Abstract

An approach to achieve refractive index sensing at an air and aqueous glycerol solution interface is proposed using a tapered-fiber-based microfiber Mach–Zehnder interferometer (MFMZI). Compared to a surrounding uniform medium of air or solutions, the spectral interference visibility of the MFMZI at the air/solution interface is significantly reduced due to a weak coupling between the fundamental cladding mode and high-order asymmetric cladding modes, which are extremely sensitive to the external refractive index. The MFMZI is experimentally demonstrated as an evanescent wave refractive index sensor to measure concentrations of glycerol solutions by monitoring average power attenuation of the tapered fiber.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2005).
  2. M. G. Kuzyk, Polymer Fiber Optics: Materials, Physics, and Applications (CRC Press, 2006).
  3. J. Homola, ed., Surface Plasmon Resonance Based Sensors (Springer, 2006).
  4. Ó. Esteban, M. Cruz-Navarrete, A. González-Cano, and E. Bernabeu, “Measurement of the degree of salinity of water with a fiber-optic sensor,” Appl. Opt. 38, 5267–5271 (1999).
    [CrossRef]
  5. Y.-C. Kim, W. Peng, S. Banerji, and K. S. Booksh, “Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases,” Opt. Lett. 30, 2218–2220 (2005).
    [CrossRef]
  6. K. Mitsui, Y. Handa, and K. Kajikawa, “Optical fiber affinity biosensor based on localized surface plasmon resonance,” Appl. Phys. Lett. 85, 4231–4233 (2004).
    [CrossRef]
  7. A. Asseh, S. Sandgre, H. Aslfeldt, B. Sahlgren, R. Stubbed, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
    [CrossRef]
  8. R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93, 191106 (2008).
    [CrossRef]
  9. F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92, 101126 (2008).
    [CrossRef]
  10. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
    [CrossRef]
  11. J. M. Corres, F. J. Arregui, and I. R. Matias, “Design of humidity sensors based on tapered optical fibers,” J. Lightwave Technol. 24, 4329–4336 (2006).
    [CrossRef]
  12. Y.-J. He, Y.-L. Lo, and J.-F. Huang, “Optical-fiber surface-plasmon-resonance sensor employing long-period fiber gratings in multiplexing,” J. Opt. Soc. Am. B 23, 801–811 (2006).
    [CrossRef]
  13. R. Falate, O. Frazão, G. Rego, J. L. Fabris, and J. L. Santos, “Refractometric sensor based on a phase-shifted long-period fiber grating,” Appl. Opt. 45, 5066–5072 (2006).
    [CrossRef]
  14. Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105 (2006).
    [CrossRef]
  15. G. Nemova and R. Kashyap, “Fiber-Bragg-grating-assisted surface plasmon–polariton sensor,” Opt. Lett. 31, 2118–2120(2006).
    [CrossRef]
  16. Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32, 211–213 (2007).
    [CrossRef]
  17. N. Chen, B. Yun, and Y. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88, 133902 (2006).
    [CrossRef]
  18. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
    [CrossRef]
  19. X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007).
    [CrossRef]
  20. G. Vienne, Li Yuhang, L. Tong, and P. Grelu, “Observation of a nonlinear microfiber resonator,” Opt. Lett. 33, 1500–1502 (2008).
    [CrossRef]
  21. C. Bariáin, I. R. Matías, F. J. Arregui, and M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem. 69, 127–131 (2000).
    [CrossRef]
  22. F. J. Arregui, I. R. Matías, and M. López-Amo, “Optical fiber strain gauge based on a tapered single-mode fiber,” Sens. Actuators A Phys. 79, 90–96 (2000).
    [CrossRef]
  23. Y. Li, X. Wang, and X. Bao, “Sensitive acoustic vibration sensor using single-mode fiber tapers,” Appl. Opt. 50, 1873–1878 (2011).
    [CrossRef]
  24. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
    [CrossRef]
  25. X. Wang, W. Li, L. Chen, and X. Bao, “Distributed mode coupling measurement along tapered single-mode fibers with optical frequency-domain reflectometry,” J. Lightwave Technol. 30, 1499–1508 (2012).
    [CrossRef]
  26. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part I: adiabaticity criteria,” IEE Proc. J. Optoelectron. 138, 343–354 (1991).
  27. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach–Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15, 5711–5720 (2007).
    [CrossRef]
  28. J. Sakai and T. Kimura, “Design of a miniature lens for semiconductor laser to single-mode fiber coupling,” IEEE J. Quantum Electron. 16, 1059–1067 (1980).
    [CrossRef]
  29. D. R. Lide, ed., Handbook of Chemistry and Physics, 87th ed. (CRC Press, 2007).
  30. K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6, 209–220 (1989).
    [CrossRef]

2012 (1)

2011 (1)

2009 (1)

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

2008 (3)

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93, 191106 (2008).
[CrossRef]

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92, 101126 (2008).
[CrossRef]

G. Vienne, Li Yuhang, L. Tong, and P. Grelu, “Observation of a nonlinear microfiber resonator,” Opt. Lett. 33, 1500–1502 (2008).
[CrossRef]

2007 (3)

2006 (6)

2005 (1)

2004 (1)

K. Mitsui, Y. Handa, and K. Kajikawa, “Optical fiber affinity biosensor based on localized surface plasmon resonance,” Appl. Phys. Lett. 85, 4231–4233 (2004).
[CrossRef]

2000 (3)

C. Bariáin, I. R. Matías, F. J. Arregui, and M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem. 69, 127–131 (2000).
[CrossRef]

F. J. Arregui, I. R. Matías, and M. López-Amo, “Optical fiber strain gauge based on a tapered single-mode fiber,” Sens. Actuators A Phys. 79, 90–96 (2000).
[CrossRef]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

1999 (1)

1998 (1)

A. Asseh, S. Sandgre, H. Aslfeldt, B. Sahlgren, R. Stubbed, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

1992 (1)

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

1991 (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part I: adiabaticity criteria,” IEE Proc. J. Optoelectron. 138, 343–354 (1991).

1989 (1)

1980 (1)

J. Sakai and T. Kimura, “Design of a miniature lens for semiconductor laser to single-mode fiber coupling,” IEEE J. Quantum Electron. 16, 1059–1067 (1980).
[CrossRef]

Albert, J.

Arregui, F. J.

J. M. Corres, F. J. Arregui, and I. R. Matias, “Design of humidity sensors based on tapered optical fibers,” J. Lightwave Technol. 24, 4329–4336 (2006).
[CrossRef]

F. J. Arregui, I. R. Matías, and M. López-Amo, “Optical fiber strain gauge based on a tapered single-mode fiber,” Sens. Actuators A Phys. 79, 90–96 (2000).
[CrossRef]

C. Bariáin, I. R. Matías, F. J. Arregui, and M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem. 69, 127–131 (2000).
[CrossRef]

Aslfeldt, H.

A. Asseh, S. Sandgre, H. Aslfeldt, B. Sahlgren, R. Stubbed, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

Asseh, A.

A. Asseh, S. Sandgre, H. Aslfeldt, B. Sahlgren, R. Stubbed, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

Badenes, G.

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93, 191106 (2008).
[CrossRef]

Banerji, S.

Bao, X.

Bariáin, C.

C. Bariáin, I. R. Matías, F. J. Arregui, and M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem. 69, 127–131 (2000).
[CrossRef]

Bernabeu, E.

Birks, T. A.

Black, R. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part I: adiabaticity criteria,” IEE Proc. J. Optoelectron. 138, 343–354 (1991).

Booksh, K. S.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2005).

Brambilla, G.

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92, 101126 (2008).
[CrossRef]

Chen, L.

Chen, N.

N. Chen, B. Yun, and Y. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88, 133902 (2006).
[CrossRef]

Chen, Q.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Choi, H. Y.

Corres, J. M.

Cruz-Navarrete, M.

Cui, Y.

N. Chen, B. Yun, and Y. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88, 133902 (2006).
[CrossRef]

Edwall, G.

A. Asseh, S. Sandgre, H. Aslfeldt, B. Sahlgren, R. Stubbed, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

Esteban, Ó.

Fabris, J. L.

Falate, R.

Frazão, O.

Fu, J.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

Gonthier, F.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part I: adiabaticity criteria,” IEE Proc. J. Optoelectron. 138, 343–354 (1991).

González-Cano, A.

Grelu, P.

Handa, Y.

K. Mitsui, Y. Handa, and K. Kajikawa, “Optical fiber affinity biosensor based on localized surface plasmon resonance,” Appl. Phys. Lett. 85, 4231–4233 (2004).
[CrossRef]

He, Y.-J.

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part I: adiabaticity criteria,” IEE Proc. J. Optoelectron. 138, 343–354 (1991).

Homola, J.

J. Homola, ed., Surface Plasmon Resonance Based Sensors (Springer, 2006).

Huang, J.-F.

Jha, R.

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93, 191106 (2008).
[CrossRef]

Jiang, X.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

Jin, W.

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105 (2006).
[CrossRef]

Kajikawa, K.

K. Mitsui, Y. Handa, and K. Kajikawa, “Optical fiber affinity biosensor based on localized surface plasmon resonance,” Appl. Phys. Lett. 85, 4231–4233 (2004).
[CrossRef]

Kashyap, R.

Kim, M. J.

Kim, Y.-C.

Kimura, T.

J. Sakai and T. Kimura, “Design of a miniature lens for semiconductor laser to single-mode fiber coupling,” IEEE J. Quantum Electron. 16, 1059–1067 (1980).
[CrossRef]

Kuzyk, M. G.

M. G. Kuzyk, Polymer Fiber Optics: Materials, Physics, and Applications (CRC Press, 2006).

Lacroix, S.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part I: adiabaticity criteria,” IEE Proc. J. Optoelectron. 138, 343–354 (1991).

Lee, B. H.

Li, W.

Li, Y.

Li, Y. W.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

Lide, D. R.

D. R. Lide, ed., Handbook of Chemistry and Physics, 87th ed. (CRC Press, 2007).

Lo, Y.-L.

López-Amo, M.

C. Bariáin, I. R. Matías, F. J. Arregui, and M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem. 69, 127–131 (2000).
[CrossRef]

F. J. Arregui, I. R. Matías, and M. López-Amo, “Optical fiber strain gauge based on a tapered single-mode fiber,” Sens. Actuators A Phys. 79, 90–96 (2000).
[CrossRef]

Love, J. D.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part I: adiabaticity criteria,” IEE Proc. J. Optoelectron. 138, 343–354 (1991).

Lu, P.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Lukosz, W.

Matias, I. R.

Matías, I. R.

C. Bariáin, I. R. Matías, F. J. Arregui, and M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem. 69, 127–131 (2000).
[CrossRef]

F. J. Arregui, I. R. Matías, and M. López-Amo, “Optical fiber strain gauge based on a tapered single-mode fiber,” Sens. Actuators A Phys. 79, 90–96 (2000).
[CrossRef]

Men, L.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Mitsui, K.

K. Mitsui, Y. Handa, and K. Kajikawa, “Optical fiber affinity biosensor based on localized surface plasmon resonance,” Appl. Phys. Lett. 85, 4231–4233 (2004).
[CrossRef]

Nemova, G.

Peng, G.-D.

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105 (2006).
[CrossRef]

Peng, W.

Rao, Y.-J.

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105 (2006).
[CrossRef]

Rego, G.

Russell, P. St. J.

Sahlgren, B.

A. Asseh, S. Sandgre, H. Aslfeldt, B. Sahlgren, R. Stubbed, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

Sakai, J.

J. Sakai and T. Kimura, “Design of a miniature lens for semiconductor laser to single-mode fiber coupling,” IEEE J. Quantum Electron. 16, 1059–1067 (1980).
[CrossRef]

Sandgre, S.

A. Asseh, S. Sandgre, H. Aslfeldt, B. Sahlgren, R. Stubbed, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

Santos, J. L.

Shevchenko, Y. Y.

Song, Q.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

Sooley, K.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part I: adiabaticity criteria,” IEE Proc. J. Optoelectron. 138, 343–354 (1991).

Stubbed, R.

A. Asseh, S. Sandgre, H. Aslfeldt, B. Sahlgren, R. Stubbed, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

Tiefenthaler, K.

Tong, L.

G. Vienne, Li Yuhang, L. Tong, and P. Grelu, “Observation of a nonlinear microfiber resonator,” Opt. Lett. 33, 1500–1502 (2008).
[CrossRef]

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

Vienne, G.

Villatoro, J.

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93, 191106 (2008).
[CrossRef]

Wadsworth, W. J.

Wang, D. N.

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105 (2006).
[CrossRef]

Wang, X.

Wang, Y.-P.

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105 (2006).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2005).

Xu, F.

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92, 101126 (2008).
[CrossRef]

Xu, L.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

Yuhang, Li

Yun, B.

N. Chen, B. Yun, and Y. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88, 133902 (2006).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (7)

K. Mitsui, Y. Handa, and K. Kajikawa, “Optical fiber affinity biosensor based on localized surface plasmon resonance,” Appl. Phys. Lett. 85, 4231–4233 (2004).
[CrossRef]

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93, 191106 (2008).
[CrossRef]

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92, 101126 (2008).
[CrossRef]

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105 (2006).
[CrossRef]

N. Chen, B. Yun, and Y. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88, 133902 (2006).
[CrossRef]

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

Fiber Integr. Opt. (1)

A. Asseh, S. Sandgre, H. Aslfeldt, B. Sahlgren, R. Stubbed, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

IEE Proc. J. Optoelectron. (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part I: adiabaticity criteria,” IEE Proc. J. Optoelectron. 138, 343–354 (1991).

IEEE J. Quantum Electron. (1)

J. Sakai and T. Kimura, “Design of a miniature lens for semiconductor laser to single-mode fiber coupling,” IEEE J. Quantum Electron. 16, 1059–1067 (1980).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (2)

Opt. Express (1)

Opt. Lett. (5)

Sens. Actuators A Phys. (1)

F. J. Arregui, I. R. Matías, and M. López-Amo, “Optical fiber strain gauge based on a tapered single-mode fiber,” Sens. Actuators A Phys. 79, 90–96 (2000).
[CrossRef]

Sens. Actuators B Chem. (1)

C. Bariáin, I. R. Matías, F. J. Arregui, and M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem. 69, 127–131 (2000).
[CrossRef]

Other (4)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2005).

M. G. Kuzyk, Polymer Fiber Optics: Materials, Physics, and Applications (CRC Press, 2006).

J. Homola, ed., Surface Plasmon Resonance Based Sensors (Springer, 2006).

D. R. Lide, ed., Handbook of Chemistry and Physics, 87th ed. (CRC Press, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic illustration of the tapered fiber. (b) Waist diameter fluctuation along the central region of the tapered fiber. The inset shows an optical micrograph of a segment of tapered fiber with a waist diameter of 21 μm. (c) Transmission spectrum of the MFMZI. The inset shows a schematic diagram of the experimental setup of the transmission spectrum measurement. (d) Spatial frequency spectrum of the MFMZI with a dominant peak and a local dominant peak corresponding to the LP01-clad and LP02-clad modes. The inset shows mode patterns of the LP01-clad and LP02-clad modes. In the central uniform waist region, radii of the tapered fiber core and cladding are 0.66 and 10 μm, refractive indexes of the surrounding air medium, fiber core, and cladding are 1.0000, 1.4493, and 1.4440; and λ=1.55μm. BBS, broadband source; OSA, optical spectrum analyzer.

Fig. 2.
Fig. 2.

Transmission spectrum of the reference single-mode fiber (SMF) (red), the tapered fiber (blue), and their difference (green) when the tapered fiber is located in the medium of (a) air, (b) air/water interface, (c) water, and (d) air/glycerol interface.

Fig. 3.
Fig. 3.

(a) Transmission spectrum of the tapered fiber fully immersed in aqueous glycerol solutions of different concentrations. (b) Transmission spectrum of the tapered fiber suspended at the air/glycerol solution interface of different concentrations.

Fig. 4.
Fig. 4.

Average power attenuation of the tapered fiber at different concentrations of glycerol solutions. The inset shows the calculated electric field penetration depth of the tapered fiber at different external refractive indexes.

Metrics