Abstract

In this work, we study numerically the influence of wavelength-dependent loss on the generation of dispersive waves (DWs) in nonlinear fiber. This kind of loss can be obtained, for instance, by the acousto-optic effect in fiber optics. We show that this loss lowers DW frequency in an opposite way that the Raman effect does. Also, we see that the Raman effect does not change the DW frequency too much when wavelength-dependent loss is included. Finally, we show that the DW frequency is not practically affected by fiber length.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Kaiser, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Syst. Tech. J. 52, 265–269 (1973).
  2. J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
    [CrossRef]
  3. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding: errata,” Opt. Lett. 22, 484–485 (1997).
    [CrossRef]
  4. P. Rigby, “Optics—a photonic crystal fibre,” Nature 396, 415–416 (1998).
    [CrossRef]
  5. J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305–330 (1999).
    [CrossRef]
  6. S. L. Chin, S. Petit, F. Borne, and K. Miyazaki, “The white light supercontinuum is indeed an ultrafast white light laser,” Jpn. J. Appl. Phys. 38, L126–L128 (1999).
    [CrossRef]
  7. T. Hashimoto, H. Sotobayashi, K. Kitayama, and W. Chujo, “Photonic conversion of OC-192OTDM-to-4 x OC-48WDM by supercontinuum generation,” Electron. Lett. 36, 1133–1135 (2000).
    [CrossRef]
  8. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
    [CrossRef]
  9. R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
    [CrossRef]
  10. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
    [CrossRef]
  11. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
    [CrossRef]
  12. S. Coen, A. H. L. Chan, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light supercontinuum generation with 60 ps pump pulses in a photonic crystal fiber,” Opt. Lett. 26, 1356–1358 (2001).
    [CrossRef]
  13. R. A. Herrera, “Influence of acoustic waves on supercontinuum generation in photonic crystal fibers,” Appl. Opt. 51, 2223–2229 (2012).
    [CrossRef]
  14. H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, “All-fiber acousto-optic tunable notch filter with electronically controllable spectra profile,” Opt. Lett. 22, 1476–1478 (1997).
    [CrossRef]
  15. H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6, 428–436 (1988).
    [CrossRef]
  16. K. F. Graff, Wave Motion in Elastic Solids (Clarendon, 1975).
  17. M. D. Nielsen, “Large mode area photonic crystal fibers,” Ph.D. dissertation (Technical University of Denmark, 2004).
  18. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2008).
  19. S. Roy, S. K. Bhadra, and G. P. Agrawal, “Dispersive wave generation in supercontinuum process inside nonlinear microstructured fibre,” Curr. Sci. 100, 321–342 (2011).

2012

2011

S. Roy, S. K. Bhadra, and G. P. Agrawal, “Dispersive wave generation in supercontinuum process inside nonlinear microstructured fibre,” Curr. Sci. 100, 321–342 (2011).

2001

2000

T. Hashimoto, H. Sotobayashi, K. Kitayama, and W. Chujo, “Photonic conversion of OC-192OTDM-to-4 x OC-48WDM by supercontinuum generation,” Electron. Lett. 36, 1133–1135 (2000).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef]

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef]

1999

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305–330 (1999).
[CrossRef]

S. L. Chin, S. Petit, F. Borne, and K. Miyazaki, “The white light supercontinuum is indeed an ultrafast white light laser,” Jpn. J. Appl. Phys. 38, L126–L128 (1999).
[CrossRef]

1998

P. Rigby, “Optics—a photonic crystal fibre,” Nature 396, 415–416 (1998).
[CrossRef]

1997

1996

1988

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6, 428–436 (1988).
[CrossRef]

1973

P. Kaiser, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Syst. Tech. J. 52, 265–269 (1973).

Agrawal, G. P.

S. Roy, S. K. Bhadra, and G. P. Agrawal, “Dispersive wave generation in supercontinuum process inside nonlinear microstructured fibre,” Curr. Sci. 100, 321–342 (2011).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2008).

Atkin, D. M.

Barkou, S. E.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305–330 (1999).
[CrossRef]

Bhadra, S. K.

S. Roy, S. K. Bhadra, and G. P. Agrawal, “Dispersive wave generation in supercontinuum process inside nonlinear microstructured fibre,” Curr. Sci. 100, 321–342 (2011).

Birks, T. A.

Bjarklev, A.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305–330 (1999).
[CrossRef]

Blake, J. N.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6, 428–436 (1988).
[CrossRef]

Borne, F.

S. L. Chin, S. Petit, F. Borne, and K. Miyazaki, “The white light supercontinuum is indeed an ultrafast white light laser,” Jpn. J. Appl. Phys. 38, L126–L128 (1999).
[CrossRef]

Broeng, J.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305–330 (1999).
[CrossRef]

Chan, A. H. L.

Chin, S. L.

S. L. Chin, S. Petit, F. Borne, and K. Miyazaki, “The white light supercontinuum is indeed an ultrafast white light laser,” Jpn. J. Appl. Phys. 38, L126–L128 (1999).
[CrossRef]

Chudoba, C.

Chujo, W.

T. Hashimoto, H. Sotobayashi, K. Kitayama, and W. Chujo, “Photonic conversion of OC-192OTDM-to-4 x OC-48WDM by supercontinuum generation,” Electron. Lett. 36, 1133–1135 (2000).
[CrossRef]

Coen, S.

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef]

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef]

Engan, H. E.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6, 428–436 (1988).
[CrossRef]

Fujimoto, J. G.

Ghanta, R. K.

Graff, K. F.

K. F. Graff, Wave Motion in Elastic Solids (Clarendon, 1975).

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef]

Hansch, T. W.

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef]

Hartl, I.

Harvey, J. D.

Hashimoto, T.

T. Hashimoto, H. Sotobayashi, K. Kitayama, and W. Chujo, “Photonic conversion of OC-192OTDM-to-4 x OC-48WDM by supercontinuum generation,” Electron. Lett. 36, 1133–1135 (2000).
[CrossRef]

Herrera, R. A.

Herrmann, J.

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef]

Holzwarth, R.

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef]

Husakou, A. V.

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef]

Kaiser, P.

P. Kaiser, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Syst. Tech. J. 52, 265–269 (1973).

Kim, B. Y.

H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, “All-fiber acousto-optic tunable notch filter with electronically controllable spectra profile,” Opt. Lett. 22, 1476–1478 (1997).
[CrossRef]

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6, 428–436 (1988).
[CrossRef]

Kim, H. S.

Kitayama, K.

T. Hashimoto, H. Sotobayashi, K. Kitayama, and W. Chujo, “Photonic conversion of OC-192OTDM-to-4 x OC-48WDM by supercontinuum generation,” Electron. Lett. 36, 1133–1135 (2000).
[CrossRef]

Knight, J. C.

Ko, T. H.

Kwang, I. K.

Leonhardt, R.

Li, X. D.

Marcatili, E. A. J.

P. Kaiser, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Syst. Tech. J. 52, 265–269 (1973).

Miller, S. E.

P. Kaiser, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Syst. Tech. J. 52, 265–269 (1973).

Miyazaki, K.

S. L. Chin, S. Petit, F. Borne, and K. Miyazaki, “The white light supercontinuum is indeed an ultrafast white light laser,” Jpn. J. Appl. Phys. 38, L126–L128 (1999).
[CrossRef]

Mogilevstev, D.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305–330 (1999).
[CrossRef]

Nielsen, M. D.

M. D. Nielsen, “Large mode area photonic crystal fibers,” Ph.D. dissertation (Technical University of Denmark, 2004).

Petit, S.

S. L. Chin, S. Petit, F. Borne, and K. Miyazaki, “The white light supercontinuum is indeed an ultrafast white light laser,” Jpn. J. Appl. Phys. 38, L126–L128 (1999).
[CrossRef]

Ranka, J. K.

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef]

Rigby, P.

P. Rigby, “Optics—a photonic crystal fibre,” Nature 396, 415–416 (1998).
[CrossRef]

Roy, S.

S. Roy, S. K. Bhadra, and G. P. Agrawal, “Dispersive wave generation in supercontinuum process inside nonlinear microstructured fibre,” Curr. Sci. 100, 321–342 (2011).

Russell, P. S.

Russell, P. S. J.

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef]

J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding: errata,” Opt. Lett. 22, 484–485 (1997).
[CrossRef]

Russell, P. St. J.

Shaw, H. J.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6, 428–436 (1988).
[CrossRef]

Sotobayashi, H.

T. Hashimoto, H. Sotobayashi, K. Kitayama, and W. Chujo, “Photonic conversion of OC-192OTDM-to-4 x OC-48WDM by supercontinuum generation,” Electron. Lett. 36, 1133–1135 (2000).
[CrossRef]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef]

Udem, T.

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef]

Wadsworth, W. J.

S. Coen, A. H. L. Chan, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light supercontinuum generation with 60 ps pump pulses in a photonic crystal fiber,” Opt. Lett. 26, 1356–1358 (2001).
[CrossRef]

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef]

Windeler, R. S.

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef]

Yun, S. H.

Appl. Opt.

Bell Syst. Tech. J.

P. Kaiser, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Syst. Tech. J. 52, 265–269 (1973).

Curr. Sci.

S. Roy, S. K. Bhadra, and G. P. Agrawal, “Dispersive wave generation in supercontinuum process inside nonlinear microstructured fibre,” Curr. Sci. 100, 321–342 (2011).

Electron. Lett.

T. Hashimoto, H. Sotobayashi, K. Kitayama, and W. Chujo, “Photonic conversion of OC-192OTDM-to-4 x OC-48WDM by supercontinuum generation,” Electron. Lett. 36, 1133–1135 (2000).
[CrossRef]

J. Lightwave Technol.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6, 428–436 (1988).
[CrossRef]

Jpn. J. Appl. Phys.

S. L. Chin, S. Petit, F. Borne, and K. Miyazaki, “The white light supercontinuum is indeed an ultrafast white light laser,” Jpn. J. Appl. Phys. 38, L126–L128 (1999).
[CrossRef]

Nature

P. Rigby, “Optics—a photonic crystal fibre,” Nature 396, 415–416 (1998).
[CrossRef]

Opt. Fiber Technol.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305–330 (1999).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef]

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef]

Science

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef]

Other

K. F. Graff, Wave Motion in Elastic Solids (Clarendon, 1975).

M. D. Nielsen, “Large mode area photonic crystal fibers,” Ph.D. dissertation (Technical University of Denmark, 2004).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

ΔνdTo=(νdνs)To as a function of δ3, including wavelength-dependent loss and Raman effect for fiber length of 5LD, pump wavelength at 835 nm, and λres=940nm.

Fig. 2.
Fig. 2.

ΔνdTo=(νdνs)To as a function of δ3, including wavelength-dependent loss and Raman effect for fiber length of 5LD with pump and resonant wavelength (λres=835nm) the same.

Fig. 3.
Fig. 3.

ΔνdTo=(νdνs)To as a function of δ3, including wavelength-dependent loss and Raman effect for various fiber length of 5LD, pump wavelength at 835 nm, and λres=940nm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

cAct=α(πcextct)1/2(fact)1/2,
η=P2P1=|k|2|k|2+(Δβ2)2sin{(|k|2+(Δβ2)2)1/2L},
Δβ=2π[1Lb(λ)1λa(λ)],
Lb=8ngΛ2/λ,
Az+α(ω)2An2in+1n!βnnATn=iγ(1+iτshockT)(A+R(T)|A(z,TT)|2dT).
R(T)=(1fR)δ(T)+fRhR(T),
τschock=1ω0+ddω[ln(1neff(ω)Aeff(ω))]ω0,
δ3=β36To|β2|.

Metrics