Abstract

Dielectric-coated metallic hollow waveguides (DMHW) are drawing considerable attention for their application in terahertz (THz) waveguiding. This paper theoretically analyzes the multilayer structure to reduce the transmission and bending loss of DMHW. The efficiency of THz multilayer DMHW depends on a proper selection of dielectric materials and geometrical parameters. The low-loss properties are demonstrated by studying the multilayer gold waveguides with a stack of polypropylene (PP) and Si-doped polypropylene (PPSi). Comparisons are made with single-layer Au/PP and Au-only waveguides. The effect of dielectric absorption is discussed in detail. It is found that low index dielectric causes more additional loss than that of high index dielectric layers. Several design considerations for the THz multilayer DMHW are pointed out by studying the effects of multilayer structure parameters with a stack of polyethylene (PE) and TiO2-doped polyethylene (PETiO2). We conclude that the inner radius of the waveguide and the refractive indices of the dielectrics tend to be larger in order to reduce the influence of material absorption. An optimal value exists for the total number of layers when the dielectrics are absorptive. The absorption tolerances are pointed out to guarantee a smaller loss for multilayer DMHW than that of metal-only waveguide. Finally, a fabrication method for THz multilayer DMHW Ag/PE/PETiO2 is proposed based on co-rolling technique.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Jacobsen, D. M. Mittleman, and M. C. Nuss, “Chemical recognition of gases and gas mixtures with terahertz waves,” Opt. Lett. 21, 2011–2013 (1996).
    [CrossRef]
  2. D. M. Mittleman, S. Hunsche, and L. Boivin, “T-ray tomography,” Opt. Lett. 22, 904–906 (1997).
    [CrossRef]
  3. T. Kiwa, M. Tonouchi, and M. Yamashita, “Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits,” Opt. Lett. 28, 2058–2060 (2003).
    [CrossRef]
  4. K. Kawase, Y. Ogawa, and Y. Watanabe, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549–2554 (2003).
    [CrossRef]
  5. M. C. Beard, G. M. Turner, and J. E. Murphy, “Electronic coupling in InP nanoparticle arrays,” Nano Lett. 3, 1695–1699 (2003).
    [CrossRef]
  6. J. Zhang and D. Grischkowsky, “Waveguide terahertz time-domain spectroscopy of nanometer wave layers,” Opt. Lett. 29, 1617–1619 (2004).
    [CrossRef]
  7. R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Richie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
    [CrossRef]
  8. K. Wang and M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
    [CrossRef]
  9. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31, 308–310 (2006).
    [CrossRef]
  10. M. Y. Frankel, S. Gupta, and J. A. Valdmanis, “Terahertz attenuation and dispersion characteristics of coplanar transmission-lines,” IEEE Trans. Microw. Theory 39, 910–916(1991).
    [CrossRef]
  11. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987–1989 (2000).
    [CrossRef]
  12. R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24, 1431–1433 (1999).
    [CrossRef]
  13. C. H. Lai, Y. C. Hsueh, H. W. Chen, Y. J. Huang, H. C. Chang, and C. K. Sun, “Low-index terahertz pipe waveguides,” Opt. Express 34, 3457–3459 (2009).
  14. C. H. Lai, B. You, J. Y. Lu, T. A. Liu, J. L. Peng, C. K. Sun, and H. C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18, 309–322 (2010).
    [CrossRef]
  15. D. Chen and H. B. Chen, “A novel low-loss terahertz waveguide: polymer tube,” Opt. Express 18, 3762–3767 (2010).
    [CrossRef]
  16. D. Chen, “Mode property of terahertz polymer tube,” J. Lightwave Technol. 28, 2708–2713 (2010).
    [CrossRef]
  17. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004).
    [CrossRef]
  18. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007).
    [CrossRef]
  19. R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11, 444–446 (2001).
    [CrossRef]
  20. T. Hidaka, H. Minamide, H. Ito, J. Nishizawa, K. Tamura, and S. Ichikawa, “Ferroelectric PVDF cladding terahertz waveguide,” J. Lightwave Technol. 23, 2469–2473 (2005).
    [CrossRef]
  21. Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91, 333–336 (2008).
    [CrossRef]
  22. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634 (2002).
    [CrossRef]
  23. G. Ren, Y. Gong, P. Shum, X. Yu, J.-J. Hu, G. Wang, M. O. L. Chuen, and V. Paulose, “Low-loss air-core polarization maintaining terahertz fiber,” Opt. Express 16, 13593–13598 (2008).
    [CrossRef]
  24. C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33, 902–904 (2008).
    [CrossRef]
  25. J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
    [CrossRef]
  26. K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17, 8592–8601 (2009).
    [CrossRef]
  27. A. Shaghik, V. S. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16, 8845–8854 (2008).
    [CrossRef]
  28. M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007).
    [CrossRef]
  29. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B 28, 896–907(2011).
    [CrossRef]
  30. B. Ung, A. Dupuis, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “High-refractive-index composite materials for terahertz waveguides: trade-off between index contrast and absorption loss,” J. Opt. Soc. Am. B 28, 917–921 (2011).
    [CrossRef]
  31. J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211–227 (2000).
    [CrossRef]
  32. A. Wilk, S. S. Kim, and B. Mizaikoff, “An approach to the spectral simulation of infrared hollow waveguide gas sensors,” Anal. Bioanal. Chem. 395, 1661–1671 (2009).
    [CrossRef]
  33. Y. Komachi, H. Sato, Y. Matsuura, M. Miyagi, and H. Tashiro, “Raman probe using a single hollow waveguide,” Opt. Lett. 30, 2942–2944 (2005).
    [CrossRef]
  34. S. Kino and Y. Matsuura, “Nontoxic and chemically stable hollow optical fiber probe for fourier transform infrared spectroscopy,” Appl. Spectrosc. 61, 1334–1337 (2007).
    [CrossRef]
  35. T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24, 1230–1235 (2007).
    [CrossRef]
  36. Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B 25, 1949–1954 (2008).
    [CrossRef]
  37. C. Themistos, B. M. A. Rahman, M. Rajarajan, K. T. V. Grattan, B. Bowden, and J. A. Harrington, “Characterization of silver/polystyrene (PS)-coated hollow glass waveguides at THz frequency,” J. Lightwave Technol. 25, 2456–2462(2007).
    [CrossRef]
  38. O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express 18, 1898–1903 (2010).
    [CrossRef]
  39. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
    [CrossRef]
  40. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys. 104, 093110 (2008).
    [CrossRef]
  41. X. L. Tang, Y. W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34, 2231–2233 (2009).
    [CrossRef]
  42. X. L. Tang, B. S. Sun, and Y. W. Shi, “Design and optimization of low-loss high-birefringence hollow fiber at terahertz frequency,” Opt. Express 19, 24967–24979 (2011).
    [CrossRef]
  43. X. L. Tang and Y. W. Shi, “Characterization of dielectric-coated metallic hollow fiber with subwavelength diameter at terahertz frequency,” Opt. Eng. 51, 025001 (2012).
    [CrossRef]
  44. X. Lin, Y. W. Shi, K. R. Sui, X. S. Zhu, K. Iwai, and M. Miyagi, “Fabrication and characterization of infrared hollow fiber with multi-SiO2 and AgI inner-coating layers,” Appl. Opt. 48, 6765–6769 (2009).
    [CrossRef]
  45. B. S. Sun, X. Zeng, K. Iwai, M. Miyagi, N. Chi, and Y. W. Shi, “Experimental investigation on liquid-phase fabrication techniques for multilayer infrared hollow fiber,” Opt. Fiber Technol. 17, 281–285 (2011).
    [CrossRef]
  46. B. S. Sun, X. L. Tang, Y. W. Shi, K. Iwai, and M. Miyagi, “Optimal design for hollow fiber inner-coated by dielectric layers with surface roughness,” Opt. Lett. 36, 3461–3463 (2011).
    [CrossRef]
  47. Y. Matsuura and J. A. Harrington, “Hollow glass waveguides with three-layer dielectric coating fabricated by chemical vapor deposition,” J. Opt. Soc. Am. A. 14, 1255–1259 (1997).
    [CrossRef]
  48. T. Karagiri, Y. Matsuura, and M. Miyagi, “Metal-covered photonic bandgap multilayer for infrared hollow waveguide,” Appl. Opt. 41, 7603–7606 (2002).
    [CrossRef]
  49. V. Gopal and J. A. Harrington, “Deposition and characterization of metal sulfide dielectric coatings for hollow glass waveguides,” Opt. Express 11, 3182–3187 (2003).
    [CrossRef]
  50. M. Ben-David, M. Catalogna, J. A. Harrington, V. Krishnan, and I. Gannot, “Theoretical and experimental investigations of metal sulfide dielectric coatings for hollow waveguides,” Opt. Eng. 47, 045008 (2008).
    [CrossRef]
  51. M. Nakazawa, Y. W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Hollow polycarbonate fiber for Er:YAG laser light delivery,” Opt. Lett. 31, 1373–1376 (2006).
    [CrossRef]
  52. M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116–126 (1984).
    [CrossRef]
  53. Y. Matsuura, M. Saito, and M. Miyagi, “Loss characteristics uof circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
    [CrossRef]
  54. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983).
    [CrossRef]
  55. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of Au, Ni, and Pb at submillimeter wavelengths,” Appl. Opt. 26, 744–752 (1987).
    [CrossRef]
  56. M. A. Ordal, R. J. Bell, R. W. Alexander, L. A. Newquist, and M. R. Querry, “Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths,” Appl. Opt. 27, 1203–1209 (1988).
    [CrossRef]
  57. S. Wietzkea, C. Jansena, F. Rutza, D. M. Mittlemanb, and M. Kocha, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007).
    [CrossRef]
  58. M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasistatic effective medium theory,” J. Phys. D 42, 065415 (2009).
    [CrossRef]
  59. M. Miyagi and S. Kawakami, “Losses and phase constant changes caused by bends in the general class of hollow waveguides for the infrared,” Appl. Opt. 20, 4221–4226 (1981).
    [CrossRef]
  60. J. R. Birch, “The far-infrared optical constants of polypropylene, PTFE and polystyrene,” Infrared Phys. 33, 33–38 (1992).
    [CrossRef]
  61. J. R. Birch, “The far-infrared optical constants of polyethylene,” Infrared Phys. 30, 195–197 (1990).
    [CrossRef]
  62. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).
  63. K. Stoeffler, C. Dubois, A. Ajji, N. Guo, F. Boismenu, and M. Skorobogatiy, “Fabrication of all-polymeric photonic bandgap Bragg fibers using rolling of coextruded PS/PMMA multilayer films,” Polym. Eng. Sci. 50, 1122–1127 (2010).
    [CrossRef]

2012 (1)

X. L. Tang and Y. W. Shi, “Characterization of dielectric-coated metallic hollow fiber with subwavelength diameter at terahertz frequency,” Opt. Eng. 51, 025001 (2012).
[CrossRef]

2011 (5)

2010 (5)

2009 (6)

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasistatic effective medium theory,” J. Phys. D 42, 065415 (2009).
[CrossRef]

X. L. Tang, Y. W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34, 2231–2233 (2009).
[CrossRef]

X. Lin, Y. W. Shi, K. R. Sui, X. S. Zhu, K. Iwai, and M. Miyagi, “Fabrication and characterization of infrared hollow fiber with multi-SiO2 and AgI inner-coating layers,” Appl. Opt. 48, 6765–6769 (2009).
[CrossRef]

C. H. Lai, Y. C. Hsueh, H. W. Chen, Y. J. Huang, H. C. Chang, and C. K. Sun, “Low-index terahertz pipe waveguides,” Opt. Express 34, 3457–3459 (2009).

A. Wilk, S. S. Kim, and B. Mizaikoff, “An approach to the spectral simulation of infrared hollow waveguide gas sensors,” Anal. Bioanal. Chem. 395, 1661–1671 (2009).
[CrossRef]

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17, 8592–8601 (2009).
[CrossRef]

2008 (9)

A. Shaghik, V. S. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16, 8845–8854 (2008).
[CrossRef]

G. Ren, Y. Gong, P. Shum, X. Yu, J.-J. Hu, G. Wang, M. O. L. Chuen, and V. Paulose, “Low-loss air-core polarization maintaining terahertz fiber,” Opt. Express 16, 13593–13598 (2008).
[CrossRef]

C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33, 902–904 (2008).
[CrossRef]

J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91, 333–336 (2008).
[CrossRef]

Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B 25, 1949–1954 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys. 104, 093110 (2008).
[CrossRef]

M. Ben-David, M. Catalogna, J. A. Harrington, V. Krishnan, and I. Gannot, “Theoretical and experimental investigations of metal sulfide dielectric coatings for hollow waveguides,” Opt. Eng. 47, 045008 (2008).
[CrossRef]

2007 (6)

2006 (2)

2005 (2)

2004 (3)

2003 (4)

2002 (3)

T. Karagiri, Y. Matsuura, and M. Miyagi, “Metal-covered photonic bandgap multilayer for infrared hollow waveguide,” Appl. Opt. 41, 7603–7606 (2002).
[CrossRef]

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Richie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634 (2002).
[CrossRef]

2001 (1)

R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11, 444–446 (2001).
[CrossRef]

2000 (2)

J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211–227 (2000).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987–1989 (2000).
[CrossRef]

1999 (1)

1997 (2)

D. M. Mittleman, S. Hunsche, and L. Boivin, “T-ray tomography,” Opt. Lett. 22, 904–906 (1997).
[CrossRef]

Y. Matsuura and J. A. Harrington, “Hollow glass waveguides with three-layer dielectric coating fabricated by chemical vapor deposition,” J. Opt. Soc. Am. A. 14, 1255–1259 (1997).
[CrossRef]

1996 (1)

1992 (1)

J. R. Birch, “The far-infrared optical constants of polypropylene, PTFE and polystyrene,” Infrared Phys. 33, 33–38 (1992).
[CrossRef]

1991 (1)

M. Y. Frankel, S. Gupta, and J. A. Valdmanis, “Terahertz attenuation and dispersion characteristics of coplanar transmission-lines,” IEEE Trans. Microw. Theory 39, 910–916(1991).
[CrossRef]

1990 (1)

J. R. Birch, “The far-infrared optical constants of polyethylene,” Infrared Phys. 30, 195–197 (1990).
[CrossRef]

1989 (1)

1988 (1)

1987 (1)

1984 (1)

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116–126 (1984).
[CrossRef]

1983 (1)

1981 (1)

Abbott, D.

Adam, A. J.

Afshar, V. S.

Ajji, A.

K. Stoeffler, C. Dubois, A. Ajji, N. Guo, F. Boismenu, and M. Skorobogatiy, “Fabrication of all-polymeric photonic bandgap Bragg fibers using rolling of coextruded PS/PMMA multilayer films,” Polym. Eng. Sci. 50, 1122–1127 (2010).
[CrossRef]

Alexander, R. W.

Argyros, A.

Bang, O.

Beard, M. C.

M. C. Beard, G. M. Turner, and J. E. Murphy, “Electronic coupling in InP nanoparticle arrays,” Nano Lett. 3, 1695–1699 (2003).
[CrossRef]

Beere, H. E.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Richie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Beltram, F.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Richie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef]

Ben-David, M.

M. Ben-David, M. Catalogna, J. A. Harrington, V. Krishnan, and I. Gannot, “Theoretical and experimental investigations of metal sulfide dielectric coatings for hollow waveguides,” Opt. Eng. 47, 045008 (2008).
[CrossRef]

Birch, J. R.

J. R. Birch, “The far-infrared optical constants of polypropylene, PTFE and polystyrene,” Infrared Phys. 33, 33–38 (1992).
[CrossRef]

J. R. Birch, “The far-infrared optical constants of polyethylene,” Infrared Phys. 30, 195–197 (1990).
[CrossRef]

Boismenu, F.

K. Stoeffler, C. Dubois, A. Ajji, N. Guo, F. Boismenu, and M. Skorobogatiy, “Fabrication of all-polymeric photonic bandgap Bragg fibers using rolling of coextruded PS/PMMA multilayer films,” Polym. Eng. Sci. 50, 1122–1127 (2010).
[CrossRef]

Boivin, L.

Bowden, B.

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys. 104, 093110 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007).
[CrossRef]

C. Themistos, B. M. A. Rahman, M. Rajarajan, K. T. V. Grattan, B. Bowden, and J. A. Harrington, “Characterization of silver/polystyrene (PS)-coated hollow glass waveguides at THz frequency,” J. Lightwave Technol. 25, 2456–2462(2007).
[CrossRef]

Catalogna, M.

M. Ben-David, M. Catalogna, J. A. Harrington, V. Krishnan, and I. Gannot, “Theoretical and experimental investigations of metal sulfide dielectric coatings for hollow waveguides,” Opt. Eng. 47, 045008 (2008).
[CrossRef]

Chang, H. C.

C. H. Lai, B. You, J. Y. Lu, T. A. Liu, J. L. Peng, C. K. Sun, and H. C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18, 309–322 (2010).
[CrossRef]

C. H. Lai, Y. C. Hsueh, H. W. Chen, Y. J. Huang, H. C. Chang, and C. K. Sun, “Low-index terahertz pipe waveguides,” Opt. Express 34, 3457–3459 (2009).

J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

Chen, D.

Chen, H. B.

Chen, H. W.

C. H. Lai, Y. C. Hsueh, H. W. Chen, Y. J. Huang, H. C. Chang, and C. K. Sun, “Low-index terahertz pipe waveguides,” Opt. Express 34, 3457–3459 (2009).

J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31, 308–310 (2006).
[CrossRef]

Chen, L. J.

Chi, N.

B. S. Sun, X. Zeng, K. Iwai, M. Miyagi, N. Chi, and Y. W. Shi, “Experimental investigation on liquid-phase fabrication techniques for multilayer infrared hollow fiber,” Opt. Fiber Technol. 17, 281–285 (2011).
[CrossRef]

Cho, M.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634 (2002).
[CrossRef]

Chuen, M. O. L.

Davies, A. G.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Richie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef]

Dubois, C.

Dupuis, A.

Estacio, E.

Fischer, B. M.

Frankel, M. Y.

M. Y. Frankel, S. Gupta, and J. A. Valdmanis, “Terahertz attenuation and dispersion characteristics of coplanar transmission-lines,” IEEE Trans. Microw. Theory 39, 910–916(1991).
[CrossRef]

Gallot, G.

Gannot, I.

M. Ben-David, M. Catalogna, J. A. Harrington, V. Krishnan, and I. Gannot, “Theoretical and experimental investigations of metal sulfide dielectric coatings for hollow waveguides,” Opt. Eng. 47, 045008 (2008).
[CrossRef]

Geng, Y. F.

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91, 333–336 (2008).
[CrossRef]

George, R.

Gong, Y.

Gopal, V.

Grattan, K. T. V.

Grischkowsky, D.

J. Zhang and D. Grischkowsky, “Waveguide terahertz time-domain spectroscopy of nanometer wave layers,” Opt. Lett. 29, 1617–1619 (2004).
[CrossRef]

R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11, 444–446 (2001).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987–1989 (2000).
[CrossRef]

R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24, 1431–1433 (1999).
[CrossRef]

Guo, N.

K. Stoeffler, C. Dubois, A. Ajji, N. Guo, F. Boismenu, and M. Skorobogatiy, “Fabrication of all-polymeric photonic bandgap Bragg fibers using rolling of coextruded PS/PMMA multilayer films,” Polym. Eng. Sci. 50, 1122–1127 (2010).
[CrossRef]

Gupta, S.

M. Y. Frankel, S. Gupta, and J. A. Valdmanis, “Terahertz attenuation and dispersion characteristics of coplanar transmission-lines,” IEEE Trans. Microw. Theory 39, 910–916(1991).
[CrossRef]

Han, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634 (2002).
[CrossRef]

Harrington, J. A.

O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express 18, 1898–1903 (2010).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys. 104, 093110 (2008).
[CrossRef]

M. Ben-David, M. Catalogna, J. A. Harrington, V. Krishnan, and I. Gannot, “Theoretical and experimental investigations of metal sulfide dielectric coatings for hollow waveguides,” Opt. Eng. 47, 045008 (2008).
[CrossRef]

C. Themistos, B. M. A. Rahman, M. Rajarajan, K. T. V. Grattan, B. Bowden, and J. A. Harrington, “Characterization of silver/polystyrene (PS)-coated hollow glass waveguides at THz frequency,” J. Lightwave Technol. 25, 2456–2462(2007).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007).
[CrossRef]

J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004).
[CrossRef]

V. Gopal and J. A. Harrington, “Deposition and characterization of metal sulfide dielectric coatings for hollow glass waveguides,” Opt. Express 11, 3182–3187 (2003).
[CrossRef]

J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211–227 (2000).
[CrossRef]

Y. Matsuura and J. A. Harrington, “Hollow glass waveguides with three-layer dielectric coating fabricated by chemical vapor deposition,” J. Opt. Soc. Am. A. 14, 1255–1259 (1997).
[CrossRef]

Hidaka, T.

Hsueh, Y. C.

C. H. Lai, Y. C. Hsueh, H. W. Chen, Y. J. Huang, H. C. Chang, and C. K. Sun, “Low-index terahertz pipe waveguides,” Opt. Express 34, 3457–3459 (2009).

Hu, J.-J.

Huang, Y. J.

C. H. Lai, Y. C. Hsueh, H. W. Chen, Y. J. Huang, H. C. Chang, and C. K. Sun, “Low-index terahertz pipe waveguides,” Opt. Express 34, 3457–3459 (2009).

Hunsche, S.

Ichikawa, S.

Iotti, R. C.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Richie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef]

Ito, H.

Ito, T.

Iwai, K.

Jacobsen, R. H.

Jamison, S. P.

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987–1989 (2000).
[CrossRef]

Jansen, C.

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasistatic effective medium theory,” J. Phys. D 42, 065415 (2009).
[CrossRef]

Jansena, C.

S. Wietzkea, C. Jansena, F. Rutza, D. M. Mittlemanb, and M. Kocha, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007).
[CrossRef]

Jepsen, P. U.

Kao, T. F.

Karagiri, T.

Kawakami, S.

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116–126 (1984).
[CrossRef]

M. Miyagi and S. Kawakami, “Losses and phase constant changes caused by bends in the general class of hollow waveguides for the infrared,” Appl. Opt. 20, 4221–4226 (1981).
[CrossRef]

Kawase, K.

Kim, J.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634 (2002).
[CrossRef]

Kim, S. S.

A. Wilk, S. S. Kim, and B. Mizaikoff, “An approach to the spectral simulation of infrared hollow waveguide gas sensors,” Anal. Bioanal. Chem. 395, 1661–1671 (2009).
[CrossRef]

Kino, S.

Kiwa, T.

Koch, M.

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasistatic effective medium theory,” J. Phys. D 42, 065415 (2009).
[CrossRef]

Kocha, M.

S. Wietzkea, C. Jansena, F. Rutza, D. M. Mittlemanb, and M. Kocha, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007).
[CrossRef]

Kohler, R.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Richie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef]

Komachi, Y.

Krishnan, V.

M. Ben-David, M. Catalogna, J. A. Harrington, V. Krishnan, and I. Gannot, “Theoretical and experimental investigations of metal sulfide dielectric coatings for hollow waveguides,” Opt. Eng. 47, 045008 (2008).
[CrossRef]

Lai, C. H.

C. H. Lai, B. You, J. Y. Lu, T. A. Liu, J. L. Peng, C. K. Sun, and H. C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18, 309–322 (2010).
[CrossRef]

C. H. Lai, Y. C. Hsueh, H. W. Chen, Y. J. Huang, H. C. Chang, and C. K. Sun, “Low-index terahertz pipe waveguides,” Opt. Express 34, 3457–3459 (2009).

Large, M. C. J.

Li, Y. T.

J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

Lin, X.

Linfield, E. H.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Richie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef]

Liu, T. A.

Long, L. L.

Lu, J. Y.

Matsuura, Y.

X. L. Tang, Y. W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34, 2231–2233 (2009).
[CrossRef]

Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B 25, 1949–1954 (2008).
[CrossRef]

S. Kino and Y. Matsuura, “Nontoxic and chemically stable hollow optical fiber probe for fourier transform infrared spectroscopy,” Appl. Spectrosc. 61, 1334–1337 (2007).
[CrossRef]

T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24, 1230–1235 (2007).
[CrossRef]

M. Nakazawa, Y. W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Hollow polycarbonate fiber for Er:YAG laser light delivery,” Opt. Lett. 31, 1373–1376 (2006).
[CrossRef]

Y. Komachi, H. Sato, Y. Matsuura, M. Miyagi, and H. Tashiro, “Raman probe using a single hollow waveguide,” Opt. Lett. 30, 2942–2944 (2005).
[CrossRef]

T. Karagiri, Y. Matsuura, and M. Miyagi, “Metal-covered photonic bandgap multilayer for infrared hollow waveguide,” Appl. Opt. 41, 7603–7606 (2002).
[CrossRef]

Y. Matsuura and J. A. Harrington, “Hollow glass waveguides with three-layer dielectric coating fabricated by chemical vapor deposition,” J. Opt. Soc. Am. A. 14, 1255–1259 (1997).
[CrossRef]

Y. Matsuura, M. Saito, and M. Miyagi, “Loss characteristics uof circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

McGowan, R. W.

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987–1989 (2000).
[CrossRef]

R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24, 1431–1433 (1999).
[CrossRef]

Mendis, R.

R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11, 444–446 (2001).
[CrossRef]

Minamide, H.

Mitrofanov, O.

O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express 18, 1898–1903 (2010).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys. 104, 093110 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007).
[CrossRef]

Mittleman, D. M.

Mittleman, M.

K. Wang and M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[CrossRef]

Mittlemanb, D. M.

S. Wietzkea, C. Jansena, F. Rutza, D. M. Mittlemanb, and M. Kocha, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007).
[CrossRef]

Miyagi, M.

B. S. Sun, X. Zeng, K. Iwai, M. Miyagi, N. Chi, and Y. W. Shi, “Experimental investigation on liquid-phase fabrication techniques for multilayer infrared hollow fiber,” Opt. Fiber Technol. 17, 281–285 (2011).
[CrossRef]

B. S. Sun, X. L. Tang, Y. W. Shi, K. Iwai, and M. Miyagi, “Optimal design for hollow fiber inner-coated by dielectric layers with surface roughness,” Opt. Lett. 36, 3461–3463 (2011).
[CrossRef]

X. Lin, Y. W. Shi, K. R. Sui, X. S. Zhu, K. Iwai, and M. Miyagi, “Fabrication and characterization of infrared hollow fiber with multi-SiO2 and AgI inner-coating layers,” Appl. Opt. 48, 6765–6769 (2009).
[CrossRef]

X. L. Tang, Y. W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34, 2231–2233 (2009).
[CrossRef]

T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24, 1230–1235 (2007).
[CrossRef]

M. Nakazawa, Y. W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Hollow polycarbonate fiber for Er:YAG laser light delivery,” Opt. Lett. 31, 1373–1376 (2006).
[CrossRef]

Y. Komachi, H. Sato, Y. Matsuura, M. Miyagi, and H. Tashiro, “Raman probe using a single hollow waveguide,” Opt. Lett. 30, 2942–2944 (2005).
[CrossRef]

T. Karagiri, Y. Matsuura, and M. Miyagi, “Metal-covered photonic bandgap multilayer for infrared hollow waveguide,” Appl. Opt. 41, 7603–7606 (2002).
[CrossRef]

Y. Matsuura, M. Saito, and M. Miyagi, “Loss characteristics uof circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116–126 (1984).
[CrossRef]

M. Miyagi and S. Kawakami, “Losses and phase constant changes caused by bends in the general class of hollow waveguides for the infrared,” Appl. Opt. 20, 4221–4226 (1981).
[CrossRef]

Mizaikoff, B.

A. Wilk, S. S. Kim, and B. Mizaikoff, “An approach to the spectral simulation of infrared hollow waveguide gas sensors,” Anal. Bioanal. Chem. 395, 1661–1671 (2009).
[CrossRef]

Monro, T. M.

Mueller, E.

Murphy, J. E.

M. C. Beard, G. M. Turner, and J. E. Murphy, “Electronic coupling in InP nanoparticle arrays,” Nano Lett. 3, 1695–1699 (2003).
[CrossRef]

Nakazawa, M.

Newquist, L. A.

Nielsen, K.

Nishizawa, J.

Nuss, M. C.

Ogawa, Y.

Ordal, M. A.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).

Pan, C. L.

J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

Park, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634 (2002).
[CrossRef]

Paulose, V.

Pedersen, P.

Peng, J. L.

Planken, P. C.

Pobre, R.

Ponseca, C. S.

Querry, M. R.

Rahman, B. M. A.

Rajarajan, M.

Rasmussen, H. K.

Ren, G.

Richie, D. A.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Richie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef]

Rossi, F.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Richie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef]

Rutza, F.

S. Wietzkea, C. Jansena, F. Rutza, D. M. Mittlemanb, and M. Kocha, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007).
[CrossRef]

Saito, M.

Sarukura, N.

Sato, H.

Scheller, M.

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasistatic effective medium theory,” J. Phys. D 42, 065415 (2009).
[CrossRef]

Shaghik, A.

Shi, Y. W.

Shum, P.

Skorobogatiy, M.

B. Ung, A. Dupuis, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “High-refractive-index composite materials for terahertz waveguides: trade-off between index contrast and absorption loss,” J. Opt. Soc. Am. B 28, 917–921 (2011).
[CrossRef]

A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B 28, 896–907(2011).
[CrossRef]

K. Stoeffler, C. Dubois, A. Ajji, N. Guo, F. Boismenu, and M. Skorobogatiy, “Fabrication of all-polymeric photonic bandgap Bragg fibers using rolling of coextruded PS/PMMA multilayer films,” Polym. Eng. Sci. 50, 1122–1127 (2010).
[CrossRef]

M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007).
[CrossRef]

Stoeffler, K.

Sui, K. R.

Sun, B. S.

Sun, C. K.

C. H. Lai, B. You, J. Y. Lu, T. A. Liu, J. L. Peng, C. K. Sun, and H. C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18, 309–322 (2010).
[CrossRef]

C. H. Lai, Y. C. Hsueh, H. W. Chen, Y. J. Huang, H. C. Chang, and C. K. Sun, “Low-index terahertz pipe waveguides,” Opt. Express 34, 3457–3459 (2009).

J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31, 308–310 (2006).
[CrossRef]

Takeda, E.

Tamura, K.

Tan, X. L.

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91, 333–336 (2008).
[CrossRef]

Tang, X. L.

Tashiro, H.

Themistos, C.

Tonouchi, M.

Tredicucci, A.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Richie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef]

Turner, G. M.

M. C. Beard, G. M. Turner, and J. E. Murphy, “Electronic coupling in InP nanoparticle arrays,” Nano Lett. 3, 1695–1699 (2003).
[CrossRef]

Ung, B.

Valdmanis, J. A.

M. Y. Frankel, S. Gupta, and J. A. Valdmanis, “Terahertz attenuation and dispersion characteristics of coplanar transmission-lines,” IEEE Trans. Microw. Theory 39, 910–916(1991).
[CrossRef]

van Eijkelenborg, M. A.

Wang, G.

Wang, K.

K. Wang and M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[CrossRef]

Wang, P.

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91, 333–336 (2008).
[CrossRef]

Ward, C. A.

Watanabe, Y.

Wietzke, S.

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasistatic effective medium theory,” J. Phys. D 42, 065415 (2009).
[CrossRef]

Wietzkea, S.

S. Wietzkea, C. Jansena, F. Rutza, D. M. Mittlemanb, and M. Kocha, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007).
[CrossRef]

Wilk, A.

A. Wilk, S. S. Kim, and B. Mizaikoff, “An approach to the spectral simulation of infrared hollow waveguide gas sensors,” Anal. Bioanal. Chem. 395, 1661–1671 (2009).
[CrossRef]

Yamashita, M.

Yao, J. Q.

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91, 333–336 (2008).
[CrossRef]

You, B.

Yu, C. P.

J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

Yu, X.

Zeng, X.

B. S. Sun, X. Zeng, K. Iwai, M. Miyagi, N. Chi, and Y. W. Shi, “Experimental investigation on liquid-phase fabrication techniques for multilayer infrared hollow fiber,” Opt. Fiber Technol. 17, 281–285 (2011).
[CrossRef]

Zhang, J.

Zhu, X. S.

Anal. Bioanal. Chem. (1)

A. Wilk, S. S. Kim, and B. Mizaikoff, “An approach to the spectral simulation of infrared hollow waveguide gas sensors,” Anal. Bioanal. Chem. 395, 1661–1671 (2009).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. B (1)

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91, 333–336 (2008).
[CrossRef]

Appl. Phys. Lett. (5)

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634 (2002).
[CrossRef]

J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987–1989 (2000).
[CrossRef]

Appl. Spectrosc. (1)

Fiber Integr. Opt. (1)

J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211–227 (2000).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11, 444–446 (2001).
[CrossRef]

IEEE Trans. Microw. Theory (1)

M. Y. Frankel, S. Gupta, and J. A. Valdmanis, “Terahertz attenuation and dispersion characteristics of coplanar transmission-lines,” IEEE Trans. Microw. Theory 39, 910–916(1991).
[CrossRef]

Infrared Phys. (2)

J. R. Birch, “The far-infrared optical constants of polypropylene, PTFE and polystyrene,” Infrared Phys. 33, 33–38 (1992).
[CrossRef]

J. R. Birch, “The far-infrared optical constants of polyethylene,” Infrared Phys. 30, 195–197 (1990).
[CrossRef]

J. Appl. Phys. (1)

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys. 104, 093110 (2008).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. A. (1)

Y. Matsuura and J. A. Harrington, “Hollow glass waveguides with three-layer dielectric coating fabricated by chemical vapor deposition,” J. Opt. Soc. Am. A. 14, 1255–1259 (1997).
[CrossRef]

J. Opt. Soc. Am. B (4)

J. Phys. D (1)

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasistatic effective medium theory,” J. Phys. D 42, 065415 (2009).
[CrossRef]

Nano Lett. (1)

M. C. Beard, G. M. Turner, and J. E. Murphy, “Electronic coupling in InP nanoparticle arrays,” Nano Lett. 3, 1695–1699 (2003).
[CrossRef]

Nature (2)

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Richie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef]

K. Wang and M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[CrossRef]

Opt. Eng. (2)

X. L. Tang and Y. W. Shi, “Characterization of dielectric-coated metallic hollow fiber with subwavelength diameter at terahertz frequency,” Opt. Eng. 51, 025001 (2012).
[CrossRef]

M. Ben-David, M. Catalogna, J. A. Harrington, V. Krishnan, and I. Gannot, “Theoretical and experimental investigations of metal sulfide dielectric coatings for hollow waveguides,” Opt. Eng. 47, 045008 (2008).
[CrossRef]

Opt. Express (11)

V. Gopal and J. A. Harrington, “Deposition and characterization of metal sulfide dielectric coatings for hollow glass waveguides,” Opt. Express 11, 3182–3187 (2003).
[CrossRef]

X. L. Tang, B. S. Sun, and Y. W. Shi, “Design and optimization of low-loss high-birefringence hollow fiber at terahertz frequency,” Opt. Express 19, 24967–24979 (2011).
[CrossRef]

K. Kawase, Y. Ogawa, and Y. Watanabe, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549–2554 (2003).
[CrossRef]

J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004).
[CrossRef]

C. H. Lai, Y. C. Hsueh, H. W. Chen, Y. J. Huang, H. C. Chang, and C. K. Sun, “Low-index terahertz pipe waveguides,” Opt. Express 34, 3457–3459 (2009).

C. H. Lai, B. You, J. Y. Lu, T. A. Liu, J. L. Peng, C. K. Sun, and H. C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18, 309–322 (2010).
[CrossRef]

D. Chen and H. B. Chen, “A novel low-loss terahertz waveguide: polymer tube,” Opt. Express 18, 3762–3767 (2010).
[CrossRef]

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17, 8592–8601 (2009).
[CrossRef]

A. Shaghik, V. S. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16, 8845–8854 (2008).
[CrossRef]

G. Ren, Y. Gong, P. Shum, X. Yu, J.-J. Hu, G. Wang, M. O. L. Chuen, and V. Paulose, “Low-loss air-core polarization maintaining terahertz fiber,” Opt. Express 16, 13593–13598 (2008).
[CrossRef]

O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express 18, 1898–1903 (2010).
[CrossRef]

Opt. Fiber Technol. (1)

B. S. Sun, X. Zeng, K. Iwai, M. Miyagi, N. Chi, and Y. W. Shi, “Experimental investigation on liquid-phase fabrication techniques for multilayer infrared hollow fiber,” Opt. Fiber Technol. 17, 281–285 (2011).
[CrossRef]

Opt. Lett. (12)

B. S. Sun, X. L. Tang, Y. W. Shi, K. Iwai, and M. Miyagi, “Optimal design for hollow fiber inner-coated by dielectric layers with surface roughness,” Opt. Lett. 36, 3461–3463 (2011).
[CrossRef]

M. Nakazawa, Y. W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Hollow polycarbonate fiber for Er:YAG laser light delivery,” Opt. Lett. 31, 1373–1376 (2006).
[CrossRef]

X. L. Tang, Y. W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34, 2231–2233 (2009).
[CrossRef]

Y. Komachi, H. Sato, Y. Matsuura, M. Miyagi, and H. Tashiro, “Raman probe using a single hollow waveguide,” Opt. Lett. 30, 2942–2944 (2005).
[CrossRef]

C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33, 902–904 (2008).
[CrossRef]

R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24, 1431–1433 (1999).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007).
[CrossRef]

L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31, 308–310 (2006).
[CrossRef]

J. Zhang and D. Grischkowsky, “Waveguide terahertz time-domain spectroscopy of nanometer wave layers,” Opt. Lett. 29, 1617–1619 (2004).
[CrossRef]

R. H. Jacobsen, D. M. Mittleman, and M. C. Nuss, “Chemical recognition of gases and gas mixtures with terahertz waves,” Opt. Lett. 21, 2011–2013 (1996).
[CrossRef]

D. M. Mittleman, S. Hunsche, and L. Boivin, “T-ray tomography,” Opt. Lett. 22, 904–906 (1997).
[CrossRef]

T. Kiwa, M. Tonouchi, and M. Yamashita, “Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits,” Opt. Lett. 28, 2058–2060 (2003).
[CrossRef]

Polym. Eng. Sci. (1)

K. Stoeffler, C. Dubois, A. Ajji, N. Guo, F. Boismenu, and M. Skorobogatiy, “Fabrication of all-polymeric photonic bandgap Bragg fibers using rolling of coextruded PS/PMMA multilayer films,” Polym. Eng. Sci. 50, 1122–1127 (2010).
[CrossRef]

Polym. Test. (1)

S. Wietzkea, C. Jansena, F. Rutza, D. M. Mittlemanb, and M. Kocha, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007).
[CrossRef]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Structure profiles of hollow waveguides. (a) MHW, (b) single-layer DMHW, and (c) multilayer DMHW.

Fig. 2.
Fig. 2.

Attenuation of Au waveguide, single-layer Au/PP waveguide, and multilayer Au/PP/PPSi waveguide from infrared region to THz frequency. The dispersion of Au is considered.

Fig. 3.
Fig. 3.

Additional bending loss for single-layer Au/PP waveguide and multilayer Au/PP/PPSi waveguides.

Fig. 4.
Fig. 4.

Additional loss due to dielectric absorption for a five-layer waveguide. Inset shows the absorption coefficients for several commonly used dielectric materials.

Fig. 5.
Fig. 5.

(a) Attenuation of Au and Au/PE/PETiO2 waveguides as a function of inner radius. (b) Minimum radius for multilayer DMHW versus dielectric absorption coefficient.

Fig. 6.
Fig. 6.

(a) Effects of low refractive index variation on single-layer and five-layer waveguides without consideration of dielectric absorption. (b) Effects of low refractive index variation on five-layer waveguides with dielectric absorptions. Inset shows the refractive indices of several common used polymers.

Fig. 7.
Fig. 7.

(a) Effects of higher refractive index variation on the five-layer waveguides. (b) Cases in which the low index dielectric is with large absorption coefficient.

Fig. 8.
Fig. 8.

Effects of the total layer number variation on the multilayer waveguides with refractive indices of 1.4 and 4.0.

Fig. 9.
Fig. 9.

AT for high index dielectric layer with the variations of inner radius and high refractive index.

Fig. 10.
Fig. 10.

AT for low index dielectric layer with the variations of inner radius and target wavelength. The absorption coefficients of LDPE, HDPE, PTFE, PS, and PP are added for evaluation.

Fig. 11.
Fig. 11.

Co-rolling fabrication method for THz multilayer DHMW.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

α=u4u21nn2+k2(1k02T3+1u4T).
α=u22k02T3nn2+k2(1+nd2nd21)2.
α=u2k02T3nn2+k2Cmp2[1+nL2(nL21)0.5(nLnH)2mpCmp]2,C=nL21nH21.
αbent/αstraight=1+23(1154u2)(nkTu)4(TR)2;large bending radius
αbent/αstraight=(nkTu)2TR;small bending radius
Rc=(2π/λ)2T3[3/8(m1/4)π2][1+(2m1/2)2/3]3.
α×n2+k2nε,
εTE=CmpnLkLk0dnL21+Cmp1C11[nLkL(nL21)0.5+nHkH(nH21)0.5]π2(nL21),
εTM=DmpkLk0dnL+π(Dmp1)2(D11)[1(nL21)0.5kLnL+1(nH21)0.5kHnHD1],
C=nL21nH21,D=(nLnH)4nH21nL21.
ε=εTE+nL2(nL21)0.5(nLnH)2mpCmpεTM1+nL2(nL21)0.5(nHnL)2mpCmp.

Metrics