Abstract

We investigate the dynamics of photoinduced index changes in chalcogenide As2S3 fibers. Using a novel phase sensitive technique for measuring the photoinduced index change, we find that the index evolution is a two-stage process: it consists of a fast reduction and a subsequent slow increase in the refractive index. We show that the index change depends strongly on the beam intensity with both positive and negative changes possible. These findings can have application in design and fabrication of photoinduced devices such as Bragg gratings and photonic cavities.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  2. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15, 114–119 (2009).
    [CrossRef]
  3. M. D. Pelusi, F. Luan, E. Magi, M. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16, 11506 (2008).
    [CrossRef]
  4. F. Luan, E. Magi, T. Gong, I. Kabakova, and B. J. Eggleton, “Photoinduced whispering gallery mode microcavity resonator in a chalcogenide microfiber,” Opt. Lett. 36, 4761–4763 (2011).
    [CrossRef]
  5. M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Fabrication of Bragg grating in chalcogenide glass fiber using the transverse holographic method,” Electron. Lett. 32, 1611–1613 (1996).
    [CrossRef]
  6. C. Florea, J. S. Sanghera, B. Shaw, and I. D. Aggarwal, “Fiber Bragg gratings in As2S3 fibers obtained using a 0/−1 phase mask,” Opt. Mater. 31, 942–944 (2009).
    [CrossRef]
  7. R. Ahmad, C. Baker, and M. Rochette, “Fabrication of Bragg gratings in subwavelength diameter As2Se3 chalcogenide wires,” Opt. Lett. 36, 2886–2888 (2011).
    [CrossRef]
  8. D. D. Hudson, S. A. Dekker, E. C. Magi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36, 1122–1124 (2011).
    [CrossRef]
  9. M. A. Popescu, Non-Crystalline Chalcogenides (Kluwer, 2000).
  10. A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
    [CrossRef]
  11. M. Popescu, and W. Hoyer, “Structural features and mechanism of reversible photoinduced transformations in amorphous chalcogenides,” J. Optoelectron. Adv. Mater. 4, 867–874 (2002).
  12. M. Shokooh-Saremi, V. G. Ta’eed, N. J. Baker, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer,” J. Opt. Soc. Am. B 23, 1323–1331 (2006).
    [CrossRef]
  13. G. A. Brawley, V. G. Ta’eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett. 44, 846–847 (2008).
    [CrossRef]
  14. M. W. Lee, C. Grillet, C. L. C. Smith, D. J. Moss, B. J. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y. Ruan, and Y.-H. Lee, “Photosensitive post tuning of chalcogenide photonic crystal waveguides,” Opt. Express 15, 1277–1285 (2007).
    [CrossRef]
  15. V. K. Tikhomirov, M. Barj, S. Turrel, J. Kobelke, N. Idrissi, M. Bouzaoui, B. Capoen, and A. B. Seddon, “Non-linear Raman effects and photodarkening in chalcogenide glass As2S3,” Europhys. Lett. 76, 312–317 (2006).
    [CrossRef]
  16. K. Tanaka, “Photoexpansion in As2S3 glass,” Phys. Rev. B 57, 5163–5167 (1998).
    [CrossRef]
  17. P. Khan, A. R. Barik, E. M. Vinod, K. S. Sangunni, H. Jain, and K. V. Adarsh, “Coexistence of fast photodarkening and slow photobleaching in Ge19As21Se60 thin films,” Opt. Express 20, 12416–12421 (2012).
    [CrossRef]
  18. Y. Aoyagi, Y. Sefawa, S. Namba, T. Suhara, N. Nishihara, and H. Gamo, “Dynamic behavior of the photodarkening process in As2S3 chalcogenide glass,” Phys. Status Solidi A 67, 669–676 (1981).
    [CrossRef]
  19. C. Florea, L. Busse, J. Sanghera, B. Shaw, and I. Aggarwal, “A simple phenomenological study of photodarkening in As2S3 glasses,” Opt. Mater. 34, 1389–1393 (2012).
    [CrossRef]
  20. A. Saliminia, A. Villeneuve, T. V. Galstyan, S. LaRochelle, and K. Richardson, “First- and second-order Bragg gratings in single-mode planar waveguides of chalcogenide glasses,” J. Lightwave Technol. 17, 837–842 (1999).
    [CrossRef]

2012

C. Florea, L. Busse, J. Sanghera, B. Shaw, and I. Aggarwal, “A simple phenomenological study of photodarkening in As2S3 glasses,” Opt. Mater. 34, 1389–1393 (2012).
[CrossRef]

P. Khan, A. R. Barik, E. M. Vinod, K. S. Sangunni, H. Jain, and K. V. Adarsh, “Coexistence of fast photodarkening and slow photobleaching in Ge19As21Se60 thin films,” Opt. Express 20, 12416–12421 (2012).
[CrossRef]

2011

2009

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15, 114–119 (2009).
[CrossRef]

C. Florea, J. S. Sanghera, B. Shaw, and I. D. Aggarwal, “Fiber Bragg gratings in As2S3 fibers obtained using a 0/−1 phase mask,” Opt. Mater. 31, 942–944 (2009).
[CrossRef]

2008

G. A. Brawley, V. G. Ta’eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett. 44, 846–847 (2008).
[CrossRef]

M. D. Pelusi, F. Luan, E. Magi, M. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16, 11506 (2008).
[CrossRef]

2007

2006

M. Shokooh-Saremi, V. G. Ta’eed, N. J. Baker, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer,” J. Opt. Soc. Am. B 23, 1323–1331 (2006).
[CrossRef]

V. K. Tikhomirov, M. Barj, S. Turrel, J. Kobelke, N. Idrissi, M. Bouzaoui, B. Capoen, and A. B. Seddon, “Non-linear Raman effects and photodarkening in chalcogenide glass As2S3,” Europhys. Lett. 76, 312–317 (2006).
[CrossRef]

2003

A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[CrossRef]

2002

M. Popescu, and W. Hoyer, “Structural features and mechanism of reversible photoinduced transformations in amorphous chalcogenides,” J. Optoelectron. Adv. Mater. 4, 867–874 (2002).

1999

1998

K. Tanaka, “Photoexpansion in As2S3 glass,” Phys. Rev. B 57, 5163–5167 (1998).
[CrossRef]

1996

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Fabrication of Bragg grating in chalcogenide glass fiber using the transverse holographic method,” Electron. Lett. 32, 1611–1613 (1996).
[CrossRef]

1981

Y. Aoyagi, Y. Sefawa, S. Namba, T. Suhara, N. Nishihara, and H. Gamo, “Dynamic behavior of the photodarkening process in As2S3 chalcogenide glass,” Phys. Status Solidi A 67, 669–676 (1981).
[CrossRef]

Adarsh, K. V.

Aggarwal, I.

C. Florea, L. Busse, J. Sanghera, B. Shaw, and I. Aggarwal, “A simple phenomenological study of photodarkening in As2S3 glasses,” Opt. Mater. 34, 1389–1393 (2012).
[CrossRef]

G. A. Brawley, V. G. Ta’eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett. 44, 846–847 (2008).
[CrossRef]

Aggarwal, I. D.

D. D. Hudson, S. A. Dekker, E. C. Magi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36, 1122–1124 (2011).
[CrossRef]

C. Florea, J. S. Sanghera, B. Shaw, and I. D. Aggarwal, “Fiber Bragg gratings in As2S3 fibers obtained using a 0/−1 phase mask,” Opt. Mater. 31, 942–944 (2009).
[CrossRef]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15, 114–119 (2009).
[CrossRef]

M. D. Pelusi, F. Luan, E. Magi, M. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16, 11506 (2008).
[CrossRef]

Ahmad, R.

Aoyagi, Y.

Y. Aoyagi, Y. Sefawa, S. Namba, T. Suhara, N. Nishihara, and H. Gamo, “Dynamic behavior of the photodarkening process in As2S3 chalcogenide glass,” Phys. Status Solidi A 67, 669–676 (1981).
[CrossRef]

Asobe, M.

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Fabrication of Bragg grating in chalcogenide glass fiber using the transverse holographic method,” Electron. Lett. 32, 1611–1613 (1996).
[CrossRef]

Baker, C.

Baker, N. J.

Barik, A. R.

Barj, M.

V. K. Tikhomirov, M. Barj, S. Turrel, J. Kobelke, N. Idrissi, M. Bouzaoui, B. Capoen, and A. B. Seddon, “Non-linear Raman effects and photodarkening in chalcogenide glass As2S3,” Europhys. Lett. 76, 312–317 (2006).
[CrossRef]

Bolger, J. A.

G. A. Brawley, V. G. Ta’eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett. 44, 846–847 (2008).
[CrossRef]

Bouzaoui, M.

V. K. Tikhomirov, M. Barj, S. Turrel, J. Kobelke, N. Idrissi, M. Bouzaoui, B. Capoen, and A. B. Seddon, “Non-linear Raman effects and photodarkening in chalcogenide glass As2S3,” Europhys. Lett. 76, 312–317 (2006).
[CrossRef]

Brawley, G. A.

G. A. Brawley, V. G. Ta’eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett. 44, 846–847 (2008).
[CrossRef]

Busse, L.

C. Florea, L. Busse, J. Sanghera, B. Shaw, and I. Aggarwal, “A simple phenomenological study of photodarkening in As2S3 glasses,” Opt. Mater. 34, 1389–1393 (2012).
[CrossRef]

Capoen, B.

V. K. Tikhomirov, M. Barj, S. Turrel, J. Kobelke, N. Idrissi, M. Bouzaoui, B. Capoen, and A. B. Seddon, “Non-linear Raman effects and photodarkening in chalcogenide glass As2S3,” Europhys. Lett. 76, 312–317 (2006).
[CrossRef]

Dekker, S. A.

Eggleton, B. J.

D. D. Hudson, S. A. Dekker, E. C. Magi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36, 1122–1124 (2011).
[CrossRef]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

F. Luan, E. Magi, T. Gong, I. Kabakova, and B. J. Eggleton, “Photoinduced whispering gallery mode microcavity resonator in a chalcogenide microfiber,” Opt. Lett. 36, 4761–4763 (2011).
[CrossRef]

G. A. Brawley, V. G. Ta’eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett. 44, 846–847 (2008).
[CrossRef]

M. D. Pelusi, F. Luan, E. Magi, M. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16, 11506 (2008).
[CrossRef]

M. W. Lee, C. Grillet, C. L. C. Smith, D. J. Moss, B. J. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y. Ruan, and Y.-H. Lee, “Photosensitive post tuning of chalcogenide photonic crystal waveguides,” Opt. Express 15, 1277–1285 (2007).
[CrossRef]

M. Shokooh-Saremi, V. G. Ta’eed, N. J. Baker, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer,” J. Opt. Soc. Am. B 23, 1323–1331 (2006).
[CrossRef]

Elliot, S. R.

A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[CrossRef]

Florea, C.

C. Florea, L. Busse, J. Sanghera, B. Shaw, and I. Aggarwal, “A simple phenomenological study of photodarkening in As2S3 glasses,” Opt. Mater. 34, 1389–1393 (2012).
[CrossRef]

C. Florea, J. S. Sanghera, B. Shaw, and I. D. Aggarwal, “Fiber Bragg gratings in As2S3 fibers obtained using a 0/−1 phase mask,” Opt. Mater. 31, 942–944 (2009).
[CrossRef]

Freeman, D.

Galstyan, T. V.

Gamo, H.

Y. Aoyagi, Y. Sefawa, S. Namba, T. Suhara, N. Nishihara, and H. Gamo, “Dynamic behavior of the photodarkening process in As2S3 chalcogenide glass,” Phys. Status Solidi A 67, 669–676 (1981).
[CrossRef]

Gong, T.

Grillet, C.

Hoyer, W.

M. Popescu, and W. Hoyer, “Structural features and mechanism of reversible photoinduced transformations in amorphous chalcogenides,” J. Optoelectron. Adv. Mater. 4, 867–874 (2002).

Hudson, D. D.

Idrissi, N.

V. K. Tikhomirov, M. Barj, S. Turrel, J. Kobelke, N. Idrissi, M. Bouzaoui, B. Capoen, and A. B. Seddon, “Non-linear Raman effects and photodarkening in chalcogenide glass As2S3,” Europhys. Lett. 76, 312–317 (2006).
[CrossRef]

Jackson, S. D.

Jain, H.

Judge, A. C.

Kabakova, I.

Kaino, T.

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Fabrication of Bragg grating in chalcogenide glass fiber using the transverse holographic method,” Electron. Lett. 32, 1611–1613 (1996).
[CrossRef]

Khan, P.

Kobelke, J.

V. K. Tikhomirov, M. Barj, S. Turrel, J. Kobelke, N. Idrissi, M. Bouzaoui, B. Capoen, and A. B. Seddon, “Non-linear Raman effects and photodarkening in chalcogenide glass As2S3,” Europhys. Lett. 76, 312–317 (2006).
[CrossRef]

Lamont, M.

LaRochelle, S.

Lee, M. W.

Lee, Y.-H.

Li, E.

Littler, I. C. M.

Luan, F.

Luther-Davies, B.

Madden, S.

Magi, E.

Magi, E. C.

Moss, D. J.

Namba, S.

Y. Aoyagi, Y. Sefawa, S. Namba, T. Suhara, N. Nishihara, and H. Gamo, “Dynamic behavior of the photodarkening process in As2S3 chalcogenide glass,” Phys. Status Solidi A 67, 669–676 (1981).
[CrossRef]

Nishihara, N.

Y. Aoyagi, Y. Sefawa, S. Namba, T. Suhara, N. Nishihara, and H. Gamo, “Dynamic behavior of the photodarkening process in As2S3 chalcogenide glass,” Phys. Status Solidi A 67, 669–676 (1981).
[CrossRef]

Ohara, T.

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Fabrication of Bragg grating in chalcogenide glass fiber using the transverse holographic method,” Electron. Lett. 32, 1611–1613 (1996).
[CrossRef]

Pelusi, M. D.

Popescu, M.

M. Popescu, and W. Hoyer, “Structural features and mechanism of reversible photoinduced transformations in amorphous chalcogenides,” J. Optoelectron. Adv. Mater. 4, 867–874 (2002).

Popescu, M. A.

M. A. Popescu, Non-Crystalline Chalcogenides (Kluwer, 2000).

Richardson, K.

Rochette, M.

Rode, A.

Ruan, Y.

Saliminia, A.

Sanghera, J.

C. Florea, L. Busse, J. Sanghera, B. Shaw, and I. Aggarwal, “A simple phenomenological study of photodarkening in As2S3 glasses,” Opt. Mater. 34, 1389–1393 (2012).
[CrossRef]

Sanghera, J. S.

D. D. Hudson, S. A. Dekker, E. C. Magi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36, 1122–1124 (2011).
[CrossRef]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15, 114–119 (2009).
[CrossRef]

C. Florea, J. S. Sanghera, B. Shaw, and I. D. Aggarwal, “Fiber Bragg gratings in As2S3 fibers obtained using a 0/−1 phase mask,” Opt. Mater. 31, 942–944 (2009).
[CrossRef]

G. A. Brawley, V. G. Ta’eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett. 44, 846–847 (2008).
[CrossRef]

M. D. Pelusi, F. Luan, E. Magi, M. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16, 11506 (2008).
[CrossRef]

Sangunni, K. S.

Seddon, A. B.

V. K. Tikhomirov, M. Barj, S. Turrel, J. Kobelke, N. Idrissi, M. Bouzaoui, B. Capoen, and A. B. Seddon, “Non-linear Raman effects and photodarkening in chalcogenide glass As2S3,” Europhys. Lett. 76, 312–317 (2006).
[CrossRef]

Sefawa, Y.

Y. Aoyagi, Y. Sefawa, S. Namba, T. Suhara, N. Nishihara, and H. Gamo, “Dynamic behavior of the photodarkening process in As2S3 chalcogenide glass,” Phys. Status Solidi A 67, 669–676 (1981).
[CrossRef]

Shaw, B.

C. Florea, L. Busse, J. Sanghera, B. Shaw, and I. Aggarwal, “A simple phenomenological study of photodarkening in As2S3 glasses,” Opt. Mater. 34, 1389–1393 (2012).
[CrossRef]

C. Florea, J. S. Sanghera, B. Shaw, and I. D. Aggarwal, “Fiber Bragg gratings in As2S3 fibers obtained using a 0/−1 phase mask,” Opt. Mater. 31, 942–944 (2009).
[CrossRef]

Shaw, L. B.

Shokooh-Saremi, M.

Smith, C. L. C.

Suhara, T.

Y. Aoyagi, Y. Sefawa, S. Namba, T. Suhara, N. Nishihara, and H. Gamo, “Dynamic behavior of the photodarkening process in As2S3 chalcogenide glass,” Phys. Status Solidi A 67, 669–676 (1981).
[CrossRef]

Ta’eed, V. G.

G. A. Brawley, V. G. Ta’eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett. 44, 846–847 (2008).
[CrossRef]

M. Shokooh-Saremi, V. G. Ta’eed, N. J. Baker, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer,” J. Opt. Soc. Am. B 23, 1323–1331 (2006).
[CrossRef]

Tanaka, K.

K. Tanaka, “Photoexpansion in As2S3 glass,” Phys. Rev. B 57, 5163–5167 (1998).
[CrossRef]

Tikhomirov, V. K.

V. K. Tikhomirov, M. Barj, S. Turrel, J. Kobelke, N. Idrissi, M. Bouzaoui, B. Capoen, and A. B. Seddon, “Non-linear Raman effects and photodarkening in chalcogenide glass As2S3,” Europhys. Lett. 76, 312–317 (2006).
[CrossRef]

Turrel, S.

V. K. Tikhomirov, M. Barj, S. Turrel, J. Kobelke, N. Idrissi, M. Bouzaoui, B. Capoen, and A. B. Seddon, “Non-linear Raman effects and photodarkening in chalcogenide glass As2S3,” Europhys. Lett. 76, 312–317 (2006).
[CrossRef]

Villeneuve, A.

Vinod, E. M.

Yokohama, I.

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Fabrication of Bragg grating in chalcogenide glass fiber using the transverse holographic method,” Electron. Lett. 32, 1611–1613 (1996).
[CrossRef]

Zakery, A.

A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[CrossRef]

Electron. Lett.

G. A. Brawley, V. G. Ta’eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett. 44, 846–847 (2008).
[CrossRef]

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Fabrication of Bragg grating in chalcogenide glass fiber using the transverse holographic method,” Electron. Lett. 32, 1611–1613 (1996).
[CrossRef]

Europhys. Lett.

V. K. Tikhomirov, M. Barj, S. Turrel, J. Kobelke, N. Idrissi, M. Bouzaoui, B. Capoen, and A. B. Seddon, “Non-linear Raman effects and photodarkening in chalcogenide glass As2S3,” Europhys. Lett. 76, 312–317 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15, 114–119 (2009).
[CrossRef]

J. Lightwave Technol.

J. Non-Cryst. Solids

A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[CrossRef]

J. Opt. Soc. Am. B

J. Optoelectron. Adv. Mater.

M. Popescu, and W. Hoyer, “Structural features and mechanism of reversible photoinduced transformations in amorphous chalcogenides,” J. Optoelectron. Adv. Mater. 4, 867–874 (2002).

Nat. Photonics

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Opt. Express

Opt. Lett.

Opt. Mater.

C. Florea, L. Busse, J. Sanghera, B. Shaw, and I. Aggarwal, “A simple phenomenological study of photodarkening in As2S3 glasses,” Opt. Mater. 34, 1389–1393 (2012).
[CrossRef]

C. Florea, J. S. Sanghera, B. Shaw, and I. D. Aggarwal, “Fiber Bragg gratings in As2S3 fibers obtained using a 0/−1 phase mask,” Opt. Mater. 31, 942–944 (2009).
[CrossRef]

Phys. Rev. B

K. Tanaka, “Photoexpansion in As2S3 glass,” Phys. Rev. B 57, 5163–5167 (1998).
[CrossRef]

Phys. Status Solidi A

Y. Aoyagi, Y. Sefawa, S. Namba, T. Suhara, N. Nishihara, and H. Gamo, “Dynamic behavior of the photodarkening process in As2S3 chalcogenide glass,” Phys. Status Solidi A 67, 669–676 (1981).
[CrossRef]

Other

M. A. Popescu, Non-Crystalline Chalcogenides (Kluwer, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Absorption measurement on bulk As 2 S 3 glass [19].

Fig. 2.
Fig. 2.

(a) Ray diagram of light propagation in fiber, assuming an illumination by a plane wave from the left-hand side. (b) Normalized power absorbed in the fiber core depending on illumination wavelength. The fiber cladding diameter is a = 136 μm .

Fig. 3.
Fig. 3.

(a) Schematic of the experimental setup. (b) Example of the FP fringe measurement using OSA.

Fig. 4.
Fig. 4.

(a) Dynamic change of the RI in an As 2 S 3 fiber at different exposure powers P = 2.8 30 mW (corresponds to intensities in the range 0.06 0.7 W / cm 2 ). (b) Magnified region inside the dashed frame in (a). (c) The same data as in (a) is plotted as a function of radiant exposure (fluence).

Fig. 5.
Fig. 5.

Strength of the grating in reflection and shift of the grating bandgap with time for two different intensities of the writing beam: (a)  I = 1.1 W / cm 2 and (b)  I = 2.2 W / cm 2 .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

l = a n n 1 ,
I ( r , Θ ) = I 0 ( Θ ) R ( Θ ) r e α ( R ( Θ ) r ) .
p = I 0 ( 0 ) l l a α e α a .
δ λ = FSR · Δ ϕ 2 π
δ λ = λ Δ n n l L .
Δ FSR = λ 2 2 l L 2 Δ n n 2 .

Metrics