Abstract

We propose and experimentally demonstrate novel types of composite sequences of half-wave and quarter-wave polarization retarders, permitting operation at either ultrabroad spectral bandwidth or narrow bandwidth. The retarders are composed of stacked standard half-wave retarders and quarter-wave retarders of equal thickness. To our knowledge, these home-built devices outperform all commercially available compound retarders, made of several birefringent materials.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Hecht, Optics, 4th ed. (Addison Wesley, 2002).
  2. D. Grischkowsky, S. r. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
    [CrossRef]
  3. J.-B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31, 265–267 (2006).
    [CrossRef]
  4. S. Hanany, J. Hubmayr, B. R. Johnson, T. Matsumura, P. Oxley, and M. Thibodeau, “Millimeter-wave achromatic half-wave plate,” Appl. Opt. 44, 4666–4670 (2005).
    [CrossRef]
  5. G. Pisano, G. Savini, P. A. R. Ade, V. Haynes, and W. K. Gear, “Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: experimental characterization,” Appl. Opt. 45, 6982–6989 (2006).
    [CrossRef]
  6. T. Matsumura, S. Hanany, P. A. R. Ade, B. R. Johnson, T. J. Jones, P. Jonnalagadda, and G. Savini, “Performance of three- and five-stack achromatic half-wave plates at millimeter wavelengths,” Appl. Opt. 48, 3614–3625 (2009).
    [CrossRef]
  7. Z. Zhuang, Y. J. Kim, and J. S. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett. 76, 3995–3997 (2000).
    [CrossRef]
  8. M. D. Lavrentovich, T. A. Sergan, and J. R. Kelly, “Switchable broadband achromatic half-wave plate with nematic liquid crystals,” Opt. Lett. 29, 1411–1413 (2004).
    [CrossRef]
  9. D. Clarke, “Achromatic halfwave plates and linear polarization rotators,” Opt. Acta 14, 343–350 (1967).
    [CrossRef]
  10. J. M. Beckers, “Achromatic linear retarders,” Appl. Opt. 10, 973–975 (1971).
    [CrossRef]
  11. J. M. Beckers, “Achromatic linear retarders with increased angular aperture,” Appl. Opt. 11, 681–682 (1972).
    [CrossRef]
  12. S. Pancharatnam, “Achromatic combinations of birefringent plates. Part II: an achromatic quarter-wave plate,” Proc. Indian Acad. Sci. XLI, 137–144 (1955).
  13. C. J. Koester, “Achromatic combinations of half-wave plates,” J. Opt. Soc. Am. 49, 405–407 (1959).
    [CrossRef]
  14. A. M. Title, “Improvement of birefringent filters. 2: achromatic waveplates,” Appl. Opt. 14, 229–237 (1975).
    [CrossRef]
  15. C. M. McIntyre and S. E. Harris, “Achromatic wave plates for the visible spectrum,” J. Opt. Soc. Am. 58, 1575–1580 (1968).
    [CrossRef]
  16. A. Ardavan, “Exploiting the Poincaré–Bloch symmetry to design high-fidelity broadband composite linear retarders,” New J. Phys. 9, 24 (2007).
    [CrossRef]
  17. S. Wimperis, “Broadband, narrowband, and passband composite pulses for use in advanced NMR experiments,” J. Magn. Reson., Ser. A 109, 221–231 (1994).
    [CrossRef]
  18. H. Cummins, G. Llewellyn, and J. Jones, “Tackling systematic errors in quantum logic gates with composite rotations,” Phys. Rev. A 67, 042308 (2003).
    [CrossRef]
  19. M. H. Levitt, “Composite pulses,” Prog. Nucl. Magn. Reson. Spectrosc. 18, 61–122 (1986).
    [CrossRef]
  20. S. S. Ivanov, A. A. Rangelov, N. V. Vitanov, T. Peters, and T. Halfmann, “Highly efficient broadband conversion of light polarization by composite retarders,” J. Opt. Soc. Am. A 29, 265–269 (2012).
    [CrossRef]
  21. B. Lyot, “Filter monochromatique polarisant et ses applications en physique solaire,” Ann. Astrophys. (Paris) 7, 32–79 (1944).
  22. I. Šolc, Česk. Časopis Fys. 3, 366 (1953).
  23. J. M. Beckers, L. Dickson, and R. S. Joyce, “Observing the sun with a fully tunable Lyot-Ohman filter,” Appl. Opt. 14, 2061–2066 (1975).
    [CrossRef]
  24. G. A. Kopp, M. J. Derks, D. F. Elmore, D. M. Hassler, J. C. Woods, J. L. Streete, and J. G. Blankner, “Tunable liquid-crystal filter for solar imaging at the He i 1083 nm line,” Appl. Opt. 36, 291–296 (1997).
    [CrossRef]
  25. J. W. Evans, “Solc birefringent filter,” J. Opt. Soc. Am. 48, 142–143 (1958).
    [CrossRef]
  26. I. Šolc, “Birefringent chain filters,” J. Opt. Soc. Am. 55, 621–625 (1965).
    [CrossRef]
  27. A. J. Shaka, “Composite pulses for ultra-broadband spin inversion,” Chem. Phys. Lett. 120, 201–205 (1985).
    [CrossRef]
  28. D. Clarke, “Interference effects in Pancharatnam wave plates,” J. Opt. A Pure Appl. Opt. 6, 1047–1051(2004).
    [CrossRef]
  29. R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31, 488–493 (1941).
    [CrossRef]
  30. G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
    [CrossRef]

2012 (1)

2009 (1)

2007 (1)

A. Ardavan, “Exploiting the Poincaré–Bloch symmetry to design high-fidelity broadband composite linear retarders,” New J. Phys. 9, 24 (2007).
[CrossRef]

2006 (2)

2005 (1)

2004 (2)

2003 (1)

H. Cummins, G. Llewellyn, and J. Jones, “Tackling systematic errors in quantum logic gates with composite rotations,” Phys. Rev. A 67, 042308 (2003).
[CrossRef]

2000 (1)

Z. Zhuang, Y. J. Kim, and J. S. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett. 76, 3995–3997 (2000).
[CrossRef]

1999 (1)

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
[CrossRef]

1997 (1)

1994 (1)

S. Wimperis, “Broadband, narrowband, and passband composite pulses for use in advanced NMR experiments,” J. Magn. Reson., Ser. A 109, 221–231 (1994).
[CrossRef]

1990 (1)

1986 (1)

M. H. Levitt, “Composite pulses,” Prog. Nucl. Magn. Reson. Spectrosc. 18, 61–122 (1986).
[CrossRef]

1985 (1)

A. J. Shaka, “Composite pulses for ultra-broadband spin inversion,” Chem. Phys. Lett. 120, 201–205 (1985).
[CrossRef]

1975 (2)

1972 (1)

1971 (1)

1968 (1)

1967 (1)

D. Clarke, “Achromatic halfwave plates and linear polarization rotators,” Opt. Acta 14, 343–350 (1967).
[CrossRef]

1965 (1)

1959 (1)

1958 (1)

1955 (1)

S. Pancharatnam, “Achromatic combinations of birefringent plates. Part II: an achromatic quarter-wave plate,” Proc. Indian Acad. Sci. XLI, 137–144 (1955).

1953 (1)

I. Šolc, Česk. Časopis Fys. 3, 366 (1953).

1944 (1)

B. Lyot, “Filter monochromatique polarisant et ses applications en physique solaire,” Ann. Astrophys. (Paris) 7, 32–79 (1944).

1941 (1)

Ade, P. A. R.

Ardavan, A.

A. Ardavan, “Exploiting the Poincaré–Bloch symmetry to design high-fidelity broadband composite linear retarders,” New J. Phys. 9, 24 (2007).
[CrossRef]

Beckers, J. M.

Blankner, J. G.

Clarke, D.

D. Clarke, “Interference effects in Pancharatnam wave plates,” J. Opt. A Pure Appl. Opt. 6, 1047–1051(2004).
[CrossRef]

D. Clarke, “Achromatic halfwave plates and linear polarization rotators,” Opt. Acta 14, 343–350 (1967).
[CrossRef]

Cummins, H.

H. Cummins, G. Llewellyn, and J. Jones, “Tackling systematic errors in quantum logic gates with composite rotations,” Phys. Rev. A 67, 042308 (2003).
[CrossRef]

Derks, M. J.

Dickson, L.

Elmore, D. F.

Evans, J. W.

Fattinger, C.

Gallot, G.

Gear, W. K.

Ghosh, G.

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
[CrossRef]

Grischkowsky, D.

Halfmann, T.

Hanany, S.

Harris, S. E.

Hassler, D. M.

Haynes, V.

Hecht, E.

E. Hecht, Optics, 4th ed. (Addison Wesley, 2002).

Hubmayr, J.

Ivanov, S. S.

Johnson, B. R.

Jones, J.

H. Cummins, G. Llewellyn, and J. Jones, “Tackling systematic errors in quantum logic gates with composite rotations,” Phys. Rev. A 67, 042308 (2003).
[CrossRef]

Jones, R. C.

Jones, T. J.

Jonnalagadda, P.

Joyce, R. S.

Keiding, S. r.

Kelly, J. R.

Kim, Y. J.

Z. Zhuang, Y. J. Kim, and J. S. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett. 76, 3995–3997 (2000).
[CrossRef]

Koester, C. J.

Kopp, G. A.

Lavrentovich, M. D.

Levitt, M. H.

M. H. Levitt, “Composite pulses,” Prog. Nucl. Magn. Reson. Spectrosc. 18, 61–122 (1986).
[CrossRef]

Llewellyn, G.

H. Cummins, G. Llewellyn, and J. Jones, “Tackling systematic errors in quantum logic gates with composite rotations,” Phys. Rev. A 67, 042308 (2003).
[CrossRef]

Lyot, B.

B. Lyot, “Filter monochromatique polarisant et ses applications en physique solaire,” Ann. Astrophys. (Paris) 7, 32–79 (1944).

Masson, J.-B.

Matsumura, T.

McIntyre, C. M.

Oxley, P.

Pancharatnam, S.

S. Pancharatnam, “Achromatic combinations of birefringent plates. Part II: an achromatic quarter-wave plate,” Proc. Indian Acad. Sci. XLI, 137–144 (1955).

Patel, J. S.

Z. Zhuang, Y. J. Kim, and J. S. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett. 76, 3995–3997 (2000).
[CrossRef]

Peters, T.

Pisano, G.

Rangelov, A. A.

Savini, G.

Sergan, T. A.

Shaka, A. J.

A. J. Shaka, “Composite pulses for ultra-broadband spin inversion,” Chem. Phys. Lett. 120, 201–205 (1985).
[CrossRef]

Šolc, I.

Streete, J. L.

Thibodeau, M.

Title, A. M.

van Exter, M.

Vitanov, N. V.

Wimperis, S.

S. Wimperis, “Broadband, narrowband, and passband composite pulses for use in advanced NMR experiments,” J. Magn. Reson., Ser. A 109, 221–231 (1994).
[CrossRef]

Woods, J. C.

Zhuang, Z.

Z. Zhuang, Y. J. Kim, and J. S. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett. 76, 3995–3997 (2000).
[CrossRef]

Ann. Astrophys. (Paris) (1)

B. Lyot, “Filter monochromatique polarisant et ses applications en physique solaire,” Ann. Astrophys. (Paris) 7, 32–79 (1944).

Appl. Opt. (8)

Appl. Phys. Lett. (1)

Z. Zhuang, Y. J. Kim, and J. S. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett. 76, 3995–3997 (2000).
[CrossRef]

Cesk. Casopis Fys. (1)

I. Šolc, Česk. Časopis Fys. 3, 366 (1953).

Chem. Phys. Lett. (1)

A. J. Shaka, “Composite pulses for ultra-broadband spin inversion,” Chem. Phys. Lett. 120, 201–205 (1985).
[CrossRef]

J. Magn. Reson., Ser. A (1)

S. Wimperis, “Broadband, narrowband, and passband composite pulses for use in advanced NMR experiments,” J. Magn. Reson., Ser. A 109, 221–231 (1994).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

D. Clarke, “Interference effects in Pancharatnam wave plates,” J. Opt. A Pure Appl. Opt. 6, 1047–1051(2004).
[CrossRef]

J. Opt. Soc. Am. (5)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

New J. Phys. (1)

A. Ardavan, “Exploiting the Poincaré–Bloch symmetry to design high-fidelity broadband composite linear retarders,” New J. Phys. 9, 24 (2007).
[CrossRef]

Opt. Acta (1)

D. Clarke, “Achromatic halfwave plates and linear polarization rotators,” Opt. Acta 14, 343–350 (1967).
[CrossRef]

Opt. Commun. (1)

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

H. Cummins, G. Llewellyn, and J. Jones, “Tackling systematic errors in quantum logic gates with composite rotations,” Phys. Rev. A 67, 042308 (2003).
[CrossRef]

Proc. Indian Acad. Sci. (1)

S. Pancharatnam, “Achromatic combinations of birefringent plates. Part II: an achromatic quarter-wave plate,” Proc. Indian Acad. Sci. XLI, 137–144 (1955).

Prog. Nucl. Magn. Reson. Spectrosc. (1)

M. H. Levitt, “Composite pulses,” Prog. Nucl. Magn. Reson. Spectrosc. 18, 61–122 (1986).
[CrossRef]

Other (1)

E. Hecht, Optics, 4th ed. (Addison Wesley, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Numerically calculated retardations versus phase shift for several HWP and (b) QWP sequences with N=7. The sequences use the values from Table 1. Color coding is as follows: conventional single zero-order wave plate (gray); broadband HWPs/QWPs class (I,II,III) (black solid, blue dashed, red dotted); narrowband HWPs/QWPs class (I,II,III) (magenta solid, dark cyan dashed, orange dotted).

Fig. 2.
Fig. 2.

Numerically calculated deviations of the optical retardation for the HWP sequences shown in Fig. 1(a) versus phase shift. In (a) we plot the deviation from the target retardation φ0 for the broadband sequences. In (b) we plot the deviation from a retardation of zero for the narrowband sequences. Color coding is as in Fig. 1(a). For comparison we show the data for a single conventional wave plate (gray lines).

Fig. 3.
Fig. 3.

Experimental setup. P, polarizer; PM, powermeter; PBS, polarzing beam splitter cube; WP, wave plates; M, mirror. All but the BB1 sequence were tested with this arrangement. To test the BB1 sequence, we slightly changed the setup and placed the PBS and the PM behind the wave plates.

Fig. 4.
Fig. 4.

(a) Measured (symbols) and calculated (lines) conversion efficiencies for several composite broadband HWP (a) and composite broadband QWP sequences. (a) The sequences are single HWP [H] (black, squares); broadband HWPs (orange, triangles; red, rhombs; blue, dots; see Table 2 for details). (b) Single QWP in double-pass configuration [QM] (black, squares); broadband QWP in double-pass configuration (red, dots; see Table 2 for details).

Fig. 5.
Fig. 5.

Measured (symbols) and calculated (lines) conversion efficiencies for several composite narrowband HWP sequences. The sequences are single HWP [H] (black, squares); narrowband HWPs (magenta, stars; dark cyan, dots; see Table 2 for details).

Tables (2)

Tables Icon

Table 1. Calculated Angles (in Degrees) of the Optical Axes of 5N9 Individual Wave Plates to Implement Composite Sequences of Broadband and Narrowband HWPs as well as QWPsa

Tables Icon

Table 2. Angles of the Individual Wave Plates for the Experimentally Tested Sequences as Shown in Figs. 4 and 5 in Degreea

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Jθ(φ)=R(θ)[eiφ/200eiφ/2]R(θ),
R(θ)=[cosθsinθsinθcosθ].
J(N)=JθN(φN)JθN1(φN1)Jθ1(φ1),
[Xθ1Hθ2Hθn1QθnM],
δ=2cos1ReJ11,
max|δ(φ)φ0|Δ,φ[φmin,φ0].
max|δ(φ)|Δ,φ[0,φmax].

Metrics