Abstract

We propose and experimentally demonstrate the feasibility of an integrated hybrid optical fiber sensing interrogation technique that efficiently combines distributed Raman-based temperature sensing with fiber Bragg grating (FBG)-based dynamic strain measurements. The proposed sensing system is highly integrated, making use of a common optical source/receiver block and exploiting the advantages of both (distributed and point) sensing technologies simultaneously. A multimode fiber is used for distributed temperature sensing, and a pair of FBGs in each discrete sensing point, partially overlapped in the spectral domain, allows for temperature-independent discrete strain measurements. Experimental results report a dynamic strain resolution of 7.8/Hz within a full range of 1700 με and a distributed temperature resolution of 1°C at 20 km distance with 2.7 m spatial resolution.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators 82, 40–61 (2000).
    [CrossRef]
  2. B. Culshaw, “Fiber-optic sensing: a historical perspective,” J. Lightwave Technol. 26, 1064–1078 (2008).
    [CrossRef]
  3. B. Culshaw, “Fibre optic sensor technology—an engineering reality or a scientific opportunity?” Proc. SPIE 7653, 765304 (2010), invited paper.
    [CrossRef]
  4. F. T. S. Yu and S. Yin, Fiber Optic Sensors (Dekker, 2002), Chaps. 4 and 5.
  5. B. Gholamzadeh and H. Nabovati, “Fiber optic sensors,” World Acad. Sci. Eng. Technol. 42, 297–307 (2008).
  6. A. D. Kersy, M. A. Davis, H. J. Patrick, M. LeBlan, and K. P. Koo, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
    [CrossRef]
  7. C. C. Chan, W. Jin, and H. L. Ho, “Performance analysis of a time-division-multiplexed fiber Bragg grating sensor array by use of a tunable laser source,” IEEE J. Sel. Top. Quantum Electron. 6, 741–749 (2000).
    [CrossRef]
  8. Y. Wang, J. Gong, D. Y. Wang, B. Dong, and W. Bi, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 23, 70–72 (2011).
    [CrossRef]
  9. N. Anscombe and O. Graydon, eds., “Optical Fibre Sensors,” Nat. Photon. Technology Focus 2, 143–158 (2008).
  10. M. A. Soto, P. K. Sahu, S. Faralli, G. Bolognini, and F. Di Pasquale, “Distributed temperature sensor system based on Raman scattering using correlation-codes,” Electron. Lett. 43, 862–864 (2007).
    [CrossRef]
  11. A. Signorini, S. Faralli, M. A. Soto, G. Sacchi, F. Baronti, R. Barsacchi, A. Lazzeri, R. Roncella, G. Bolognini, and F. Di Pasquale, “40 km long-range Raman based distributed temperature sensor with meter-scale spatial resolution,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWL2.
  12. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
    [CrossRef]
  13. A. Othonos and K. Kalli, Fiber Bragg Gratings, Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999), Chap. 3.

2011

Y. Wang, J. Gong, D. Y. Wang, B. Dong, and W. Bi, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 23, 70–72 (2011).
[CrossRef]

2010

B. Culshaw, “Fibre optic sensor technology—an engineering reality or a scientific opportunity?” Proc. SPIE 7653, 765304 (2010), invited paper.
[CrossRef]

2008

B. Gholamzadeh and H. Nabovati, “Fiber optic sensors,” World Acad. Sci. Eng. Technol. 42, 297–307 (2008).

B. Culshaw, “Fiber-optic sensing: a historical perspective,” J. Lightwave Technol. 26, 1064–1078 (2008).
[CrossRef]

N. Anscombe and O. Graydon, eds., “Optical Fibre Sensors,” Nat. Photon. Technology Focus 2, 143–158 (2008).

2007

M. A. Soto, P. K. Sahu, S. Faralli, G. Bolognini, and F. Di Pasquale, “Distributed temperature sensor system based on Raman scattering using correlation-codes,” Electron. Lett. 43, 862–864 (2007).
[CrossRef]

2000

K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators 82, 40–61 (2000).
[CrossRef]

C. C. Chan, W. Jin, and H. L. Ho, “Performance analysis of a time-division-multiplexed fiber Bragg grating sensor array by use of a tunable laser source,” IEEE J. Sel. Top. Quantum Electron. 6, 741–749 (2000).
[CrossRef]

1997

A. D. Kersy, M. A. Davis, H. J. Patrick, M. LeBlan, and K. P. Koo, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

Baronti, F.

A. Signorini, S. Faralli, M. A. Soto, G. Sacchi, F. Baronti, R. Barsacchi, A. Lazzeri, R. Roncella, G. Bolognini, and F. Di Pasquale, “40 km long-range Raman based distributed temperature sensor with meter-scale spatial resolution,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWL2.

Barsacchi, R.

A. Signorini, S. Faralli, M. A. Soto, G. Sacchi, F. Baronti, R. Barsacchi, A. Lazzeri, R. Roncella, G. Bolognini, and F. Di Pasquale, “40 km long-range Raman based distributed temperature sensor with meter-scale spatial resolution,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWL2.

Bi, W.

Y. Wang, J. Gong, D. Y. Wang, B. Dong, and W. Bi, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 23, 70–72 (2011).
[CrossRef]

Bolognini, G.

M. A. Soto, P. K. Sahu, S. Faralli, G. Bolognini, and F. Di Pasquale, “Distributed temperature sensor system based on Raman scattering using correlation-codes,” Electron. Lett. 43, 862–864 (2007).
[CrossRef]

A. Signorini, S. Faralli, M. A. Soto, G. Sacchi, F. Baronti, R. Barsacchi, A. Lazzeri, R. Roncella, G. Bolognini, and F. Di Pasquale, “40 km long-range Raman based distributed temperature sensor with meter-scale spatial resolution,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWL2.

Chan, C. C.

C. C. Chan, W. Jin, and H. L. Ho, “Performance analysis of a time-division-multiplexed fiber Bragg grating sensor array by use of a tunable laser source,” IEEE J. Sel. Top. Quantum Electron. 6, 741–749 (2000).
[CrossRef]

Culshaw, B.

B. Culshaw, “Fibre optic sensor technology—an engineering reality or a scientific opportunity?” Proc. SPIE 7653, 765304 (2010), invited paper.
[CrossRef]

B. Culshaw, “Fiber-optic sensing: a historical perspective,” J. Lightwave Technol. 26, 1064–1078 (2008).
[CrossRef]

Davis, M. A.

A. D. Kersy, M. A. Davis, H. J. Patrick, M. LeBlan, and K. P. Koo, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Di Pasquale, F.

M. A. Soto, P. K. Sahu, S. Faralli, G. Bolognini, and F. Di Pasquale, “Distributed temperature sensor system based on Raman scattering using correlation-codes,” Electron. Lett. 43, 862–864 (2007).
[CrossRef]

A. Signorini, S. Faralli, M. A. Soto, G. Sacchi, F. Baronti, R. Barsacchi, A. Lazzeri, R. Roncella, G. Bolognini, and F. Di Pasquale, “40 km long-range Raman based distributed temperature sensor with meter-scale spatial resolution,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWL2.

Dong, B.

Y. Wang, J. Gong, D. Y. Wang, B. Dong, and W. Bi, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 23, 70–72 (2011).
[CrossRef]

Faralli, S.

M. A. Soto, P. K. Sahu, S. Faralli, G. Bolognini, and F. Di Pasquale, “Distributed temperature sensor system based on Raman scattering using correlation-codes,” Electron. Lett. 43, 862–864 (2007).
[CrossRef]

A. Signorini, S. Faralli, M. A. Soto, G. Sacchi, F. Baronti, R. Barsacchi, A. Lazzeri, R. Roncella, G. Bolognini, and F. Di Pasquale, “40 km long-range Raman based distributed temperature sensor with meter-scale spatial resolution,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWL2.

Gholamzadeh, B.

B. Gholamzadeh and H. Nabovati, “Fiber optic sensors,” World Acad. Sci. Eng. Technol. 42, 297–307 (2008).

Gong, J.

Y. Wang, J. Gong, D. Y. Wang, B. Dong, and W. Bi, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 23, 70–72 (2011).
[CrossRef]

Grattan, K. T. V.

K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators 82, 40–61 (2000).
[CrossRef]

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

Ho, H. L.

C. C. Chan, W. Jin, and H. L. Ho, “Performance analysis of a time-division-multiplexed fiber Bragg grating sensor array by use of a tunable laser source,” IEEE J. Sel. Top. Quantum Electron. 6, 741–749 (2000).
[CrossRef]

Jin, W.

C. C. Chan, W. Jin, and H. L. Ho, “Performance analysis of a time-division-multiplexed fiber Bragg grating sensor array by use of a tunable laser source,” IEEE J. Sel. Top. Quantum Electron. 6, 741–749 (2000).
[CrossRef]

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg Gratings, Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999), Chap. 3.

Kersy, A. D.

A. D. Kersy, M. A. Davis, H. J. Patrick, M. LeBlan, and K. P. Koo, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Koo, K. P.

A. D. Kersy, M. A. Davis, H. J. Patrick, M. LeBlan, and K. P. Koo, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Lazzeri, A.

A. Signorini, S. Faralli, M. A. Soto, G. Sacchi, F. Baronti, R. Barsacchi, A. Lazzeri, R. Roncella, G. Bolognini, and F. Di Pasquale, “40 km long-range Raman based distributed temperature sensor with meter-scale spatial resolution,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWL2.

LeBlan, M.

A. D. Kersy, M. A. Davis, H. J. Patrick, M. LeBlan, and K. P. Koo, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

Nabovati, H.

B. Gholamzadeh and H. Nabovati, “Fiber optic sensors,” World Acad. Sci. Eng. Technol. 42, 297–307 (2008).

Othonos, A.

A. Othonos and K. Kalli, Fiber Bragg Gratings, Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999), Chap. 3.

Patrick, H. J.

A. D. Kersy, M. A. Davis, H. J. Patrick, M. LeBlan, and K. P. Koo, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Roncella, R.

A. Signorini, S. Faralli, M. A. Soto, G. Sacchi, F. Baronti, R. Barsacchi, A. Lazzeri, R. Roncella, G. Bolognini, and F. Di Pasquale, “40 km long-range Raman based distributed temperature sensor with meter-scale spatial resolution,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWL2.

Sacchi, G.

A. Signorini, S. Faralli, M. A. Soto, G. Sacchi, F. Baronti, R. Barsacchi, A. Lazzeri, R. Roncella, G. Bolognini, and F. Di Pasquale, “40 km long-range Raman based distributed temperature sensor with meter-scale spatial resolution,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWL2.

Sahu, P. K.

M. A. Soto, P. K. Sahu, S. Faralli, G. Bolognini, and F. Di Pasquale, “Distributed temperature sensor system based on Raman scattering using correlation-codes,” Electron. Lett. 43, 862–864 (2007).
[CrossRef]

Signorini, A.

A. Signorini, S. Faralli, M. A. Soto, G. Sacchi, F. Baronti, R. Barsacchi, A. Lazzeri, R. Roncella, G. Bolognini, and F. Di Pasquale, “40 km long-range Raman based distributed temperature sensor with meter-scale spatial resolution,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWL2.

Soto, M. A.

M. A. Soto, P. K. Sahu, S. Faralli, G. Bolognini, and F. Di Pasquale, “Distributed temperature sensor system based on Raman scattering using correlation-codes,” Electron. Lett. 43, 862–864 (2007).
[CrossRef]

A. Signorini, S. Faralli, M. A. Soto, G. Sacchi, F. Baronti, R. Barsacchi, A. Lazzeri, R. Roncella, G. Bolognini, and F. Di Pasquale, “40 km long-range Raman based distributed temperature sensor with meter-scale spatial resolution,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWL2.

Sun, T.

K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators 82, 40–61 (2000).
[CrossRef]

Wang, D. Y.

Y. Wang, J. Gong, D. Y. Wang, B. Dong, and W. Bi, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 23, 70–72 (2011).
[CrossRef]

Wang, Y.

Y. Wang, J. Gong, D. Y. Wang, B. Dong, and W. Bi, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 23, 70–72 (2011).
[CrossRef]

Yin, S.

F. T. S. Yu and S. Yin, Fiber Optic Sensors (Dekker, 2002), Chaps. 4 and 5.

Yu, F. T. S.

F. T. S. Yu and S. Yin, Fiber Optic Sensors (Dekker, 2002), Chaps. 4 and 5.

Electron. Lett.

M. A. Soto, P. K. Sahu, S. Faralli, G. Bolognini, and F. Di Pasquale, “Distributed temperature sensor system based on Raman scattering using correlation-codes,” Electron. Lett. 43, 862–864 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

C. C. Chan, W. Jin, and H. L. Ho, “Performance analysis of a time-division-multiplexed fiber Bragg grating sensor array by use of a tunable laser source,” IEEE J. Sel. Top. Quantum Electron. 6, 741–749 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Wang, J. Gong, D. Y. Wang, B. Dong, and W. Bi, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 23, 70–72 (2011).
[CrossRef]

J. Lightwave Technol.

B. Culshaw, “Fiber-optic sensing: a historical perspective,” J. Lightwave Technol. 26, 1064–1078 (2008).
[CrossRef]

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

A. D. Kersy, M. A. Davis, H. J. Patrick, M. LeBlan, and K. P. Koo, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Nat. Photon. Technology Focus

N. Anscombe and O. Graydon, eds., “Optical Fibre Sensors,” Nat. Photon. Technology Focus 2, 143–158 (2008).

Proc. SPIE

B. Culshaw, “Fibre optic sensor technology—an engineering reality or a scientific opportunity?” Proc. SPIE 7653, 765304 (2010), invited paper.
[CrossRef]

Sens. Actuators

K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators 82, 40–61 (2000).
[CrossRef]

World Acad. Sci. Eng. Technol.

B. Gholamzadeh and H. Nabovati, “Fiber optic sensors,” World Acad. Sci. Eng. Technol. 42, 297–307 (2008).

Other

F. T. S. Yu and S. Yin, Fiber Optic Sensors (Dekker, 2002), Chaps. 4 and 5.

A. Signorini, S. Faralli, M. A. Soto, G. Sacchi, F. Baronti, R. Barsacchi, A. Lazzeri, R. Roncella, G. Bolognini, and F. Di Pasquale, “40 km long-range Raman based distributed temperature sensor with meter-scale spatial resolution,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWL2.

A. Othonos and K. Kalli, Fiber Bragg Gratings, Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Proposed dynamic strain measurement technique.

Fig. 2.
Fig. 2.

Characterization of interrogation function ρ versus applied strain ε ε 0 at different temperatures (dashed line, before slope correction; solid line, after slope correction).

Fig. 3.
Fig. 3.

Experimental setup showing the sensor reading unit and the sensing fibers. (Inset) Picture of piezoelectric (PZT) actuation system used to apply dynamic strain to the S-FBG.

Fig. 4.
Fig. 4.

Time-domain traces of FBG-reflected pulses (a) at different temperatures and (b) at different values of applied strain ε ε 0 and temperature T .

Fig. 5.
Fig. 5.

Characterization of the FBG interrogation function ρ ( T , ε ) versus temperature with no applied strain ε ε 0 (squares, experimental data; solid line, simulations).

Fig. 6.
Fig. 6.

(a) Slope correction factor K for interrogation function versus temperature. (b) Characterization of interrogation function versus applied strain at different temperatures (symbols, experimental data; dotted line, simulations).

Fig. 7.
Fig. 7.

(a) Anti-Stokes and (b) Stokes traces at different TCC temperatures (blue, 15°C; green, 25°C; black, 35°C; red, 45°C).

Fig. 8.
Fig. 8.

Temperature profile along 20 km fiber at different TCC values (red, 15°C; black, 25°C; green, 35°C; blue, 45°C).

Fig. 9.
Fig. 9.

(a) Normalized time-domain trace and (b) fast Fourier transform (FFT) spectrum of S-FBG (0.2 kHz modulation) at 25°C; (c) time-domain trace and (d) FFT of S-FBG at 45°C.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R ( z , T ) = C · ( λ S λ AS ) 4 exp [ h Δ ν k T ( z ) ] ,
T ( z ) 1 = T 0 ( z ) 1 k h Δ ν ln ( R ( z , T ) R ( z , T 0 ) ) .
Δ λ B = λ B [ ( α + ς ) Δ T + ( 1 p ε ) Δ ε ] .
ρ ( Δ λ B ) = K × ln ( z R-FBG z R-FBG + Δ z I RS-FBG ( Δ λ B , ξ ) d ξ z S-FBG z S-FBG + Δ z I RS-FBG ( Δ λ B , ξ ) d ξ ) ,

Metrics