Abstract

A method for obtaining the intensity fluctuation spectra of dynamic laser speckle patterns is introduced, which is based on the temporal modulation of the illumination and the subsequent integration of the intensity signals. This approach does not rely on the fast sampling rate to meet the Nyquist criterion, making it applicable for full-field imaging applications. The intensity fluctuation spectra created by the in-plane motion of a random phase object was investigated by using both a single-channel detector and a multichannel sensor. The power spectra obtained by using the full-field temporal modulation method were found to agree with the homodyne Doppler spectra obtained by using the method of autocorrelation and Fourier transform.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Dunn, A. Devor, H. Andermann, M. Andermann, M. Moskowitz, A. Dale, and D. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28, 28–30 (2003).
    [CrossRef]
  2. P. C. Li, S. L. Ni, L. Zhang, S. Q. Zeng, and Q. M. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Opt. Lett. 31, 1824–1826 (2006).
    [CrossRef]
  3. B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20, 2664–2670 (2004).
    [CrossRef]
  4. T. Durduran, M. G. Burnett, C. Zhou, G. Yu, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518–525 (2004).
    [CrossRef]
  5. J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22, R35–R66 (2001).
    [CrossRef]
  6. A. C. Völker, P. Zakharov, B. Weber, F. Buck, and F. Scheffold, “Laser speckle imaging with an active noise reduction scheme,” Opt. Express 13, 9782–9787 (2005).
    [CrossRef]
  7. P. Zakharov, A. C. Völker, F. Buck, B. Weber, and F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett. 31, 3465–3467 (2006).
    [CrossRef]
  8. D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25, 2088–2094 (2008).
    [CrossRef]
  9. M. Draijer, E. Hondebrink, T. G. van Leeuwen, and W. Steenbergen, “Twente optical perfusion camera: system overview and performance for video rate laser Doppler perfusion imaging,” Opt. Express 17, 3211–3225 (2009).
    [CrossRef]
  10. J. H. Park, J. Platisa, J. V. Verhagen, S. H. Gautam, A. Osman, D. Kim, V. A. Pieribone, and E. Culurciello, “Head-mountable high speed camera for optical neural recording,” J. Neurosci. Methods 201, 290–295 (2011).
    [CrossRef]
  11. M. Simonutti, M. Paques, J. A. Sahel, M. Gross, B. Samson, C. Magnain, and M. Atlan, “Holographic laser Doppler ophthalmoscopy,” Opt. Lett. 35, 1941–1943 (2010).
    [CrossRef]
  12. M. Atlan, M. Gross, B. C. Forget, T. Vitalis, A. Rancillac, and A. K. Dunn, “Frequency-domain wide-field laser Doppler in vivo imaging,” Opt. Lett. 31, 2762–2764 (2006).
    [CrossRef]
  13. A. C. Mitchell, J. E. Wall, J. G. Murray, and C. G. Morgan, “Direct modulation of the effective sensitivity of a CCD detector: a new approach to time-resolved fluorescence imaging,” J. Microsc. 206, 225–232 (2002).
    [CrossRef]
  14. C. G. Morgan, Y. Hua, A. C. Mitchell, J. G. Murray, and A. D. Boardman, “A compact frequency domain fluorometer with a directly modulated deuterium light source,” Rev. Sci. Instrum. 67, 41–47 (1996).
    [CrossRef]
  15. J. R. Lakowicz and K. W. Berndt, “Lifetime selective imaging using an RF phase-sensitive camera,” Rev. Sci. Instrum. 62, 1727–1734 (1991).
    [CrossRef]
  16. P. Herman, B. P. Maliwal, H. J. Lin, and J. R. Lakowicz, “Frequency domain fluorescence microscopy with the LED as a light source,” J. Microsc. 203, 176–181 (2001).
    [CrossRef]
  17. D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A 25, 9–15(2008).
    [CrossRef]
  18. T. Yoshimura, K. Nakagawa, and N. Wakabayashi, “Rotational and boiling motion of speckles in a two-lens imaging system,” J. Opt. Soc. Am. A 3, 1018–1022 (1986).
    [CrossRef]

2011 (1)

J. H. Park, J. Platisa, J. V. Verhagen, S. H. Gautam, A. Osman, D. Kim, V. A. Pieribone, and E. Culurciello, “Head-mountable high speed camera for optical neural recording,” J. Neurosci. Methods 201, 290–295 (2011).
[CrossRef]

2010 (1)

2009 (1)

2008 (2)

2006 (3)

2005 (1)

2004 (2)

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20, 2664–2670 (2004).
[CrossRef]

T. Durduran, M. G. Burnett, C. Zhou, G. Yu, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518–525 (2004).
[CrossRef]

2003 (1)

2002 (1)

A. C. Mitchell, J. E. Wall, J. G. Murray, and C. G. Morgan, “Direct modulation of the effective sensitivity of a CCD detector: a new approach to time-resolved fluorescence imaging,” J. Microsc. 206, 225–232 (2002).
[CrossRef]

2001 (2)

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22, R35–R66 (2001).
[CrossRef]

P. Herman, B. P. Maliwal, H. J. Lin, and J. R. Lakowicz, “Frequency domain fluorescence microscopy with the LED as a light source,” J. Microsc. 203, 176–181 (2001).
[CrossRef]

1996 (1)

C. G. Morgan, Y. Hua, A. C. Mitchell, J. G. Murray, and A. D. Boardman, “A compact frequency domain fluorometer with a directly modulated deuterium light source,” Rev. Sci. Instrum. 67, 41–47 (1996).
[CrossRef]

1991 (1)

J. R. Lakowicz and K. W. Berndt, “Lifetime selective imaging using an RF phase-sensitive camera,” Rev. Sci. Instrum. 62, 1727–1734 (1991).
[CrossRef]

1986 (1)

Andermann, H.

Andermann, M.

Atlan, M.

Berndt, K. W.

J. R. Lakowicz and K. W. Berndt, “Lifetime selective imaging using an RF phase-sensitive camera,” Rev. Sci. Instrum. 62, 1727–1734 (1991).
[CrossRef]

Boardman, A. D.

C. G. Morgan, Y. Hua, A. C. Mitchell, J. G. Murray, and A. D. Boardman, “A compact frequency domain fluorometer with a directly modulated deuterium light source,” Rev. Sci. Instrum. 67, 41–47 (1996).
[CrossRef]

Boas, D.

Briers, J. D.

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22, R35–R66 (2001).
[CrossRef]

Buck, A.

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20, 2664–2670 (2004).
[CrossRef]

Buck, F.

Burger, C.

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20, 2664–2670 (2004).
[CrossRef]

Burnett, M. G.

T. Durduran, M. G. Burnett, C. Zhou, G. Yu, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518–525 (2004).
[CrossRef]

Culurciello, E.

J. H. Park, J. Platisa, J. V. Verhagen, S. H. Gautam, A. Osman, D. Kim, V. A. Pieribone, and E. Culurciello, “Head-mountable high speed camera for optical neural recording,” J. Neurosci. Methods 201, 290–295 (2011).
[CrossRef]

Dale, A.

Detre, J. A.

T. Durduran, M. G. Burnett, C. Zhou, G. Yu, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518–525 (2004).
[CrossRef]

Devor, A.

Draijer, M.

Duncan, D. D.

Dunn, A. K.

Durduran, T.

T. Durduran, M. G. Burnett, C. Zhou, G. Yu, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518–525 (2004).
[CrossRef]

Forget, B. C.

Furuya, D.

T. Durduran, M. G. Burnett, C. Zhou, G. Yu, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518–525 (2004).
[CrossRef]

Gautam, S. H.

J. H. Park, J. Platisa, J. V. Verhagen, S. H. Gautam, A. Osman, D. Kim, V. A. Pieribone, and E. Culurciello, “Head-mountable high speed camera for optical neural recording,” J. Neurosci. Methods 201, 290–295 (2011).
[CrossRef]

Greenberg, J. H.

T. Durduran, M. G. Burnett, C. Zhou, G. Yu, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518–525 (2004).
[CrossRef]

Gross, M.

Herman, P.

P. Herman, B. P. Maliwal, H. J. Lin, and J. R. Lakowicz, “Frequency domain fluorescence microscopy with the LED as a light source,” J. Microsc. 203, 176–181 (2001).
[CrossRef]

Hondebrink, E.

Hua, Y.

C. G. Morgan, Y. Hua, A. C. Mitchell, J. G. Murray, and A. D. Boardman, “A compact frequency domain fluorometer with a directly modulated deuterium light source,” Rev. Sci. Instrum. 67, 41–47 (1996).
[CrossRef]

Kim, D.

J. H. Park, J. Platisa, J. V. Verhagen, S. H. Gautam, A. Osman, D. Kim, V. A. Pieribone, and E. Culurciello, “Head-mountable high speed camera for optical neural recording,” J. Neurosci. Methods 201, 290–295 (2011).
[CrossRef]

Kirkpatrick, S. J.

Lakowicz, J. R.

P. Herman, B. P. Maliwal, H. J. Lin, and J. R. Lakowicz, “Frequency domain fluorescence microscopy with the LED as a light source,” J. Microsc. 203, 176–181 (2001).
[CrossRef]

J. R. Lakowicz and K. W. Berndt, “Lifetime selective imaging using an RF phase-sensitive camera,” Rev. Sci. Instrum. 62, 1727–1734 (1991).
[CrossRef]

Li, P. C.

Lin, H. J.

P. Herman, B. P. Maliwal, H. J. Lin, and J. R. Lakowicz, “Frequency domain fluorescence microscopy with the LED as a light source,” J. Microsc. 203, 176–181 (2001).
[CrossRef]

Luo, Q. M.

Magnain, C.

Maliwal, B. P.

P. Herman, B. P. Maliwal, H. J. Lin, and J. R. Lakowicz, “Frequency domain fluorescence microscopy with the LED as a light source,” J. Microsc. 203, 176–181 (2001).
[CrossRef]

Mitchell, A. C.

A. C. Mitchell, J. E. Wall, J. G. Murray, and C. G. Morgan, “Direct modulation of the effective sensitivity of a CCD detector: a new approach to time-resolved fluorescence imaging,” J. Microsc. 206, 225–232 (2002).
[CrossRef]

C. G. Morgan, Y. Hua, A. C. Mitchell, J. G. Murray, and A. D. Boardman, “A compact frequency domain fluorometer with a directly modulated deuterium light source,” Rev. Sci. Instrum. 67, 41–47 (1996).
[CrossRef]

Morgan, C. G.

A. C. Mitchell, J. E. Wall, J. G. Murray, and C. G. Morgan, “Direct modulation of the effective sensitivity of a CCD detector: a new approach to time-resolved fluorescence imaging,” J. Microsc. 206, 225–232 (2002).
[CrossRef]

C. G. Morgan, Y. Hua, A. C. Mitchell, J. G. Murray, and A. D. Boardman, “A compact frequency domain fluorometer with a directly modulated deuterium light source,” Rev. Sci. Instrum. 67, 41–47 (1996).
[CrossRef]

Moskowitz, M.

Murray, J. G.

A. C. Mitchell, J. E. Wall, J. G. Murray, and C. G. Morgan, “Direct modulation of the effective sensitivity of a CCD detector: a new approach to time-resolved fluorescence imaging,” J. Microsc. 206, 225–232 (2002).
[CrossRef]

C. G. Morgan, Y. Hua, A. C. Mitchell, J. G. Murray, and A. D. Boardman, “A compact frequency domain fluorometer with a directly modulated deuterium light source,” Rev. Sci. Instrum. 67, 41–47 (1996).
[CrossRef]

Nakagawa, K.

Ni, S. L.

Osman, A.

J. H. Park, J. Platisa, J. V. Verhagen, S. H. Gautam, A. Osman, D. Kim, V. A. Pieribone, and E. Culurciello, “Head-mountable high speed camera for optical neural recording,” J. Neurosci. Methods 201, 290–295 (2011).
[CrossRef]

Paques, M.

Park, J. H.

J. H. Park, J. Platisa, J. V. Verhagen, S. H. Gautam, A. Osman, D. Kim, V. A. Pieribone, and E. Culurciello, “Head-mountable high speed camera for optical neural recording,” J. Neurosci. Methods 201, 290–295 (2011).
[CrossRef]

Pieribone, V. A.

J. H. Park, J. Platisa, J. V. Verhagen, S. H. Gautam, A. Osman, D. Kim, V. A. Pieribone, and E. Culurciello, “Head-mountable high speed camera for optical neural recording,” J. Neurosci. Methods 201, 290–295 (2011).
[CrossRef]

Platisa, J.

J. H. Park, J. Platisa, J. V. Verhagen, S. H. Gautam, A. Osman, D. Kim, V. A. Pieribone, and E. Culurciello, “Head-mountable high speed camera for optical neural recording,” J. Neurosci. Methods 201, 290–295 (2011).
[CrossRef]

Rancillac, A.

Sahel, J. A.

Samson, B.

Scheffold, F.

P. Zakharov, A. C. Völker, F. Buck, B. Weber, and F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett. 31, 3465–3467 (2006).
[CrossRef]

A. C. Völker, P. Zakharov, B. Weber, F. Buck, and F. Scheffold, “Laser speckle imaging with an active noise reduction scheme,” Opt. Express 13, 9782–9787 (2005).
[CrossRef]

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20, 2664–2670 (2004).
[CrossRef]

Simonutti, M.

Steenbergen, W.

van Leeuwen, T. G.

Verhagen, J. V.

J. H. Park, J. Platisa, J. V. Verhagen, S. H. Gautam, A. Osman, D. Kim, V. A. Pieribone, and E. Culurciello, “Head-mountable high speed camera for optical neural recording,” J. Neurosci. Methods 201, 290–295 (2011).
[CrossRef]

Vitalis, T.

Völker, A. C.

von Schulthess, G. K.

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20, 2664–2670 (2004).
[CrossRef]

Wakabayashi, N.

Wall, J. E.

A. C. Mitchell, J. E. Wall, J. G. Murray, and C. G. Morgan, “Direct modulation of the effective sensitivity of a CCD detector: a new approach to time-resolved fluorescence imaging,” J. Microsc. 206, 225–232 (2002).
[CrossRef]

Wang, R. K.

Weber, B.

P. Zakharov, A. C. Völker, F. Buck, B. Weber, and F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett. 31, 3465–3467 (2006).
[CrossRef]

A. C. Völker, P. Zakharov, B. Weber, F. Buck, and F. Scheffold, “Laser speckle imaging with an active noise reduction scheme,” Opt. Express 13, 9782–9787 (2005).
[CrossRef]

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20, 2664–2670 (2004).
[CrossRef]

Wyss, M. T.

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20, 2664–2670 (2004).
[CrossRef]

Yodh, A. G.

T. Durduran, M. G. Burnett, C. Zhou, G. Yu, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518–525 (2004).
[CrossRef]

Yoshimura, T.

Yu, G.

T. Durduran, M. G. Burnett, C. Zhou, G. Yu, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518–525 (2004).
[CrossRef]

Zakharov, P.

Zeng, S. Q.

Zhang, L.

Zhou, C.

T. Durduran, M. G. Burnett, C. Zhou, G. Yu, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518–525 (2004).
[CrossRef]

Eur. J. Neurosci. (1)

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20, 2664–2670 (2004).
[CrossRef]

J. Cereb. Blood Flow Metab. (1)

T. Durduran, M. G. Burnett, C. Zhou, G. Yu, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518–525 (2004).
[CrossRef]

J. Microsc. (2)

A. C. Mitchell, J. E. Wall, J. G. Murray, and C. G. Morgan, “Direct modulation of the effective sensitivity of a CCD detector: a new approach to time-resolved fluorescence imaging,” J. Microsc. 206, 225–232 (2002).
[CrossRef]

P. Herman, B. P. Maliwal, H. J. Lin, and J. R. Lakowicz, “Frequency domain fluorescence microscopy with the LED as a light source,” J. Microsc. 203, 176–181 (2001).
[CrossRef]

J. Neurosci. Methods (1)

J. H. Park, J. Platisa, J. V. Verhagen, S. H. Gautam, A. Osman, D. Kim, V. A. Pieribone, and E. Culurciello, “Head-mountable high speed camera for optical neural recording,” J. Neurosci. Methods 201, 290–295 (2011).
[CrossRef]

J. Opt. Soc. Am. A (3)

Opt. Express (2)

Opt. Lett. (5)

Physiol. Meas. (1)

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22, R35–R66 (2001).
[CrossRef]

Rev. Sci. Instrum. (2)

C. G. Morgan, Y. Hua, A. C. Mitchell, J. G. Murray, and A. D. Boardman, “A compact frequency domain fluorometer with a directly modulated deuterium light source,” Rev. Sci. Instrum. 67, 41–47 (1996).
[CrossRef]

J. R. Lakowicz and K. W. Berndt, “Lifetime selective imaging using an RF phase-sensitive camera,” Rev. Sci. Instrum. 62, 1727–1734 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of the experimental setup. The light reflected from the diffuse object is collected by the 4-f optical system, and the images are recorded by the PMT and the CMOS sensor, which are placed symmetrically at the two sides of the beam splitter.

Fig. 2.
Fig. 2.

Power spectra of the time-varying intensity as determined via the autocorrelation functions and their Fourier transforms. The spectra are normalized with respect to their DC components. The insets show the corresponding time-varying intensity signals recorded by the PMT detector. (a) Time-varying intensity and its power spectrum for a moving speed of 1mm/s in the absence of the modulation. (b) Those for a moving speed of 0.1mm/s in the presence of a 20 Hz modulation.

Fig. 3.
Fig. 3.

(a) Speckle pattern recorded by the CMOS sensor for the stationary object. (b) Single frame recorded for a moving speed of 1mm/s in the absence of modulation. (c) Single frame recorded for a moving speed of 1mm/s by using a 50 Hz modulation. (d) Power spectrum map obtained after the spectral analysis for a moving speed of 1mm/s by using a 50 Hz modulation. All images display the same ROI consisting of 256 by 256 pixels. The integration time for recording one frame was 1 s for all.

Fig. 4.
Fig. 4.

Dots are the power spectra obtained by using the full-field temporal modulation method for moving speeds of (a) 1mm/s and (b) 2mm/s. The solid curves are the corresponding power spectra based on the intensity data recorded by the PMT detector. The spectra are normalized with respect to their DC components. The averaged values of all pixels in the ROI were used for the spectra at each modulation frequency. The extent of the pixel-to-pixel variation of the spectra within the ROI is shown as the error bars.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I(t,f0,φ)=[1+Δ·cos(2πf0t+φ)]·I(t),
X(f,f0,φ)=X(f)+12Δ[eiφ·X(f+f0)+eiφ·X(ff0)],
F(f0,φ)=X(0)+Δ[cosφ·XR(f0)+sinφ·XI(f0)],
2Nn=1N[F(f0,φn)X(0)Δ]2=2Nn=1N[cosφn·XR(f0)+sinφn·XI(f0)]2.

Metrics