6776–6777 (2007).
[CrossRef]

B. Wang, M. Ye, and S. Sato, “Properties of liquid crystal lens with stacked structure of liquid crystal layers,” Jpn. J. Appl. Phys. 45, 7813–7818 (2006).
[CrossRef]

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with stacked structure of liquid-crystal layers,” Opt. Commun. 250, 266–273 (2005).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43, 6407–6412 (2004).
[CrossRef]

B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43, 3420–3425 (2004).
[CrossRef]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41, L1232–L1233 (2002).
[CrossRef]

Wick, D. V.

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martinez, S. R. Restaino, D. M. Payne, J. Harriman, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908 (2006).
[CrossRef]

Williby, G.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103, 6100–6104 (2006).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1975).

Wu, S. T.

Yamaguchi, M.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys. 49, 100204 (2010).
[CrossRef]

Yanase, S.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys. 49, 100204 (2010).
[CrossRef]

Ye, M.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys. 49, 100204 (2010).
[CrossRef]

M. Ye, M. Noguchi, B. Wang, and S. Sato, “Zoom lens system without moving elements realised using liquid crystal lenses,” Electron. Lett. 45, 646–648 (2009).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material,” Opt. Express 16, 4302–4308 (2008).
[CrossRef]

M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys. 46, 6776–6777 (2007).
[CrossRef]

B. Wang, M. Ye, and S. Sato, “Properties of liquid crystal lens with stacked structure of liquid crystal layers,” Jpn. J. Appl. Phys. 45, 7813–7818 (2006).
[CrossRef]

M. Ye, Y. Yokoyama, and S. Sato, “Liquid crystal lens prepared utilizing patterned molecular orientations on cell walls,” Appl. Phys. Lett. 89, 141112 (2006).
[CrossRef]

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with stacked structure of liquid-crystal layers,” Opt. Commun. 250, 266–273 (2005).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43, 6407–6412 (2004).
[CrossRef]

B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43, 3420–3425 (2004).
[CrossRef]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41, L1232–L1233 (2002).
[CrossRef]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41, L571–L573 (2002).
[CrossRef]

Yokoyama, Y.

M. Ye, Y. Yokoyama, and S. Sato, “Liquid crystal lens prepared utilizing patterned molecular orientations on cell walls,” Appl. Phys. Lett. 89, 141112 (2006).
[CrossRef]

Yoshida, H.

H. Yoshida, “Evaluation methods of characteristics and image quality for home-use cameras,” ITEJ 63, 735–740 (2009) (in Japanese).
[CrossRef]

Zohrabyan, A.

Appl. Opt. (4)

Appl. Phys. Lett. (4)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

H. Ren and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82, 22–24 (2003).
[CrossRef]

M. Ye, Y. Yokoyama, and S. Sato, “Liquid crystal lens prepared utilizing patterned molecular orientations on cell walls,” Appl. Phys. Lett. 89, 141112 (2006).
[CrossRef]

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97, 063505 (2010).
[CrossRef]

Electron. Lett. (1)

M. Ye, M. Noguchi, B. Wang, and S. Sato, “Zoom lens system without moving elements realised using liquid crystal lenses,” Electron. Lett. 45, 646–648 (2009).
[CrossRef]

Eur. Phys. J. E (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

ITEJ (1)

H. Yoshida, “Evaluation methods of characteristics and image quality for home-use cameras,” ITEJ 63, 735–740 (2009) (in Japanese).
[CrossRef]

J. Appl. Phys. (1)

V. V. Presnyakov and T. V. Galstian, “Electrically tunable polymer stabilized liquid-crystal lens,” J. Appl. Phys. 97, 103101 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (7)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
[CrossRef]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41, L571–L573 (2002).
[CrossRef]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41, L1232–L1233 (2002).
[CrossRef]

H. C. Lin and Y. H. Lin, “An electrically tunable focusing picoprojector adopting a liquid crystal lens,” Jpn. J. Appl. Phys. 49, 102502 (2010).
[CrossRef]

M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys. 46, 6776–6777 (2007).
[CrossRef]

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys. 49, 100204 (2010).
[CrossRef]

B. Wang, M. Ye, and S. Sato, “Properties of liquid crystal lens with stacked structure of liquid crystal layers,” Jpn. J. Appl. Phys. 45, 7813–7818 (2006).
[CrossRef]

Liq. Cryst. (1)

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
[CrossRef]

Opt. Commun. (1)

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with stacked structure of liquid-crystal layers,” Opt. Commun. 250, 266–273 (2005).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Proc. Natl. Acad. Sci. U.S.A. (1)

G. Q. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103, 6100–6104 (2006).
[CrossRef]

Proc. SPIE (1)

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martinez, S. R. Restaino, D. M. Payne, J. Harriman, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908 (2006).
[CrossRef]

Other (4)

M. Born and E. Wolf, Principles of Optics (Pergamon, 1975).

I. C. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, 1993).

S. Valyukh, V. Chigrinov, and H. S. Kwok, “A liquid crystal lens with non-uniform anchoring energy,” in SID Symposium(Wiley, 2008), pp. 659–662.

L. Li, L. Shi, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Liquid crystal lenses: liquid crystals promise compact lenses with variable focus,” Laser Focus World, http://www.laserfocusworld.com/articles/2010/12/liquid-crystals-promise-compact-lenses-with-variable-focus.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Structure of LC lens. The LC lens of 2.0 mm aperture has an LC layer of 30 μm thickness and is driven by two voltages.

Fig. 2.
Fig. 2.

Properties of LC lens. The optical power and RMS aberration change with V2.

Fig. 3.
Fig. 3.

(a) Experimental setup. The imaging system composed of the camera module and the LC lens captures the image of the ISO 12233 chart. (b) LC lens and camera module. The LC lens is closely in contact with the camera module.

Fig. 4.
Fig. 4.

Focusing with LC lens. The objects of different distances are brought into focus separately by the LC lens.

Fig. 5.
Fig. 5.

MTF50 changing with distance. The MTF50 with/without the LC lens in the imaging system changes with the object distance.

Fig. 6.
Fig. 6.

MTF50 changing with V2. The MTF50 of the imaging system is tuned by the LC lens via voltage V2.

Fig. 7.
Fig. 7.

Images before/after LC lens tuning. The effect of the LC lens tuning is clearly seen.

Fig. 8.
Fig. 8.

MTF50 after LC lens tuning. The MTF50 values of the system, measured with the chart distance from 15 to 33 cm, are very close to that of the camera module.

Fig. 9.
Fig. 9.

Resolution before/after LC lens tuning. The resolution of the imaging system object distance from 15 to 33 cm is also close to that of the camera module.

Metrics