Abstract

We investigate the selective amplification and filtering of injection-locked slotted Fabry–Perot semiconductor lasers. Current and temperature tuning are used to selectively filter and amplify subcarriers of coherent optical combs with a selectivity of at least 10 GHz with an optical gain of up to 18 dB for filtered lines. A side mode suppression ratio in excess of 20 dB is also achieved.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Ellis and F. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17, 504–506 (2005).
    [CrossRef]
  2. A. D. Ellis, I. Tomkos, A. Mishra, J. Zhao, S. Ibrahim, P. Frascella, and F. Gunning, “Adaptive modulation schemes,” in 2009 IEEE/LEOS Summer Topical Meeting (IEEE, 2009), pp. 141–142.
  3. H. Kawaguchi, K. Magari, K. Oe, Y. Noguchi, Y. Nakano, and G. Motosugi, “Optical frequency-selective amplification in a distributed feedback type semiconductor laser amplifier,” Appl. Phys. Lett. 50, 66–67 (1987).
    [CrossRef]
  4. T. Numai, M. Fujiwara, N. Shimosaka, K. Kaede, M. Nishio, S. Suzuki, and I. Mito, “1.5 μm λ/4-shifted DFB LD filter and 100  Mbit/s two-channel wavelength signal switching,” Electron. Lett. 24, 236–237 (1988).
    [CrossRef]
  5. F. S. Choa and T. Koch, “Static and dynamical characteristics of narrow-band tunable resonant amplifiers as active filters and receivers,” J. Lightwave Technol. 9, 73–83 (1991).
    [CrossRef]
  6. S. Ibrahim, A. Ellis, F. Gunning, and F. Peters, “Demonstration of CoWDM using DPSK modulator array with injection-locked lasers,” Electron. Lett. 46, 150–152 (2010).
    [CrossRef]
  7. R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976–983 (1982).
    [CrossRef]
  8. K. Kobayashi, H. Nishimoto, and R. Lang, “Experimental observation of asymmetric detuning characteristics in semiconductor laser injection locking,” Electron. Lett. 18, 54–56 (1982).
    [CrossRef]
  9. R. Hui, A. D. Ottavi, A. Mecozzi, and P. Spano, “Semiconductor lasers,” IEEE J. Quantum Electron. 21, 1688–1695 (1991).
    [CrossRef]
  10. L. Li, “Static and dynamic properties of injection-locked semiconductor lasers,” IEEE J. Quantum Electron. 30, 1701–1708 (1994).
    [CrossRef]
  11. B. Corbett and D. McDonald, “Single longitudinal mode ridge waveguide 1.3 μm Fabry–Perot laser by modal perturbation,” Electron. Lett. 31, 2181–2182 (1995).
    [CrossRef]
  12. D. McDonald and B. Corbett, “Performance characteristics of quasi-single longitudinal-mode Fabry–Perot lasers,” IEEE Photon. Technol. Lett. 8, 1127–1129 (1996).
    [CrossRef]
  13. S. K. Mondal, B. Roycroft, P. Lambkin, F. Peters, B. Corbett, P. Townsend, and A. Ellis, “A multiwavelength low-power wavelength-locked slotted Fabry–Perot laser source for WDM applications,” IEEE Photon. Technol. Lett. 19, 744–746 (2007).
    [CrossRef]

2010

S. Ibrahim, A. Ellis, F. Gunning, and F. Peters, “Demonstration of CoWDM using DPSK modulator array with injection-locked lasers,” Electron. Lett. 46, 150–152 (2010).
[CrossRef]

2007

S. K. Mondal, B. Roycroft, P. Lambkin, F. Peters, B. Corbett, P. Townsend, and A. Ellis, “A multiwavelength low-power wavelength-locked slotted Fabry–Perot laser source for WDM applications,” IEEE Photon. Technol. Lett. 19, 744–746 (2007).
[CrossRef]

2005

A. D. Ellis and F. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17, 504–506 (2005).
[CrossRef]

1996

D. McDonald and B. Corbett, “Performance characteristics of quasi-single longitudinal-mode Fabry–Perot lasers,” IEEE Photon. Technol. Lett. 8, 1127–1129 (1996).
[CrossRef]

1995

B. Corbett and D. McDonald, “Single longitudinal mode ridge waveguide 1.3 μm Fabry–Perot laser by modal perturbation,” Electron. Lett. 31, 2181–2182 (1995).
[CrossRef]

1994

L. Li, “Static and dynamic properties of injection-locked semiconductor lasers,” IEEE J. Quantum Electron. 30, 1701–1708 (1994).
[CrossRef]

1991

R. Hui, A. D. Ottavi, A. Mecozzi, and P. Spano, “Semiconductor lasers,” IEEE J. Quantum Electron. 21, 1688–1695 (1991).
[CrossRef]

F. S. Choa and T. Koch, “Static and dynamical characteristics of narrow-band tunable resonant amplifiers as active filters and receivers,” J. Lightwave Technol. 9, 73–83 (1991).
[CrossRef]

1988

T. Numai, M. Fujiwara, N. Shimosaka, K. Kaede, M. Nishio, S. Suzuki, and I. Mito, “1.5 μm λ/4-shifted DFB LD filter and 100  Mbit/s two-channel wavelength signal switching,” Electron. Lett. 24, 236–237 (1988).
[CrossRef]

1987

H. Kawaguchi, K. Magari, K. Oe, Y. Noguchi, Y. Nakano, and G. Motosugi, “Optical frequency-selective amplification in a distributed feedback type semiconductor laser amplifier,” Appl. Phys. Lett. 50, 66–67 (1987).
[CrossRef]

1982

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976–983 (1982).
[CrossRef]

K. Kobayashi, H. Nishimoto, and R. Lang, “Experimental observation of asymmetric detuning characteristics in semiconductor laser injection locking,” Electron. Lett. 18, 54–56 (1982).
[CrossRef]

Choa, F. S.

F. S. Choa and T. Koch, “Static and dynamical characteristics of narrow-band tunable resonant amplifiers as active filters and receivers,” J. Lightwave Technol. 9, 73–83 (1991).
[CrossRef]

Corbett, B.

S. K. Mondal, B. Roycroft, P. Lambkin, F. Peters, B. Corbett, P. Townsend, and A. Ellis, “A multiwavelength low-power wavelength-locked slotted Fabry–Perot laser source for WDM applications,” IEEE Photon. Technol. Lett. 19, 744–746 (2007).
[CrossRef]

D. McDonald and B. Corbett, “Performance characteristics of quasi-single longitudinal-mode Fabry–Perot lasers,” IEEE Photon. Technol. Lett. 8, 1127–1129 (1996).
[CrossRef]

B. Corbett and D. McDonald, “Single longitudinal mode ridge waveguide 1.3 μm Fabry–Perot laser by modal perturbation,” Electron. Lett. 31, 2181–2182 (1995).
[CrossRef]

Ellis, A.

S. Ibrahim, A. Ellis, F. Gunning, and F. Peters, “Demonstration of CoWDM using DPSK modulator array with injection-locked lasers,” Electron. Lett. 46, 150–152 (2010).
[CrossRef]

S. K. Mondal, B. Roycroft, P. Lambkin, F. Peters, B. Corbett, P. Townsend, and A. Ellis, “A multiwavelength low-power wavelength-locked slotted Fabry–Perot laser source for WDM applications,” IEEE Photon. Technol. Lett. 19, 744–746 (2007).
[CrossRef]

Ellis, A. D.

A. D. Ellis and F. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17, 504–506 (2005).
[CrossRef]

A. D. Ellis, I. Tomkos, A. Mishra, J. Zhao, S. Ibrahim, P. Frascella, and F. Gunning, “Adaptive modulation schemes,” in 2009 IEEE/LEOS Summer Topical Meeting (IEEE, 2009), pp. 141–142.

Frascella, P.

A. D. Ellis, I. Tomkos, A. Mishra, J. Zhao, S. Ibrahim, P. Frascella, and F. Gunning, “Adaptive modulation schemes,” in 2009 IEEE/LEOS Summer Topical Meeting (IEEE, 2009), pp. 141–142.

Fujiwara, M.

T. Numai, M. Fujiwara, N. Shimosaka, K. Kaede, M. Nishio, S. Suzuki, and I. Mito, “1.5 μm λ/4-shifted DFB LD filter and 100  Mbit/s two-channel wavelength signal switching,” Electron. Lett. 24, 236–237 (1988).
[CrossRef]

Gunning, F.

S. Ibrahim, A. Ellis, F. Gunning, and F. Peters, “Demonstration of CoWDM using DPSK modulator array with injection-locked lasers,” Electron. Lett. 46, 150–152 (2010).
[CrossRef]

A. D. Ellis and F. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17, 504–506 (2005).
[CrossRef]

A. D. Ellis, I. Tomkos, A. Mishra, J. Zhao, S. Ibrahim, P. Frascella, and F. Gunning, “Adaptive modulation schemes,” in 2009 IEEE/LEOS Summer Topical Meeting (IEEE, 2009), pp. 141–142.

Hui, R.

R. Hui, A. D. Ottavi, A. Mecozzi, and P. Spano, “Semiconductor lasers,” IEEE J. Quantum Electron. 21, 1688–1695 (1991).
[CrossRef]

Ibrahim, S.

S. Ibrahim, A. Ellis, F. Gunning, and F. Peters, “Demonstration of CoWDM using DPSK modulator array with injection-locked lasers,” Electron. Lett. 46, 150–152 (2010).
[CrossRef]

A. D. Ellis, I. Tomkos, A. Mishra, J. Zhao, S. Ibrahim, P. Frascella, and F. Gunning, “Adaptive modulation schemes,” in 2009 IEEE/LEOS Summer Topical Meeting (IEEE, 2009), pp. 141–142.

Kaede, K.

T. Numai, M. Fujiwara, N. Shimosaka, K. Kaede, M. Nishio, S. Suzuki, and I. Mito, “1.5 μm λ/4-shifted DFB LD filter and 100  Mbit/s two-channel wavelength signal switching,” Electron. Lett. 24, 236–237 (1988).
[CrossRef]

Kawaguchi, H.

H. Kawaguchi, K. Magari, K. Oe, Y. Noguchi, Y. Nakano, and G. Motosugi, “Optical frequency-selective amplification in a distributed feedback type semiconductor laser amplifier,” Appl. Phys. Lett. 50, 66–67 (1987).
[CrossRef]

Kobayashi, K.

K. Kobayashi, H. Nishimoto, and R. Lang, “Experimental observation of asymmetric detuning characteristics in semiconductor laser injection locking,” Electron. Lett. 18, 54–56 (1982).
[CrossRef]

Koch, T.

F. S. Choa and T. Koch, “Static and dynamical characteristics of narrow-band tunable resonant amplifiers as active filters and receivers,” J. Lightwave Technol. 9, 73–83 (1991).
[CrossRef]

Lambkin, P.

S. K. Mondal, B. Roycroft, P. Lambkin, F. Peters, B. Corbett, P. Townsend, and A. Ellis, “A multiwavelength low-power wavelength-locked slotted Fabry–Perot laser source for WDM applications,” IEEE Photon. Technol. Lett. 19, 744–746 (2007).
[CrossRef]

Lang, R.

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976–983 (1982).
[CrossRef]

K. Kobayashi, H. Nishimoto, and R. Lang, “Experimental observation of asymmetric detuning characteristics in semiconductor laser injection locking,” Electron. Lett. 18, 54–56 (1982).
[CrossRef]

Li, L.

L. Li, “Static and dynamic properties of injection-locked semiconductor lasers,” IEEE J. Quantum Electron. 30, 1701–1708 (1994).
[CrossRef]

Magari, K.

H. Kawaguchi, K. Magari, K. Oe, Y. Noguchi, Y. Nakano, and G. Motosugi, “Optical frequency-selective amplification in a distributed feedback type semiconductor laser amplifier,” Appl. Phys. Lett. 50, 66–67 (1987).
[CrossRef]

McDonald, D.

D. McDonald and B. Corbett, “Performance characteristics of quasi-single longitudinal-mode Fabry–Perot lasers,” IEEE Photon. Technol. Lett. 8, 1127–1129 (1996).
[CrossRef]

B. Corbett and D. McDonald, “Single longitudinal mode ridge waveguide 1.3 μm Fabry–Perot laser by modal perturbation,” Electron. Lett. 31, 2181–2182 (1995).
[CrossRef]

Mecozzi, A.

R. Hui, A. D. Ottavi, A. Mecozzi, and P. Spano, “Semiconductor lasers,” IEEE J. Quantum Electron. 21, 1688–1695 (1991).
[CrossRef]

Mishra, A.

A. D. Ellis, I. Tomkos, A. Mishra, J. Zhao, S. Ibrahim, P. Frascella, and F. Gunning, “Adaptive modulation schemes,” in 2009 IEEE/LEOS Summer Topical Meeting (IEEE, 2009), pp. 141–142.

Mito, I.

T. Numai, M. Fujiwara, N. Shimosaka, K. Kaede, M. Nishio, S. Suzuki, and I. Mito, “1.5 μm λ/4-shifted DFB LD filter and 100  Mbit/s two-channel wavelength signal switching,” Electron. Lett. 24, 236–237 (1988).
[CrossRef]

Mondal, S. K.

S. K. Mondal, B. Roycroft, P. Lambkin, F. Peters, B. Corbett, P. Townsend, and A. Ellis, “A multiwavelength low-power wavelength-locked slotted Fabry–Perot laser source for WDM applications,” IEEE Photon. Technol. Lett. 19, 744–746 (2007).
[CrossRef]

Motosugi, G.

H. Kawaguchi, K. Magari, K. Oe, Y. Noguchi, Y. Nakano, and G. Motosugi, “Optical frequency-selective amplification in a distributed feedback type semiconductor laser amplifier,” Appl. Phys. Lett. 50, 66–67 (1987).
[CrossRef]

Nakano, Y.

H. Kawaguchi, K. Magari, K. Oe, Y. Noguchi, Y. Nakano, and G. Motosugi, “Optical frequency-selective amplification in a distributed feedback type semiconductor laser amplifier,” Appl. Phys. Lett. 50, 66–67 (1987).
[CrossRef]

Nishimoto, H.

K. Kobayashi, H. Nishimoto, and R. Lang, “Experimental observation of asymmetric detuning characteristics in semiconductor laser injection locking,” Electron. Lett. 18, 54–56 (1982).
[CrossRef]

Nishio, M.

T. Numai, M. Fujiwara, N. Shimosaka, K. Kaede, M. Nishio, S. Suzuki, and I. Mito, “1.5 μm λ/4-shifted DFB LD filter and 100  Mbit/s two-channel wavelength signal switching,” Electron. Lett. 24, 236–237 (1988).
[CrossRef]

Noguchi, Y.

H. Kawaguchi, K. Magari, K. Oe, Y. Noguchi, Y. Nakano, and G. Motosugi, “Optical frequency-selective amplification in a distributed feedback type semiconductor laser amplifier,” Appl. Phys. Lett. 50, 66–67 (1987).
[CrossRef]

Numai, T.

T. Numai, M. Fujiwara, N. Shimosaka, K. Kaede, M. Nishio, S. Suzuki, and I. Mito, “1.5 μm λ/4-shifted DFB LD filter and 100  Mbit/s two-channel wavelength signal switching,” Electron. Lett. 24, 236–237 (1988).
[CrossRef]

Oe, K.

H. Kawaguchi, K. Magari, K. Oe, Y. Noguchi, Y. Nakano, and G. Motosugi, “Optical frequency-selective amplification in a distributed feedback type semiconductor laser amplifier,” Appl. Phys. Lett. 50, 66–67 (1987).
[CrossRef]

Ottavi, A. D.

R. Hui, A. D. Ottavi, A. Mecozzi, and P. Spano, “Semiconductor lasers,” IEEE J. Quantum Electron. 21, 1688–1695 (1991).
[CrossRef]

Peters, F.

S. Ibrahim, A. Ellis, F. Gunning, and F. Peters, “Demonstration of CoWDM using DPSK modulator array with injection-locked lasers,” Electron. Lett. 46, 150–152 (2010).
[CrossRef]

S. K. Mondal, B. Roycroft, P. Lambkin, F. Peters, B. Corbett, P. Townsend, and A. Ellis, “A multiwavelength low-power wavelength-locked slotted Fabry–Perot laser source for WDM applications,” IEEE Photon. Technol. Lett. 19, 744–746 (2007).
[CrossRef]

Roycroft, B.

S. K. Mondal, B. Roycroft, P. Lambkin, F. Peters, B. Corbett, P. Townsend, and A. Ellis, “A multiwavelength low-power wavelength-locked slotted Fabry–Perot laser source for WDM applications,” IEEE Photon. Technol. Lett. 19, 744–746 (2007).
[CrossRef]

Shimosaka, N.

T. Numai, M. Fujiwara, N. Shimosaka, K. Kaede, M. Nishio, S. Suzuki, and I. Mito, “1.5 μm λ/4-shifted DFB LD filter and 100  Mbit/s two-channel wavelength signal switching,” Electron. Lett. 24, 236–237 (1988).
[CrossRef]

Spano, P.

R. Hui, A. D. Ottavi, A. Mecozzi, and P. Spano, “Semiconductor lasers,” IEEE J. Quantum Electron. 21, 1688–1695 (1991).
[CrossRef]

Suzuki, S.

T. Numai, M. Fujiwara, N. Shimosaka, K. Kaede, M. Nishio, S. Suzuki, and I. Mito, “1.5 μm λ/4-shifted DFB LD filter and 100  Mbit/s two-channel wavelength signal switching,” Electron. Lett. 24, 236–237 (1988).
[CrossRef]

Tomkos, I.

A. D. Ellis, I. Tomkos, A. Mishra, J. Zhao, S. Ibrahim, P. Frascella, and F. Gunning, “Adaptive modulation schemes,” in 2009 IEEE/LEOS Summer Topical Meeting (IEEE, 2009), pp. 141–142.

Townsend, P.

S. K. Mondal, B. Roycroft, P. Lambkin, F. Peters, B. Corbett, P. Townsend, and A. Ellis, “A multiwavelength low-power wavelength-locked slotted Fabry–Perot laser source for WDM applications,” IEEE Photon. Technol. Lett. 19, 744–746 (2007).
[CrossRef]

Zhao, J.

A. D. Ellis, I. Tomkos, A. Mishra, J. Zhao, S. Ibrahim, P. Frascella, and F. Gunning, “Adaptive modulation schemes,” in 2009 IEEE/LEOS Summer Topical Meeting (IEEE, 2009), pp. 141–142.

Appl. Phys. Lett.

H. Kawaguchi, K. Magari, K. Oe, Y. Noguchi, Y. Nakano, and G. Motosugi, “Optical frequency-selective amplification in a distributed feedback type semiconductor laser amplifier,” Appl. Phys. Lett. 50, 66–67 (1987).
[CrossRef]

Electron. Lett.

T. Numai, M. Fujiwara, N. Shimosaka, K. Kaede, M. Nishio, S. Suzuki, and I. Mito, “1.5 μm λ/4-shifted DFB LD filter and 100  Mbit/s two-channel wavelength signal switching,” Electron. Lett. 24, 236–237 (1988).
[CrossRef]

S. Ibrahim, A. Ellis, F. Gunning, and F. Peters, “Demonstration of CoWDM using DPSK modulator array with injection-locked lasers,” Electron. Lett. 46, 150–152 (2010).
[CrossRef]

K. Kobayashi, H. Nishimoto, and R. Lang, “Experimental observation of asymmetric detuning characteristics in semiconductor laser injection locking,” Electron. Lett. 18, 54–56 (1982).
[CrossRef]

B. Corbett and D. McDonald, “Single longitudinal mode ridge waveguide 1.3 μm Fabry–Perot laser by modal perturbation,” Electron. Lett. 31, 2181–2182 (1995).
[CrossRef]

IEEE J. Quantum Electron.

R. Hui, A. D. Ottavi, A. Mecozzi, and P. Spano, “Semiconductor lasers,” IEEE J. Quantum Electron. 21, 1688–1695 (1991).
[CrossRef]

L. Li, “Static and dynamic properties of injection-locked semiconductor lasers,” IEEE J. Quantum Electron. 30, 1701–1708 (1994).
[CrossRef]

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976–983 (1982).
[CrossRef]

IEEE Photon. Technol. Lett.

A. D. Ellis and F. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17, 504–506 (2005).
[CrossRef]

D. McDonald and B. Corbett, “Performance characteristics of quasi-single longitudinal-mode Fabry–Perot lasers,” IEEE Photon. Technol. Lett. 8, 1127–1129 (1996).
[CrossRef]

S. K. Mondal, B. Roycroft, P. Lambkin, F. Peters, B. Corbett, P. Townsend, and A. Ellis, “A multiwavelength low-power wavelength-locked slotted Fabry–Perot laser source for WDM applications,” IEEE Photon. Technol. Lett. 19, 744–746 (2007).
[CrossRef]

J. Lightwave Technol.

F. S. Choa and T. Koch, “Static and dynamical characteristics of narrow-band tunable resonant amplifiers as active filters and receivers,” J. Lightwave Technol. 9, 73–83 (1991).
[CrossRef]

Other

A. D. Ellis, I. Tomkos, A. Mishra, J. Zhao, S. Ibrahim, P. Frascella, and F. Gunning, “Adaptive modulation schemes,” in 2009 IEEE/LEOS Summer Topical Meeting (IEEE, 2009), pp. 141–142.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic of the experimental setup, consisting of a TLS, Mach–Zehnder modulator (MZM), polarization controller (PC), optical spectrum analyzer (OSA), and slotted Fabry–Perot (SFP) laser.

Fig. 2.
Fig. 2.

Example coherent comb signal used for injection. The signal was generated by modulating the single wavelength output from the TLS. B is the carrier, and A and C are the sidebands generated from modulation.

Fig. 3.
Fig. 3.

Intensity plot showing the evolution of the optical spectrum of the slave laser as a single wavelength signal is injected and swept across resonance with a chosen mode of the slave.

Fig. 4.
Fig. 4.

Intensity plot displaying the evolution of the optical spectrum of the slave laser as a coherent comb input is injected and swept across resonance with the chosen mode of the slave.

Fig. 5.
Fig. 5.

Output spectra of the SFP laser for locking on each comb line for a wavelength sweep. The three traces represent the spectrum of the laser at TLS output wavelengths of 1563.11 nm (blue solid), 1563.19 nm (green dashed), and 1563.28 nm (red dotted–dashed).

Fig. 6.
Fig. 6.

Intensity plot showing the evolution of the optical spectrum of the slave laser as a single wavelength signal is injected while sweeping the temperature of the slave laser.

Fig. 7.
Fig. 7.

Intensity plot showing the evolution of the optical spectrum of the slave laser as a coherent comb is injected while sweeping the temperature of the slave laser.

Fig. 8.
Fig. 8.

Three traces represent the spectrum of the injection-locked SFP laser at the three locking temperatures of 20.1°C (blue solid), 20.9°C (green dashed), and 21.7°C (red dotted–dashed).

Fig. 9.
Fig. 9.

Intensity plot of the evolution of the optical spectrum of the slave laser for single wavelength injection while sweeping the drive current of the slave laser.

Fig. 10.
Fig. 10.

Intensity plot of optical spectrum of the slave laser for coherent comb injection while sweeping the drive currents of the slave laser.

Fig. 11.
Fig. 11.

Output spectra of the SFP laser for locking on each comb line for a current sweep. Locking occurred at driving currents of 30.5 mA (blue solid), 33.61 mA (green dashed), and 36.75 mA (red dotted–dashed).

Metrics