Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical bistability based on an analog of electromagnetically induced transparency in plasmonic waveguide-coupled resonators

Not Accessible

Your library or personal account may give you access

Abstract

We have investigated numerically an optical bistability effect based on an analog of electromagnetically induced transparency (EIT) in a nanoscale plasmonic waveguide-coupled resonator system. The system consists of a metal-insulator-metal waveguide side-coupled with a slot cavity and a nanodisk cavity containing Kerr nonlinear material. By finite-difference time-domain simulations, the EIT-like spectral peak has a redshift with an increase of the dielectric constant of the nanodisk cavity. More importantly, we have achieved an optical bistability with threshold intensity about three times lower than that of recent literature [Appl. Opt. 50, 5287 (2011) [CrossRef]  ]. The results show that our plasmonic structure can find more excellent application in highly integrated optical circuits, especially all-optical switching.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Optical bistability in metal-insulator-metal plasmonic waveguide with nanodisk resonator containing Kerr nonlinear medium

Guoxi Wang, Hua Lu, Xueming Liu, Yongkang Gong, and Leiran Wang
Appl. Opt. 50(27) 5287-5290 (2011)

Supplementary Material (1)

Media 1: MOV (942 KB)     

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved