Abstract

Nd:YAG lasers with output power levels of tens of watts, a nearly diffraction-limited beam quality, and a linearly polarized continuous wave output are commonly pumped by laser diodes at a wavelength around 808 nm, where the pump light spectrum is matched well to the absorption maximum of Nd:YAG. As a consequence, low Nd3+-doping concentrations of the laser crystals are required in order to minimize thermally induced stress. The use of higher Neodymium concentrations requires pump wavelengths beside the 808 nm absorption maximum and will furthermore result in changed thermo-optical behavior of the material. We present simulations and experimental results on how the doping concentration of Nd3+ influences the fraction of pump light converted into heat.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Weßels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
    [CrossRef]
  2. M. Frede, R. Wilhelm, D. Kracht, and C. Fallnich, “Nd:YAG ring laser with 213 W linearly polarized fundamental mode output power,” Opt. Express 13, 7516–7519 (2005).
    [CrossRef]
  3. T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
    [CrossRef]
  4. M. Frede, R. Wilhelm, M. Brendel, C. Fallnich, F. Seiffert, B. Willke, and K. Danzmann, “High power fundamental mode Nd:YAG laser with efficient birefringence compensation,” Opt. Express 12, 3581–3589 (2004).
    [CrossRef]
  5. M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, “Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry,” IEEE J. Sel. Top. Quantum Electron. 3, 9–18 (1997).
    [CrossRef]
  6. Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd:YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
    [CrossRef]
  7. D. C. Brown, “Heat, fluorescence, and stimulated-emission densities and fractions in Nd:YAG,” IEEE J. Quantum Electron. 34, 560–572 (1998).
    [CrossRef]
  8. J. D. Foster and L. M. Osterink, “Thermal Effects in a Nd:YAG Laser,” J. Appl. Phys. 41, 3656–3663 (1970).
    [CrossRef]
  9. V. Magni, “Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability,” Appl. Opt. 25, 107–117 (1986).
    [CrossRef]
  10. N. Hodgson and H. Weber, “Influence of spherical aberration of the active medium on the performance of Nd:YAG lasers,” IEEE J. Quantum Electron. 29, 2497–2507 (1993).
    [CrossRef]
  11. R. Weber, B. Neuenschwander, and H. P. Weber, “Thermal effects in solid-state laser materials,” Opt. Mater. 11, 245–254 (1999).
    [CrossRef]

2011

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Weßels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

2005

2004

1999

R. Weber, B. Neuenschwander, and H. P. Weber, “Thermal effects in solid-state laser materials,” Opt. Mater. 11, 245–254 (1999).
[CrossRef]

1998

D. C. Brown, “Heat, fluorescence, and stimulated-emission densities and fractions in Nd:YAG,” IEEE J. Quantum Electron. 34, 560–572 (1998).
[CrossRef]

1997

M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, “Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry,” IEEE J. Sel. Top. Quantum Electron. 3, 9–18 (1997).
[CrossRef]

1996

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd:YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

1993

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
[CrossRef]

N. Hodgson and H. Weber, “Influence of spherical aberration of the active medium on the performance of Nd:YAG lasers,” IEEE J. Quantum Electron. 29, 2497–2507 (1993).
[CrossRef]

1986

1970

J. D. Foster and L. M. Osterink, “Thermal Effects in a Nd:YAG Laser,” J. Appl. Phys. 41, 3656–3663 (1970).
[CrossRef]

Bogan, C.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Weßels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

Brendel, M.

Brown, D. C.

D. C. Brown, “Heat, fluorescence, and stimulated-emission densities and fractions in Nd:YAG,” IEEE J. Quantum Electron. 34, 560–572 (1998).
[CrossRef]

Danzmann, K.

Dong, S.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd:YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Fallnich, C.

Fan, T. Y.

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
[CrossRef]

Foster, J. D.

J. D. Foster and L. M. Osterink, “Thermal Effects in a Nd:YAG Laser,” J. Appl. Phys. 41, 3656–3663 (1970).
[CrossRef]

Frede, M.

Hodgson, N.

N. Hodgson and H. Weber, “Influence of spherical aberration of the active medium on the performance of Nd:YAG lasers,” IEEE J. Quantum Electron. 29, 2497–2507 (1993).
[CrossRef]

Inaba, H.

M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, “Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry,” IEEE J. Sel. Top. Quantum Electron. 3, 9–18 (1997).
[CrossRef]

Kasamatsu, T.

M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, “Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry,” IEEE J. Sel. Top. Quantum Electron. 3, 9–18 (1997).
[CrossRef]

Kluzik, R.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Weßels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

Kracht, D.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Weßels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

M. Frede, R. Wilhelm, D. Kracht, and C. Fallnich, “Nd:YAG ring laser with 213 W linearly polarized fundamental mode output power,” Opt. Express 13, 7516–7519 (2005).
[CrossRef]

Kugler, N.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd:YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Kwee, P.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Weßels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

Lü, Q.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd:YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Magni, V.

Müller, N.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd:YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Neuenschwander, B.

R. Weber, B. Neuenschwander, and H. P. Weber, “Thermal effects in solid-state laser materials,” Opt. Mater. 11, 245–254 (1999).
[CrossRef]

Neumann, J.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Weßels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

Osterink, L. M.

J. D. Foster and L. M. Osterink, “Thermal Effects in a Nd:YAG Laser,” J. Appl. Phys. 41, 3656–3663 (1970).
[CrossRef]

Poeld, J.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Weßels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

Puncken, O.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Weßels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

Seiffert, F.

Taguchi, N.

M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, “Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry,” IEEE J. Sel. Top. Quantum Electron. 3, 9–18 (1997).
[CrossRef]

Tsunekane, M.

M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, “Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry,” IEEE J. Sel. Top. Quantum Electron. 3, 9–18 (1997).
[CrossRef]

Veltkamp, C.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Weßels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

Weber, H.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd:YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

N. Hodgson and H. Weber, “Influence of spherical aberration of the active medium on the performance of Nd:YAG lasers,” IEEE J. Quantum Electron. 29, 2497–2507 (1993).
[CrossRef]

Weber, H. P.

R. Weber, B. Neuenschwander, and H. P. Weber, “Thermal effects in solid-state laser materials,” Opt. Mater. 11, 245–254 (1999).
[CrossRef]

Weber, R.

R. Weber, B. Neuenschwander, and H. P. Weber, “Thermal effects in solid-state laser materials,” Opt. Mater. 11, 245–254 (1999).
[CrossRef]

Weßels, P.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Weßels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

Wilhelm, R.

Willke, B.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Weßels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

M. Frede, R. Wilhelm, M. Brendel, C. Fallnich, F. Seiffert, B. Willke, and K. Danzmann, “High power fundamental mode Nd:YAG laser with efficient birefringence compensation,” Opt. Express 12, 3581–3589 (2004).
[CrossRef]

Winkelmann, L.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Weßels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

Wittrock, U.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd:YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Appl. Opt.

Appl. Phys. B

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Weßels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

IEEE J. Quantum Electron.

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
[CrossRef]

D. C. Brown, “Heat, fluorescence, and stimulated-emission densities and fractions in Nd:YAG,” IEEE J. Quantum Electron. 34, 560–572 (1998).
[CrossRef]

N. Hodgson and H. Weber, “Influence of spherical aberration of the active medium on the performance of Nd:YAG lasers,” IEEE J. Quantum Electron. 29, 2497–2507 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, “Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry,” IEEE J. Sel. Top. Quantum Electron. 3, 9–18 (1997).
[CrossRef]

J. Appl. Phys.

J. D. Foster and L. M. Osterink, “Thermal Effects in a Nd:YAG Laser,” J. Appl. Phys. 41, 3656–3663 (1970).
[CrossRef]

Opt. Express

Opt. Mater.

R. Weber, B. Neuenschwander, and H. P. Weber, “Thermal effects in solid-state laser materials,” Opt. Mater. 11, 245–254 (1999).
[CrossRef]

Opt. Quantum Electron.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd:YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Setup of the longitudinally pumped two-head Nd:YAG resonator with birefringence compensation.

Fig. 2.
Fig. 2.

The solid curve shows the wavelength/dopant sets, for which 96.6% of the pump light is being absorbed. The broken curve shows the resulting thermally induced refractive power, assuming that a constant fraction of pump light is converted into heat.

Fig. 3.
Fig. 3.

Temperature tuning of the pump diodes’ emission wavelength.

Fig. 4.
Fig. 4.

Output power of the reference system (squares) and calculated beam radii of different transverse modes versus the pump power per crystal with 0.13 at. % doped crystals, pumped at 808 nm.

Fig. 5.
Fig. 5.

Output power and beam profile with 0.68 at. % doped crystals, pumped at 802.3 nm in a setup identical to the one used to create the data shown in Fig. 4.

Fig. 6.
Fig. 6.

Output power and mode radii of different transverse modes versus pump power per crystal with adapted resonator length L2, using 0.68 at. % doped crystals at a pump wavelength of 802.3 nm.

Fig. 7.
Fig. 7.

Output power and mode radii of different transverse modes versus pump power per crystal with 0.48 at. % doped crystals. The resonator arm length L2 had been adapted to restore the operating point of the reference configuration.

Fig. 8.
Fig. 8.

Calculated refractive power per pump power of the thermal lens in dependence on the crystals’ doping concentration. The pump wavelength has been adapted.

Fig. 9.
Fig. 9.

Experimental data of the heat fraction (crosses) and simulated fractions of heat, fluorescence, and stimulated emission (solid lines).

Fig. 10.
Fig. 10.

The solid curve shows the wavelength/dopant-sets, for which 96.6% of the pump light is absorbed. The broken curve shows the simulated thermal refractive power, and the crosses show the data from our experiments. Here, the varying fraction of pump light, converted into heat, has been taken into account.

Metrics