Abstract

A laser induced breakdown spectroscopic (LIBS) system was developed using a 266 nm laser and a high-resolution spectrograph (Andor SR 500 i-A) to detect the trace levels of the highly toxic metals such as lead and chromium present in different brands of talcum powder available in the local market. The strongest atomic transition lines of lead (Pb) (405.7 nm) and chromium (Cr) (425.4 nm) were used as spectral markers to simultaneously detect lead and chromium. The LIBS system was calibrated for these two heavy metals, and the system was able to detect 15–20 parts per million (ppm) of lead and 20–30 ppm of chromium in the talcum powder sample. The limits of detection of the LIBS system were also estimated, and they are 1.96 and 1.72 ppm per million respectively for lead and chromium. This study is highly significant due to the use of cosmetic products that could affect the health of millions of people around the globe.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Hostynek, “Toxic potential from metals absorbed through the skin,” Cosmet. Toilet. 113, 33–43 (1998).
  2. J. J. Hostynek, “Lead, manganese and mercury: metals in personal-care products,” Cosmet. Toilet. Mag. 116(8), 52–65 (2001).
  3. H. E. Gruber, H. C. Gonick, F. Khalil-Manesh, T. V. Sanchez, S. Motsinger, M. Meyer, and C. F. Sharp, “Osteopenia induced by long-term, low- and high-level exposure of the adult rat to lead,” Miner. Electrolyte Metab. 236, 45–73 (1997).
  4. C. Winder, “Reproductive and chromosomal effects of occupational exposure to lead in the male,” Reprod. Toxic. Rev. 7, 221–233 (1989).
  5. J. Schwartz and D. Otto, “Blood lead, hearing thresholds, and neurobehavioral development in children and youth,” Arch. Environ. Health 42, 153–160 (1987).
    [CrossRef]
  6. D. C. Rice, “Behavioral effects of lead in monkeys tested during infancy and adulthood,” Neurotoxicol. Teratol. 14, 235–245 (1992).
    [CrossRef]
  7. National Research Council (US), Measuring Lead Exposure in Infants Children and other Sensitive Populations (National Academy, 1993).
  8. M. A. Smith, L. D. Grant, and A. Sors, Lead Exposure and Child Development: An International Assessment (Kleeven, 1989).
  9. M. D. Cohen, B. Kargacin, C. B. Klein, and M. Costa, “Mechanisms of chromium carcinogenicity and toxicity,” Crit. Rev. Toxicol. 23, 255–281 (1993).
    [CrossRef]
  10. D. Basketter, L. Horev, D. Slodovnik, S. Merimes, A. Trattner, and A. Ingber, “Investigation of the threshold for allergic reactivity to chromium,” Contact Derm. 44, 70–74 (2001).
    [CrossRef]
  11. F. Baruthio, “Toxic effects of chromium and its compounds,” Biol. Trace Elem. Res. 32, 145–153 (1992).
    [CrossRef]
  12. S. Langard, “Chromium carcinogenicity: a review of experimental animal data,” Sci. Total Environ. 71, 341–350 (1988).
    [CrossRef]
  13. D. A. Basketter, G. Briatico-Vangosa, W. Kaestner, C. Lally, and W. J. Bontinck, “Nickel, cobalt and chromium in consumer products: a role in allergic contact dermatitis?” Contact Derm. 28, 15–25 (1993).
    [CrossRef]
  14. D. A. Basketter, G. Angelini, A. Ingber, P. S. Kern, and T. Menné, “Nickel, chromium and cobalt in consumer products: revisiting safe levels in the new millennium,” Contact Derm. 49, 1–7 (2003).
    [CrossRef]
  15. A. Miziolek, V. Palleschi, and I. Schecter, Laser Induced Breakdown Spectroscopy (LIBS): Fundamental and Applications (University Press, 2006).
  16. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
    [CrossRef]
  17. J. Cunat, F. J. Fortes, and J. J. Lasagna, “Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyzer,” Anal. Chim. Acta 633, 38–42 (2009).
    [CrossRef]
  18. R. E. Neuhauser, U. Pannev, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic and fluorescence spectroscopy,” Anal. Chim. Acta. 346, 37–48 (1997).
    [CrossRef]
  19. M. Baudelet, Y. Liu, and M. Richardson, “Microwave-assisted LIBS: Towards a new tool for trace element detection and molecular plasma spectroscopy,” in Laser Applications to Chemical, Security and Environmental Analysis (LACSEA), OSA Technical Digest (CD) (Optical Society of America, 2010), paper LWc3p.
  20. S. Laville, M. Sabsabi, and F. R. Doucet, “Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy (LIBS) coupled with a linear multivariate calibration,” Spectrochim. Acta Part B 62, 1557–1566 (2007).
    [CrossRef]
  21. M. Sabsabi, and R. Russo, “Preface fourth international conference on laser induced plasma spectroscopy and applications (LIBS 2006),” Spectrochim. Acta Part B 62, 1285–1286 (2007).
    [CrossRef]
  22. M. A. Gondal, and T. Hussain, “Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy,” Talanta 71, 73–80 (2007).
    [CrossRef]
  23. M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “Detection of heavy metals in Arabian crude oil residue using laser induced breakdown spectroscopy,” Talanta 72, 642–649 (2007).
    [CrossRef]
  24. T. Hussain and M. A. Gondal, “Monitoring and assessment of toxic metals in Gulf War oil spill contaminated soil using laser-induced breakdown spectroscopy,” Environ. Monit. Assess. 136, 391–399 (2007).
    [CrossRef]
  25. M. A. Gondal, T. Hussain, Z. H. Yamani, and A. H. Bakry, “Study of hazardous metals in iron slag waste using laser induced breakdown spectroscopy,” J. Environ. Sci. Health A 42, 767–775 (2007).
    [CrossRef]
  26. M. A. Gondal, T. Hussain, Z. Ahmad, and A. Bakry, “Detection of contaminants in ore samples using laser induced break down spectroscopy,” J. Environ. Sci. Health A 42, 879–887 (2007).
    [CrossRef]
  27. R. Fantoni, L. Caneve, F. Colao, L. Fornarini, V. Lazic, and V. Spizzichino, “Methodologies for laboratory laser induced breakdown spectroscopy semi-quantitative and quantitative analysis—A review,” Spectrochim. Acta Part B 63, 1097–1108(2008).
    [CrossRef]
  28. E. H. Evans, J. A. Day, C. Palmer, and C. M. Smith, “Advances in atomic spectrometry and related techniques,” J. Anal. At. Spectrom. 25, 760–784 (2010).
    [CrossRef]
  29. O. T. Butler, W. R. L. Cairns, J. M. Cook, and C. M. Davidson, “Atomic spectrometry update. Environmental analysis,” J. Anal. At. Spectrom. 25, 103–141 (2010).
    [CrossRef]
  30. M. N. Shaikh, S. Hafeez, and M. A. Mohammed, “Comparison of zinc and plasma parameters produced by laser-ablation,” Spectrochim. Acta Part B 62, 1311–1320 (2007).
  31. A. Ferrero, and J. J. Laserna, “A theoretical study of atmospheric propagation of laser and return light for stand-off laser induced breakdown spectroscopy purposes,” Spectrochim. Acta Part B 63, 305–311 (2008).
    [CrossRef]
  32. A. De Giacomo, M. Dell’ Aglio, and O. De Pascale, “ns fs-LIBS of copper-based alloys: a different approach,” Appl. Surf. Sci. 253, 7677–7681 (2007).
    [CrossRef]
  33. Y. Seong, Y. Y. Fang, and P. S. Jagdish, “Preliminary evaluation of laser induced breakdown spectroscopy for slurry samples,” Spectrochim. Acta Part B 64, 113–118 (2008).
  34. C. Radivojevic, R. Haisch, S. Niessner, H. Florek, R. Becker, and U. Panne, “Microanalysis by laser-induced plasma spectroscopy in the vacuum ultraviolet,” Anal. Chem. 76, 1648–1656 (2004).
    [CrossRef]
  35. D. M. Gertrg, D. J. Hunter, and D. W. Cramer, “Prospective study of talc use and ovarian cancer,” J. Natl. Cancer Inst. 92, 249–252 (2000).
  36. B. L. Harlow, D. W. Cramer, D. A. Bell, and W. R. Welch, “Perineal exposure to talc and ovarian cancer risk,” Obstet. Gynecol. 80, 19–26 (1992).
  37. S. Karageorgi, M. A. Gates, S. E. Hankinson, and I. De Vivo, “Perineal use of talcum powder and endometrial cancer risk,” Cancer Epidemiol. Biomarkers Prev. 19, 1269–1275 (2010).
    [CrossRef]
  38. P. K. Mills, D. G. Riordan, R. D. Cress, and H. A. Young, “Perineal talc exposure and epithelial ovarian cancer risk in the Central Valley of California,” Int. J. Cancer 112, 458–464 (2004).
    [CrossRef]
  39. K. A. Rosenblatt, N. S. Weiss, K. L. Cushing-Haugen, K. G. Wicklund, and M. A. Rossing, “Genital powder exposure and the risk of epithelial ovarian cancer,” Cancer Causes Control 22, 737–742 (2011).
    [CrossRef]
  40. NIST Atomic spectra database http://www.nist.gov/physlab/data/asd.cfm .

2011

K. A. Rosenblatt, N. S. Weiss, K. L. Cushing-Haugen, K. G. Wicklund, and M. A. Rossing, “Genital powder exposure and the risk of epithelial ovarian cancer,” Cancer Causes Control 22, 737–742 (2011).
[CrossRef]

2010

S. Karageorgi, M. A. Gates, S. E. Hankinson, and I. De Vivo, “Perineal use of talcum powder and endometrial cancer risk,” Cancer Epidemiol. Biomarkers Prev. 19, 1269–1275 (2010).
[CrossRef]

E. H. Evans, J. A. Day, C. Palmer, and C. M. Smith, “Advances in atomic spectrometry and related techniques,” J. Anal. At. Spectrom. 25, 760–784 (2010).
[CrossRef]

O. T. Butler, W. R. L. Cairns, J. M. Cook, and C. M. Davidson, “Atomic spectrometry update. Environmental analysis,” J. Anal. At. Spectrom. 25, 103–141 (2010).
[CrossRef]

2009

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

J. Cunat, F. J. Fortes, and J. J. Lasagna, “Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyzer,” Anal. Chim. Acta 633, 38–42 (2009).
[CrossRef]

2008

R. Fantoni, L. Caneve, F. Colao, L. Fornarini, V. Lazic, and V. Spizzichino, “Methodologies for laboratory laser induced breakdown spectroscopy semi-quantitative and quantitative analysis—A review,” Spectrochim. Acta Part B 63, 1097–1108(2008).
[CrossRef]

Y. Seong, Y. Y. Fang, and P. S. Jagdish, “Preliminary evaluation of laser induced breakdown spectroscopy for slurry samples,” Spectrochim. Acta Part B 64, 113–118 (2008).

A. Ferrero, and J. J. Laserna, “A theoretical study of atmospheric propagation of laser and return light for stand-off laser induced breakdown spectroscopy purposes,” Spectrochim. Acta Part B 63, 305–311 (2008).
[CrossRef]

2007

A. De Giacomo, M. Dell’ Aglio, and O. De Pascale, “ns fs-LIBS of copper-based alloys: a different approach,” Appl. Surf. Sci. 253, 7677–7681 (2007).
[CrossRef]

M. N. Shaikh, S. Hafeez, and M. A. Mohammed, “Comparison of zinc and plasma parameters produced by laser-ablation,” Spectrochim. Acta Part B 62, 1311–1320 (2007).

S. Laville, M. Sabsabi, and F. R. Doucet, “Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy (LIBS) coupled with a linear multivariate calibration,” Spectrochim. Acta Part B 62, 1557–1566 (2007).
[CrossRef]

M. Sabsabi, and R. Russo, “Preface fourth international conference on laser induced plasma spectroscopy and applications (LIBS 2006),” Spectrochim. Acta Part B 62, 1285–1286 (2007).
[CrossRef]

M. A. Gondal, and T. Hussain, “Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy,” Talanta 71, 73–80 (2007).
[CrossRef]

M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “Detection of heavy metals in Arabian crude oil residue using laser induced breakdown spectroscopy,” Talanta 72, 642–649 (2007).
[CrossRef]

T. Hussain and M. A. Gondal, “Monitoring and assessment of toxic metals in Gulf War oil spill contaminated soil using laser-induced breakdown spectroscopy,” Environ. Monit. Assess. 136, 391–399 (2007).
[CrossRef]

M. A. Gondal, T. Hussain, Z. H. Yamani, and A. H. Bakry, “Study of hazardous metals in iron slag waste using laser induced breakdown spectroscopy,” J. Environ. Sci. Health A 42, 767–775 (2007).
[CrossRef]

M. A. Gondal, T. Hussain, Z. Ahmad, and A. Bakry, “Detection of contaminants in ore samples using laser induced break down spectroscopy,” J. Environ. Sci. Health A 42, 879–887 (2007).
[CrossRef]

2004

C. Radivojevic, R. Haisch, S. Niessner, H. Florek, R. Becker, and U. Panne, “Microanalysis by laser-induced plasma spectroscopy in the vacuum ultraviolet,” Anal. Chem. 76, 1648–1656 (2004).
[CrossRef]

P. K. Mills, D. G. Riordan, R. D. Cress, and H. A. Young, “Perineal talc exposure and epithelial ovarian cancer risk in the Central Valley of California,” Int. J. Cancer 112, 458–464 (2004).
[CrossRef]

2003

D. A. Basketter, G. Angelini, A. Ingber, P. S. Kern, and T. Menné, “Nickel, chromium and cobalt in consumer products: revisiting safe levels in the new millennium,” Contact Derm. 49, 1–7 (2003).
[CrossRef]

2001

J. J. Hostynek, “Lead, manganese and mercury: metals in personal-care products,” Cosmet. Toilet. Mag. 116(8), 52–65 (2001).

D. Basketter, L. Horev, D. Slodovnik, S. Merimes, A. Trattner, and A. Ingber, “Investigation of the threshold for allergic reactivity to chromium,” Contact Derm. 44, 70–74 (2001).
[CrossRef]

2000

D. M. Gertrg, D. J. Hunter, and D. W. Cramer, “Prospective study of talc use and ovarian cancer,” J. Natl. Cancer Inst. 92, 249–252 (2000).

1998

J. J. Hostynek, “Toxic potential from metals absorbed through the skin,” Cosmet. Toilet. 113, 33–43 (1998).

1997

H. E. Gruber, H. C. Gonick, F. Khalil-Manesh, T. V. Sanchez, S. Motsinger, M. Meyer, and C. F. Sharp, “Osteopenia induced by long-term, low- and high-level exposure of the adult rat to lead,” Miner. Electrolyte Metab. 236, 45–73 (1997).

R. E. Neuhauser, U. Pannev, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic and fluorescence spectroscopy,” Anal. Chim. Acta. 346, 37–48 (1997).
[CrossRef]

1993

M. D. Cohen, B. Kargacin, C. B. Klein, and M. Costa, “Mechanisms of chromium carcinogenicity and toxicity,” Crit. Rev. Toxicol. 23, 255–281 (1993).
[CrossRef]

D. A. Basketter, G. Briatico-Vangosa, W. Kaestner, C. Lally, and W. J. Bontinck, “Nickel, cobalt and chromium in consumer products: a role in allergic contact dermatitis?” Contact Derm. 28, 15–25 (1993).
[CrossRef]

1992

D. C. Rice, “Behavioral effects of lead in monkeys tested during infancy and adulthood,” Neurotoxicol. Teratol. 14, 235–245 (1992).
[CrossRef]

F. Baruthio, “Toxic effects of chromium and its compounds,” Biol. Trace Elem. Res. 32, 145–153 (1992).
[CrossRef]

B. L. Harlow, D. W. Cramer, D. A. Bell, and W. R. Welch, “Perineal exposure to talc and ovarian cancer risk,” Obstet. Gynecol. 80, 19–26 (1992).

1989

C. Winder, “Reproductive and chromosomal effects of occupational exposure to lead in the male,” Reprod. Toxic. Rev. 7, 221–233 (1989).

1988

S. Langard, “Chromium carcinogenicity: a review of experimental animal data,” Sci. Total Environ. 71, 341–350 (1988).
[CrossRef]

1987

J. Schwartz and D. Otto, “Blood lead, hearing thresholds, and neurobehavioral development in children and youth,” Arch. Environ. Health 42, 153–160 (1987).
[CrossRef]

Ahmad, Z.

M. A. Gondal, T. Hussain, Z. Ahmad, and A. Bakry, “Detection of contaminants in ore samples using laser induced break down spectroscopy,” J. Environ. Sci. Health A 42, 879–887 (2007).
[CrossRef]

Angelini, G.

D. A. Basketter, G. Angelini, A. Ingber, P. S. Kern, and T. Menné, “Nickel, chromium and cobalt in consumer products: revisiting safe levels in the new millennium,” Contact Derm. 49, 1–7 (2003).
[CrossRef]

Baig, M. A.

M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “Detection of heavy metals in Arabian crude oil residue using laser induced breakdown spectroscopy,” Talanta 72, 642–649 (2007).
[CrossRef]

Bakry, A.

M. A. Gondal, T. Hussain, Z. Ahmad, and A. Bakry, “Detection of contaminants in ore samples using laser induced break down spectroscopy,” J. Environ. Sci. Health A 42, 879–887 (2007).
[CrossRef]

Bakry, A. H.

M. A. Gondal, T. Hussain, Z. H. Yamani, and A. H. Bakry, “Study of hazardous metals in iron slag waste using laser induced breakdown spectroscopy,” J. Environ. Sci. Health A 42, 767–775 (2007).
[CrossRef]

Baruthio, F.

F. Baruthio, “Toxic effects of chromium and its compounds,” Biol. Trace Elem. Res. 32, 145–153 (1992).
[CrossRef]

Basketter, D.

D. Basketter, L. Horev, D. Slodovnik, S. Merimes, A. Trattner, and A. Ingber, “Investigation of the threshold for allergic reactivity to chromium,” Contact Derm. 44, 70–74 (2001).
[CrossRef]

Basketter, D. A.

D. A. Basketter, G. Angelini, A. Ingber, P. S. Kern, and T. Menné, “Nickel, chromium and cobalt in consumer products: revisiting safe levels in the new millennium,” Contact Derm. 49, 1–7 (2003).
[CrossRef]

D. A. Basketter, G. Briatico-Vangosa, W. Kaestner, C. Lally, and W. J. Bontinck, “Nickel, cobalt and chromium in consumer products: a role in allergic contact dermatitis?” Contact Derm. 28, 15–25 (1993).
[CrossRef]

Baudelet, M.

M. Baudelet, Y. Liu, and M. Richardson, “Microwave-assisted LIBS: Towards a new tool for trace element detection and molecular plasma spectroscopy,” in Laser Applications to Chemical, Security and Environmental Analysis (LACSEA), OSA Technical Digest (CD) (Optical Society of America, 2010), paper LWc3p.

Becker, R.

C. Radivojevic, R. Haisch, S. Niessner, H. Florek, R. Becker, and U. Panne, “Microanalysis by laser-induced plasma spectroscopy in the vacuum ultraviolet,” Anal. Chem. 76, 1648–1656 (2004).
[CrossRef]

Bell, D. A.

B. L. Harlow, D. W. Cramer, D. A. Bell, and W. R. Welch, “Perineal exposure to talc and ovarian cancer risk,” Obstet. Gynecol. 80, 19–26 (1992).

Bontinck, W. J.

D. A. Basketter, G. Briatico-Vangosa, W. Kaestner, C. Lally, and W. J. Bontinck, “Nickel, cobalt and chromium in consumer products: a role in allergic contact dermatitis?” Contact Derm. 28, 15–25 (1993).
[CrossRef]

Briatico-Vangosa, G.

D. A. Basketter, G. Briatico-Vangosa, W. Kaestner, C. Lally, and W. J. Bontinck, “Nickel, cobalt and chromium in consumer products: a role in allergic contact dermatitis?” Contact Derm. 28, 15–25 (1993).
[CrossRef]

Butler, O. T.

O. T. Butler, W. R. L. Cairns, J. M. Cook, and C. M. Davidson, “Atomic spectrometry update. Environmental analysis,” J. Anal. At. Spectrom. 25, 103–141 (2010).
[CrossRef]

Cairns, W. R. L.

O. T. Butler, W. R. L. Cairns, J. M. Cook, and C. M. Davidson, “Atomic spectrometry update. Environmental analysis,” J. Anal. At. Spectrom. 25, 103–141 (2010).
[CrossRef]

Caneve, L.

R. Fantoni, L. Caneve, F. Colao, L. Fornarini, V. Lazic, and V. Spizzichino, “Methodologies for laboratory laser induced breakdown spectroscopy semi-quantitative and quantitative analysis—A review,” Spectrochim. Acta Part B 63, 1097–1108(2008).
[CrossRef]

Cavalli, P.

R. E. Neuhauser, U. Pannev, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic and fluorescence spectroscopy,” Anal. Chim. Acta. 346, 37–48 (1997).
[CrossRef]

Cohen, M. D.

M. D. Cohen, B. Kargacin, C. B. Klein, and M. Costa, “Mechanisms of chromium carcinogenicity and toxicity,” Crit. Rev. Toxicol. 23, 255–281 (1993).
[CrossRef]

Colao, F.

R. Fantoni, L. Caneve, F. Colao, L. Fornarini, V. Lazic, and V. Spizzichino, “Methodologies for laboratory laser induced breakdown spectroscopy semi-quantitative and quantitative analysis—A review,” Spectrochim. Acta Part B 63, 1097–1108(2008).
[CrossRef]

Cook, J. M.

O. T. Butler, W. R. L. Cairns, J. M. Cook, and C. M. Davidson, “Atomic spectrometry update. Environmental analysis,” J. Anal. At. Spectrom. 25, 103–141 (2010).
[CrossRef]

Costa, M.

M. D. Cohen, B. Kargacin, C. B. Klein, and M. Costa, “Mechanisms of chromium carcinogenicity and toxicity,” Crit. Rev. Toxicol. 23, 255–281 (1993).
[CrossRef]

Cramer, D. W.

D. M. Gertrg, D. J. Hunter, and D. W. Cramer, “Prospective study of talc use and ovarian cancer,” J. Natl. Cancer Inst. 92, 249–252 (2000).

B. L. Harlow, D. W. Cramer, D. A. Bell, and W. R. Welch, “Perineal exposure to talc and ovarian cancer risk,” Obstet. Gynecol. 80, 19–26 (1992).

Cress, R. D.

P. K. Mills, D. G. Riordan, R. D. Cress, and H. A. Young, “Perineal talc exposure and epithelial ovarian cancer risk in the Central Valley of California,” Int. J. Cancer 112, 458–464 (2004).
[CrossRef]

Cunat, J.

J. Cunat, F. J. Fortes, and J. J. Lasagna, “Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyzer,” Anal. Chim. Acta 633, 38–42 (2009).
[CrossRef]

Cushing-Haugen, K. L.

K. A. Rosenblatt, N. S. Weiss, K. L. Cushing-Haugen, K. G. Wicklund, and M. A. Rossing, “Genital powder exposure and the risk of epithelial ovarian cancer,” Cancer Causes Control 22, 737–742 (2011).
[CrossRef]

Davidson, C. M.

O. T. Butler, W. R. L. Cairns, J. M. Cook, and C. M. Davidson, “Atomic spectrometry update. Environmental analysis,” J. Anal. At. Spectrom. 25, 103–141 (2010).
[CrossRef]

Day, J. A.

E. H. Evans, J. A. Day, C. Palmer, and C. M. Smith, “Advances in atomic spectrometry and related techniques,” J. Anal. At. Spectrom. 25, 760–784 (2010).
[CrossRef]

De Giacomo, A.

A. De Giacomo, M. Dell’ Aglio, and O. De Pascale, “ns fs-LIBS of copper-based alloys: a different approach,” Appl. Surf. Sci. 253, 7677–7681 (2007).
[CrossRef]

De Lucia, F. C.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

De Pascale, O.

A. De Giacomo, M. Dell’ Aglio, and O. De Pascale, “ns fs-LIBS of copper-based alloys: a different approach,” Appl. Surf. Sci. 253, 7677–7681 (2007).
[CrossRef]

De Vivo, I.

S. Karageorgi, M. A. Gates, S. E. Hankinson, and I. De Vivo, “Perineal use of talcum powder and endometrial cancer risk,” Cancer Epidemiol. Biomarkers Prev. 19, 1269–1275 (2010).
[CrossRef]

Dell’ Aglio, M.

A. De Giacomo, M. Dell’ Aglio, and O. De Pascale, “ns fs-LIBS of copper-based alloys: a different approach,” Appl. Surf. Sci. 253, 7677–7681 (2007).
[CrossRef]

Doucet, F. R.

S. Laville, M. Sabsabi, and F. R. Doucet, “Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy (LIBS) coupled with a linear multivariate calibration,” Spectrochim. Acta Part B 62, 1557–1566 (2007).
[CrossRef]

Evans, E. H.

E. H. Evans, J. A. Day, C. Palmer, and C. M. Smith, “Advances in atomic spectrometry and related techniques,” J. Anal. At. Spectrom. 25, 760–784 (2010).
[CrossRef]

Fang, Y. Y.

Y. Seong, Y. Y. Fang, and P. S. Jagdish, “Preliminary evaluation of laser induced breakdown spectroscopy for slurry samples,” Spectrochim. Acta Part B 64, 113–118 (2008).

Fantoni, R.

R. Fantoni, L. Caneve, F. Colao, L. Fornarini, V. Lazic, and V. Spizzichino, “Methodologies for laboratory laser induced breakdown spectroscopy semi-quantitative and quantitative analysis—A review,” Spectrochim. Acta Part B 63, 1097–1108(2008).
[CrossRef]

Ferrero, A.

A. Ferrero, and J. J. Laserna, “A theoretical study of atmospheric propagation of laser and return light for stand-off laser induced breakdown spectroscopy purposes,” Spectrochim. Acta Part B 63, 305–311 (2008).
[CrossRef]

Florek, H.

C. Radivojevic, R. Haisch, S. Niessner, H. Florek, R. Becker, and U. Panne, “Microanalysis by laser-induced plasma spectroscopy in the vacuum ultraviolet,” Anal. Chem. 76, 1648–1656 (2004).
[CrossRef]

Fornarini, L.

R. Fantoni, L. Caneve, F. Colao, L. Fornarini, V. Lazic, and V. Spizzichino, “Methodologies for laboratory laser induced breakdown spectroscopy semi-quantitative and quantitative analysis—A review,” Spectrochim. Acta Part B 63, 1097–1108(2008).
[CrossRef]

Fortes, F. J.

J. Cunat, F. J. Fortes, and J. J. Lasagna, “Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyzer,” Anal. Chim. Acta 633, 38–42 (2009).
[CrossRef]

Gates, M. A.

S. Karageorgi, M. A. Gates, S. E. Hankinson, and I. De Vivo, “Perineal use of talcum powder and endometrial cancer risk,” Cancer Epidemiol. Biomarkers Prev. 19, 1269–1275 (2010).
[CrossRef]

Gertrg, D. M.

D. M. Gertrg, D. J. Hunter, and D. W. Cramer, “Prospective study of talc use and ovarian cancer,” J. Natl. Cancer Inst. 92, 249–252 (2000).

Gondal, M. A.

M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “Detection of heavy metals in Arabian crude oil residue using laser induced breakdown spectroscopy,” Talanta 72, 642–649 (2007).
[CrossRef]

T. Hussain and M. A. Gondal, “Monitoring and assessment of toxic metals in Gulf War oil spill contaminated soil using laser-induced breakdown spectroscopy,” Environ. Monit. Assess. 136, 391–399 (2007).
[CrossRef]

M. A. Gondal, and T. Hussain, “Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy,” Talanta 71, 73–80 (2007).
[CrossRef]

M. A. Gondal, T. Hussain, Z. Ahmad, and A. Bakry, “Detection of contaminants in ore samples using laser induced break down spectroscopy,” J. Environ. Sci. Health A 42, 879–887 (2007).
[CrossRef]

M. A. Gondal, T. Hussain, Z. H. Yamani, and A. H. Bakry, “Study of hazardous metals in iron slag waste using laser induced breakdown spectroscopy,” J. Environ. Sci. Health A 42, 767–775 (2007).
[CrossRef]

Gonick, H. C.

H. E. Gruber, H. C. Gonick, F. Khalil-Manesh, T. V. Sanchez, S. Motsinger, M. Meyer, and C. F. Sharp, “Osteopenia induced by long-term, low- and high-level exposure of the adult rat to lead,” Miner. Electrolyte Metab. 236, 45–73 (1997).

Gottfried, J. L.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

Grant, L. D.

M. A. Smith, L. D. Grant, and A. Sors, Lead Exposure and Child Development: An International Assessment (Kleeven, 1989).

Gruber, H. E.

H. E. Gruber, H. C. Gonick, F. Khalil-Manesh, T. V. Sanchez, S. Motsinger, M. Meyer, and C. F. Sharp, “Osteopenia induced by long-term, low- and high-level exposure of the adult rat to lead,” Miner. Electrolyte Metab. 236, 45–73 (1997).

Hafeez, S.

M. N. Shaikh, S. Hafeez, and M. A. Mohammed, “Comparison of zinc and plasma parameters produced by laser-ablation,” Spectrochim. Acta Part B 62, 1311–1320 (2007).

Haisch, R.

C. Radivojevic, R. Haisch, S. Niessner, H. Florek, R. Becker, and U. Panne, “Microanalysis by laser-induced plasma spectroscopy in the vacuum ultraviolet,” Anal. Chem. 76, 1648–1656 (2004).
[CrossRef]

Hankinson, S. E.

S. Karageorgi, M. A. Gates, S. E. Hankinson, and I. De Vivo, “Perineal use of talcum powder and endometrial cancer risk,” Cancer Epidemiol. Biomarkers Prev. 19, 1269–1275 (2010).
[CrossRef]

Harlow, B. L.

B. L. Harlow, D. W. Cramer, D. A. Bell, and W. R. Welch, “Perineal exposure to talc and ovarian cancer risk,” Obstet. Gynecol. 80, 19–26 (1992).

Horev, L.

D. Basketter, L. Horev, D. Slodovnik, S. Merimes, A. Trattner, and A. Ingber, “Investigation of the threshold for allergic reactivity to chromium,” Contact Derm. 44, 70–74 (2001).
[CrossRef]

Hostynek, J. J.

J. J. Hostynek, “Lead, manganese and mercury: metals in personal-care products,” Cosmet. Toilet. Mag. 116(8), 52–65 (2001).

J. J. Hostynek, “Toxic potential from metals absorbed through the skin,” Cosmet. Toilet. 113, 33–43 (1998).

Hunter, D. J.

D. M. Gertrg, D. J. Hunter, and D. W. Cramer, “Prospective study of talc use and ovarian cancer,” J. Natl. Cancer Inst. 92, 249–252 (2000).

Hussain, T.

M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “Detection of heavy metals in Arabian crude oil residue using laser induced breakdown spectroscopy,” Talanta 72, 642–649 (2007).
[CrossRef]

T. Hussain and M. A. Gondal, “Monitoring and assessment of toxic metals in Gulf War oil spill contaminated soil using laser-induced breakdown spectroscopy,” Environ. Monit. Assess. 136, 391–399 (2007).
[CrossRef]

M. A. Gondal, and T. Hussain, “Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy,” Talanta 71, 73–80 (2007).
[CrossRef]

M. A. Gondal, T. Hussain, Z. H. Yamani, and A. H. Bakry, “Study of hazardous metals in iron slag waste using laser induced breakdown spectroscopy,” J. Environ. Sci. Health A 42, 767–775 (2007).
[CrossRef]

M. A. Gondal, T. Hussain, Z. Ahmad, and A. Bakry, “Detection of contaminants in ore samples using laser induced break down spectroscopy,” J. Environ. Sci. Health A 42, 879–887 (2007).
[CrossRef]

Ingber, A.

D. A. Basketter, G. Angelini, A. Ingber, P. S. Kern, and T. Menné, “Nickel, chromium and cobalt in consumer products: revisiting safe levels in the new millennium,” Contact Derm. 49, 1–7 (2003).
[CrossRef]

D. Basketter, L. Horev, D. Slodovnik, S. Merimes, A. Trattner, and A. Ingber, “Investigation of the threshold for allergic reactivity to chromium,” Contact Derm. 44, 70–74 (2001).
[CrossRef]

Jagdish, P. S.

Y. Seong, Y. Y. Fang, and P. S. Jagdish, “Preliminary evaluation of laser induced breakdown spectroscopy for slurry samples,” Spectrochim. Acta Part B 64, 113–118 (2008).

Kaestner, W.

D. A. Basketter, G. Briatico-Vangosa, W. Kaestner, C. Lally, and W. J. Bontinck, “Nickel, cobalt and chromium in consumer products: a role in allergic contact dermatitis?” Contact Derm. 28, 15–25 (1993).
[CrossRef]

Karageorgi, S.

S. Karageorgi, M. A. Gates, S. E. Hankinson, and I. De Vivo, “Perineal use of talcum powder and endometrial cancer risk,” Cancer Epidemiol. Biomarkers Prev. 19, 1269–1275 (2010).
[CrossRef]

Kargacin, B.

M. D. Cohen, B. Kargacin, C. B. Klein, and M. Costa, “Mechanisms of chromium carcinogenicity and toxicity,” Crit. Rev. Toxicol. 23, 255–281 (1993).
[CrossRef]

Kern, P. S.

D. A. Basketter, G. Angelini, A. Ingber, P. S. Kern, and T. Menné, “Nickel, chromium and cobalt in consumer products: revisiting safe levels in the new millennium,” Contact Derm. 49, 1–7 (2003).
[CrossRef]

Khalil-Manesh, F.

H. E. Gruber, H. C. Gonick, F. Khalil-Manesh, T. V. Sanchez, S. Motsinger, M. Meyer, and C. F. Sharp, “Osteopenia induced by long-term, low- and high-level exposure of the adult rat to lead,” Miner. Electrolyte Metab. 236, 45–73 (1997).

Klein, C. B.

M. D. Cohen, B. Kargacin, C. B. Klein, and M. Costa, “Mechanisms of chromium carcinogenicity and toxicity,” Crit. Rev. Toxicol. 23, 255–281 (1993).
[CrossRef]

Lally, C.

D. A. Basketter, G. Briatico-Vangosa, W. Kaestner, C. Lally, and W. J. Bontinck, “Nickel, cobalt and chromium in consumer products: a role in allergic contact dermatitis?” Contact Derm. 28, 15–25 (1993).
[CrossRef]

Langard, S.

S. Langard, “Chromium carcinogenicity: a review of experimental animal data,” Sci. Total Environ. 71, 341–350 (1988).
[CrossRef]

Lasagna, J. J.

J. Cunat, F. J. Fortes, and J. J. Lasagna, “Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyzer,” Anal. Chim. Acta 633, 38–42 (2009).
[CrossRef]

Laserna, J. J.

A. Ferrero, and J. J. Laserna, “A theoretical study of atmospheric propagation of laser and return light for stand-off laser induced breakdown spectroscopy purposes,” Spectrochim. Acta Part B 63, 305–311 (2008).
[CrossRef]

Laville, S.

S. Laville, M. Sabsabi, and F. R. Doucet, “Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy (LIBS) coupled with a linear multivariate calibration,” Spectrochim. Acta Part B 62, 1557–1566 (2007).
[CrossRef]

Lazic, V.

R. Fantoni, L. Caneve, F. Colao, L. Fornarini, V. Lazic, and V. Spizzichino, “Methodologies for laboratory laser induced breakdown spectroscopy semi-quantitative and quantitative analysis—A review,” Spectrochim. Acta Part B 63, 1097–1108(2008).
[CrossRef]

Liu, Y.

M. Baudelet, Y. Liu, and M. Richardson, “Microwave-assisted LIBS: Towards a new tool for trace element detection and molecular plasma spectroscopy,” in Laser Applications to Chemical, Security and Environmental Analysis (LACSEA), OSA Technical Digest (CD) (Optical Society of America, 2010), paper LWc3p.

Menné, T.

D. A. Basketter, G. Angelini, A. Ingber, P. S. Kern, and T. Menné, “Nickel, chromium and cobalt in consumer products: revisiting safe levels in the new millennium,” Contact Derm. 49, 1–7 (2003).
[CrossRef]

Merimes, S.

D. Basketter, L. Horev, D. Slodovnik, S. Merimes, A. Trattner, and A. Ingber, “Investigation of the threshold for allergic reactivity to chromium,” Contact Derm. 44, 70–74 (2001).
[CrossRef]

Meyer, M.

H. E. Gruber, H. C. Gonick, F. Khalil-Manesh, T. V. Sanchez, S. Motsinger, M. Meyer, and C. F. Sharp, “Osteopenia induced by long-term, low- and high-level exposure of the adult rat to lead,” Miner. Electrolyte Metab. 236, 45–73 (1997).

Mills, P. K.

P. K. Mills, D. G. Riordan, R. D. Cress, and H. A. Young, “Perineal talc exposure and epithelial ovarian cancer risk in the Central Valley of California,” Int. J. Cancer 112, 458–464 (2004).
[CrossRef]

Miziolek, A.

A. Miziolek, V. Palleschi, and I. Schecter, Laser Induced Breakdown Spectroscopy (LIBS): Fundamental and Applications (University Press, 2006).

Miziolek, A. W.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

Mohammed, M. A.

M. N. Shaikh, S. Hafeez, and M. A. Mohammed, “Comparison of zinc and plasma parameters produced by laser-ablation,” Spectrochim. Acta Part B 62, 1311–1320 (2007).

Motsinger, S.

H. E. Gruber, H. C. Gonick, F. Khalil-Manesh, T. V. Sanchez, S. Motsinger, M. Meyer, and C. F. Sharp, “Osteopenia induced by long-term, low- and high-level exposure of the adult rat to lead,” Miner. Electrolyte Metab. 236, 45–73 (1997).

Munson, C. A.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

Neuhauser, R. E.

R. E. Neuhauser, U. Pannev, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic and fluorescence spectroscopy,” Anal. Chim. Acta. 346, 37–48 (1997).
[CrossRef]

Niessner, R.

R. E. Neuhauser, U. Pannev, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic and fluorescence spectroscopy,” Anal. Chim. Acta. 346, 37–48 (1997).
[CrossRef]

Niessner, S.

C. Radivojevic, R. Haisch, S. Niessner, H. Florek, R. Becker, and U. Panne, “Microanalysis by laser-induced plasma spectroscopy in the vacuum ultraviolet,” Anal. Chem. 76, 1648–1656 (2004).
[CrossRef]

Omenetto, N.

R. E. Neuhauser, U. Pannev, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic and fluorescence spectroscopy,” Anal. Chim. Acta. 346, 37–48 (1997).
[CrossRef]

Otto, D.

J. Schwartz and D. Otto, “Blood lead, hearing thresholds, and neurobehavioral development in children and youth,” Arch. Environ. Health 42, 153–160 (1987).
[CrossRef]

Palleschi, V.

A. Miziolek, V. Palleschi, and I. Schecter, Laser Induced Breakdown Spectroscopy (LIBS): Fundamental and Applications (University Press, 2006).

Palmer, C.

E. H. Evans, J. A. Day, C. Palmer, and C. M. Smith, “Advances in atomic spectrometry and related techniques,” J. Anal. At. Spectrom. 25, 760–784 (2010).
[CrossRef]

Panne, U.

C. Radivojevic, R. Haisch, S. Niessner, H. Florek, R. Becker, and U. Panne, “Microanalysis by laser-induced plasma spectroscopy in the vacuum ultraviolet,” Anal. Chem. 76, 1648–1656 (2004).
[CrossRef]

Pannev, U.

R. E. Neuhauser, U. Pannev, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic and fluorescence spectroscopy,” Anal. Chim. Acta. 346, 37–48 (1997).
[CrossRef]

Petrucci, G. A.

R. E. Neuhauser, U. Pannev, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic and fluorescence spectroscopy,” Anal. Chim. Acta. 346, 37–48 (1997).
[CrossRef]

Radivojevic, C.

C. Radivojevic, R. Haisch, S. Niessner, H. Florek, R. Becker, and U. Panne, “Microanalysis by laser-induced plasma spectroscopy in the vacuum ultraviolet,” Anal. Chem. 76, 1648–1656 (2004).
[CrossRef]

Rice, D. C.

D. C. Rice, “Behavioral effects of lead in monkeys tested during infancy and adulthood,” Neurotoxicol. Teratol. 14, 235–245 (1992).
[CrossRef]

Richardson, M.

M. Baudelet, Y. Liu, and M. Richardson, “Microwave-assisted LIBS: Towards a new tool for trace element detection and molecular plasma spectroscopy,” in Laser Applications to Chemical, Security and Environmental Analysis (LACSEA), OSA Technical Digest (CD) (Optical Society of America, 2010), paper LWc3p.

Riordan, D. G.

P. K. Mills, D. G. Riordan, R. D. Cress, and H. A. Young, “Perineal talc exposure and epithelial ovarian cancer risk in the Central Valley of California,” Int. J. Cancer 112, 458–464 (2004).
[CrossRef]

Rosenblatt, K. A.

K. A. Rosenblatt, N. S. Weiss, K. L. Cushing-Haugen, K. G. Wicklund, and M. A. Rossing, “Genital powder exposure and the risk of epithelial ovarian cancer,” Cancer Causes Control 22, 737–742 (2011).
[CrossRef]

Rossing, M. A.

K. A. Rosenblatt, N. S. Weiss, K. L. Cushing-Haugen, K. G. Wicklund, and M. A. Rossing, “Genital powder exposure and the risk of epithelial ovarian cancer,” Cancer Causes Control 22, 737–742 (2011).
[CrossRef]

Russo, R.

M. Sabsabi, and R. Russo, “Preface fourth international conference on laser induced plasma spectroscopy and applications (LIBS 2006),” Spectrochim. Acta Part B 62, 1285–1286 (2007).
[CrossRef]

Sabsabi, M.

M. Sabsabi, and R. Russo, “Preface fourth international conference on laser induced plasma spectroscopy and applications (LIBS 2006),” Spectrochim. Acta Part B 62, 1285–1286 (2007).
[CrossRef]

S. Laville, M. Sabsabi, and F. R. Doucet, “Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy (LIBS) coupled with a linear multivariate calibration,” Spectrochim. Acta Part B 62, 1557–1566 (2007).
[CrossRef]

Sanchez, T. V.

H. E. Gruber, H. C. Gonick, F. Khalil-Manesh, T. V. Sanchez, S. Motsinger, M. Meyer, and C. F. Sharp, “Osteopenia induced by long-term, low- and high-level exposure of the adult rat to lead,” Miner. Electrolyte Metab. 236, 45–73 (1997).

Schecter, I.

A. Miziolek, V. Palleschi, and I. Schecter, Laser Induced Breakdown Spectroscopy (LIBS): Fundamental and Applications (University Press, 2006).

Schwartz, J.

J. Schwartz and D. Otto, “Blood lead, hearing thresholds, and neurobehavioral development in children and youth,” Arch. Environ. Health 42, 153–160 (1987).
[CrossRef]

Seong, Y.

Y. Seong, Y. Y. Fang, and P. S. Jagdish, “Preliminary evaluation of laser induced breakdown spectroscopy for slurry samples,” Spectrochim. Acta Part B 64, 113–118 (2008).

Shaikh, M. N.

M. N. Shaikh, S. Hafeez, and M. A. Mohammed, “Comparison of zinc and plasma parameters produced by laser-ablation,” Spectrochim. Acta Part B 62, 1311–1320 (2007).

Sharp, C. F.

H. E. Gruber, H. C. Gonick, F. Khalil-Manesh, T. V. Sanchez, S. Motsinger, M. Meyer, and C. F. Sharp, “Osteopenia induced by long-term, low- and high-level exposure of the adult rat to lead,” Miner. Electrolyte Metab. 236, 45–73 (1997).

Slodovnik, D.

D. Basketter, L. Horev, D. Slodovnik, S. Merimes, A. Trattner, and A. Ingber, “Investigation of the threshold for allergic reactivity to chromium,” Contact Derm. 44, 70–74 (2001).
[CrossRef]

Smith, C. M.

E. H. Evans, J. A. Day, C. Palmer, and C. M. Smith, “Advances in atomic spectrometry and related techniques,” J. Anal. At. Spectrom. 25, 760–784 (2010).
[CrossRef]

Smith, M. A.

M. A. Smith, L. D. Grant, and A. Sors, Lead Exposure and Child Development: An International Assessment (Kleeven, 1989).

Sors, A.

M. A. Smith, L. D. Grant, and A. Sors, Lead Exposure and Child Development: An International Assessment (Kleeven, 1989).

Spizzichino, V.

R. Fantoni, L. Caneve, F. Colao, L. Fornarini, V. Lazic, and V. Spizzichino, “Methodologies for laboratory laser induced breakdown spectroscopy semi-quantitative and quantitative analysis—A review,” Spectrochim. Acta Part B 63, 1097–1108(2008).
[CrossRef]

Trattner, A.

D. Basketter, L. Horev, D. Slodovnik, S. Merimes, A. Trattner, and A. Ingber, “Investigation of the threshold for allergic reactivity to chromium,” Contact Derm. 44, 70–74 (2001).
[CrossRef]

Weiss, N. S.

K. A. Rosenblatt, N. S. Weiss, K. L. Cushing-Haugen, K. G. Wicklund, and M. A. Rossing, “Genital powder exposure and the risk of epithelial ovarian cancer,” Cancer Causes Control 22, 737–742 (2011).
[CrossRef]

Welch, W. R.

B. L. Harlow, D. W. Cramer, D. A. Bell, and W. R. Welch, “Perineal exposure to talc and ovarian cancer risk,” Obstet. Gynecol. 80, 19–26 (1992).

Wicklund, K. G.

K. A. Rosenblatt, N. S. Weiss, K. L. Cushing-Haugen, K. G. Wicklund, and M. A. Rossing, “Genital powder exposure and the risk of epithelial ovarian cancer,” Cancer Causes Control 22, 737–742 (2011).
[CrossRef]

Winder, C.

C. Winder, “Reproductive and chromosomal effects of occupational exposure to lead in the male,” Reprod. Toxic. Rev. 7, 221–233 (1989).

Yamani, Z. H.

M. A. Gondal, T. Hussain, Z. H. Yamani, and A. H. Bakry, “Study of hazardous metals in iron slag waste using laser induced breakdown spectroscopy,” J. Environ. Sci. Health A 42, 767–775 (2007).
[CrossRef]

M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “Detection of heavy metals in Arabian crude oil residue using laser induced breakdown spectroscopy,” Talanta 72, 642–649 (2007).
[CrossRef]

Young, H. A.

P. K. Mills, D. G. Riordan, R. D. Cress, and H. A. Young, “Perineal talc exposure and epithelial ovarian cancer risk in the Central Valley of California,” Int. J. Cancer 112, 458–464 (2004).
[CrossRef]

Anal. Bioanal. Chem.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

Anal. Chem.

C. Radivojevic, R. Haisch, S. Niessner, H. Florek, R. Becker, and U. Panne, “Microanalysis by laser-induced plasma spectroscopy in the vacuum ultraviolet,” Anal. Chem. 76, 1648–1656 (2004).
[CrossRef]

Anal. Chim. Acta

J. Cunat, F. J. Fortes, and J. J. Lasagna, “Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyzer,” Anal. Chim. Acta 633, 38–42 (2009).
[CrossRef]

Anal. Chim. Acta.

R. E. Neuhauser, U. Pannev, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic and fluorescence spectroscopy,” Anal. Chim. Acta. 346, 37–48 (1997).
[CrossRef]

Appl. Surf. Sci.

A. De Giacomo, M. Dell’ Aglio, and O. De Pascale, “ns fs-LIBS of copper-based alloys: a different approach,” Appl. Surf. Sci. 253, 7677–7681 (2007).
[CrossRef]

Arch. Environ. Health

J. Schwartz and D. Otto, “Blood lead, hearing thresholds, and neurobehavioral development in children and youth,” Arch. Environ. Health 42, 153–160 (1987).
[CrossRef]

Biol. Trace Elem. Res.

F. Baruthio, “Toxic effects of chromium and its compounds,” Biol. Trace Elem. Res. 32, 145–153 (1992).
[CrossRef]

Cancer Causes Control

K. A. Rosenblatt, N. S. Weiss, K. L. Cushing-Haugen, K. G. Wicklund, and M. A. Rossing, “Genital powder exposure and the risk of epithelial ovarian cancer,” Cancer Causes Control 22, 737–742 (2011).
[CrossRef]

Cancer Epidemiol. Biomarkers Prev.

S. Karageorgi, M. A. Gates, S. E. Hankinson, and I. De Vivo, “Perineal use of talcum powder and endometrial cancer risk,” Cancer Epidemiol. Biomarkers Prev. 19, 1269–1275 (2010).
[CrossRef]

Contact Derm.

D. Basketter, L. Horev, D. Slodovnik, S. Merimes, A. Trattner, and A. Ingber, “Investigation of the threshold for allergic reactivity to chromium,” Contact Derm. 44, 70–74 (2001).
[CrossRef]

D. A. Basketter, G. Briatico-Vangosa, W. Kaestner, C. Lally, and W. J. Bontinck, “Nickel, cobalt and chromium in consumer products: a role in allergic contact dermatitis?” Contact Derm. 28, 15–25 (1993).
[CrossRef]

D. A. Basketter, G. Angelini, A. Ingber, P. S. Kern, and T. Menné, “Nickel, chromium and cobalt in consumer products: revisiting safe levels in the new millennium,” Contact Derm. 49, 1–7 (2003).
[CrossRef]

Cosmet. Toilet.

J. J. Hostynek, “Toxic potential from metals absorbed through the skin,” Cosmet. Toilet. 113, 33–43 (1998).

Cosmet. Toilet. Mag.

J. J. Hostynek, “Lead, manganese and mercury: metals in personal-care products,” Cosmet. Toilet. Mag. 116(8), 52–65 (2001).

Crit. Rev. Toxicol.

M. D. Cohen, B. Kargacin, C. B. Klein, and M. Costa, “Mechanisms of chromium carcinogenicity and toxicity,” Crit. Rev. Toxicol. 23, 255–281 (1993).
[CrossRef]

Environ. Monit. Assess.

T. Hussain and M. A. Gondal, “Monitoring and assessment of toxic metals in Gulf War oil spill contaminated soil using laser-induced breakdown spectroscopy,” Environ. Monit. Assess. 136, 391–399 (2007).
[CrossRef]

Int. J. Cancer

P. K. Mills, D. G. Riordan, R. D. Cress, and H. A. Young, “Perineal talc exposure and epithelial ovarian cancer risk in the Central Valley of California,” Int. J. Cancer 112, 458–464 (2004).
[CrossRef]

J. Anal. At. Spectrom.

E. H. Evans, J. A. Day, C. Palmer, and C. M. Smith, “Advances in atomic spectrometry and related techniques,” J. Anal. At. Spectrom. 25, 760–784 (2010).
[CrossRef]

O. T. Butler, W. R. L. Cairns, J. M. Cook, and C. M. Davidson, “Atomic spectrometry update. Environmental analysis,” J. Anal. At. Spectrom. 25, 103–141 (2010).
[CrossRef]

J. Environ. Sci. Health A

M. A. Gondal, T. Hussain, Z. H. Yamani, and A. H. Bakry, “Study of hazardous metals in iron slag waste using laser induced breakdown spectroscopy,” J. Environ. Sci. Health A 42, 767–775 (2007).
[CrossRef]

M. A. Gondal, T. Hussain, Z. Ahmad, and A. Bakry, “Detection of contaminants in ore samples using laser induced break down spectroscopy,” J. Environ. Sci. Health A 42, 879–887 (2007).
[CrossRef]

J. Natl. Cancer Inst.

D. M. Gertrg, D. J. Hunter, and D. W. Cramer, “Prospective study of talc use and ovarian cancer,” J. Natl. Cancer Inst. 92, 249–252 (2000).

Miner. Electrolyte Metab.

H. E. Gruber, H. C. Gonick, F. Khalil-Manesh, T. V. Sanchez, S. Motsinger, M. Meyer, and C. F. Sharp, “Osteopenia induced by long-term, low- and high-level exposure of the adult rat to lead,” Miner. Electrolyte Metab. 236, 45–73 (1997).

Neurotoxicol. Teratol.

D. C. Rice, “Behavioral effects of lead in monkeys tested during infancy and adulthood,” Neurotoxicol. Teratol. 14, 235–245 (1992).
[CrossRef]

Obstet. Gynecol.

B. L. Harlow, D. W. Cramer, D. A. Bell, and W. R. Welch, “Perineal exposure to talc and ovarian cancer risk,” Obstet. Gynecol. 80, 19–26 (1992).

Reprod. Toxic. Rev.

C. Winder, “Reproductive and chromosomal effects of occupational exposure to lead in the male,” Reprod. Toxic. Rev. 7, 221–233 (1989).

Sci. Total Environ.

S. Langard, “Chromium carcinogenicity: a review of experimental animal data,” Sci. Total Environ. 71, 341–350 (1988).
[CrossRef]

Spectrochim. Acta Part B

R. Fantoni, L. Caneve, F. Colao, L. Fornarini, V. Lazic, and V. Spizzichino, “Methodologies for laboratory laser induced breakdown spectroscopy semi-quantitative and quantitative analysis—A review,” Spectrochim. Acta Part B 63, 1097–1108(2008).
[CrossRef]

S. Laville, M. Sabsabi, and F. R. Doucet, “Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy (LIBS) coupled with a linear multivariate calibration,” Spectrochim. Acta Part B 62, 1557–1566 (2007).
[CrossRef]

M. Sabsabi, and R. Russo, “Preface fourth international conference on laser induced plasma spectroscopy and applications (LIBS 2006),” Spectrochim. Acta Part B 62, 1285–1286 (2007).
[CrossRef]

M. N. Shaikh, S. Hafeez, and M. A. Mohammed, “Comparison of zinc and plasma parameters produced by laser-ablation,” Spectrochim. Acta Part B 62, 1311–1320 (2007).

A. Ferrero, and J. J. Laserna, “A theoretical study of atmospheric propagation of laser and return light for stand-off laser induced breakdown spectroscopy purposes,” Spectrochim. Acta Part B 63, 305–311 (2008).
[CrossRef]

Y. Seong, Y. Y. Fang, and P. S. Jagdish, “Preliminary evaluation of laser induced breakdown spectroscopy for slurry samples,” Spectrochim. Acta Part B 64, 113–118 (2008).

Talanta

M. A. Gondal, and T. Hussain, “Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy,” Talanta 71, 73–80 (2007).
[CrossRef]

M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “Detection of heavy metals in Arabian crude oil residue using laser induced breakdown spectroscopy,” Talanta 72, 642–649 (2007).
[CrossRef]

Other

A. Miziolek, V. Palleschi, and I. Schecter, Laser Induced Breakdown Spectroscopy (LIBS): Fundamental and Applications (University Press, 2006).

M. Baudelet, Y. Liu, and M. Richardson, “Microwave-assisted LIBS: Towards a new tool for trace element detection and molecular plasma spectroscopy,” in Laser Applications to Chemical, Security and Environmental Analysis (LACSEA), OSA Technical Digest (CD) (Optical Society of America, 2010), paper LWc3p.

National Research Council (US), Measuring Lead Exposure in Infants Children and other Sensitive Populations (National Academy, 1993).

M. A. Smith, L. D. Grant, and A. Sors, Lead Exposure and Child Development: An International Assessment (Kleeven, 1989).

NIST Atomic spectra database http://www.nist.gov/physlab/data/asd.cfm .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

LIBS spectrum of the talcum powder (sample # 2) in the 350–700 nm wavelength region. The spectrum shows the atomic transition lines of various neutral and singly ionized elements with their emission wavelengths. The insets show the enlarged views of Pb I (405.7 nm) and Cr I (425.4 nm) atomic lines where the wavelength regions are zoomed. The intensity magnifications of Pb I (405.7 nm) and Cr I (425.4 nm) in the insets are 25 and 12, respectively.

Fig. 2.
Fig. 2.

The increase of the LIBS signal of Pb I (405.7 nm) transition line relative to the neighboring Al I (396.1 nm) atomic line with the increased concentration of externally added lead in the talcum powder sample # 1 with different concentrations: (a) No external addition of Pb, (b) 30 ppm (c) 48 ppm, and (d) 60 ppm.

Fig. 3.
Fig. 3.

The increase of the LIBS signal of Cr I (425.4 nm) transition line relative to the neighboring Al I (396.1 nm) atomic line with the increased concentration of externally added lead in the talcum powder sample # 2 with different concentrations: (a) No external addition of Cr, (b) 40 ppm, (c) 70 ppm, and (d) 85 ppm of Pb.

Fig. 4.
Fig. 4.

The calibration curve of LIBS signal versus concentration of lead (dotted line) and chromium (solid line) showing strong linear dependence of the LIBS signal on concentration.

Tables (1)

Tables Icon

Table 1. Concentrations of Lead and Chromium in the Talcum Powder Samples with the Limit of Detection of the System for Both Lead and Chromium

Metrics