Abstract

In a two-photon excitation fluorescence volume imaging (TPFVI) system, an axicon is used to generate a Bessel beam and at the same time to collect the generated fluorescence to achieve large depth of field. A slice-by-slice diffraction propagation model in the frame of the angular spectrum method is proposed to simulate the whole imaging process of TPFVI. The simulation reveals that the Bessel beam can penetrate deep in scattering media due to its self-reconstruction ability. The simulation also demonstrates that TPFVI can image a volume of interest in a single raster scan. Two-photon excitation is crucial to eliminate the signals that are generated by the side lobes of Bessel beams; the unwanted signals may be further suppressed by placing a spatial filter in the front of the detector. The simulation method will guide the system design in improving the performance of a TPFVI system.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [CrossRef]
  2. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Meth. 2, 932–940 (2005).
    [CrossRef]
  3. A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” Appl. Opt. 9, 1194–1201 (2000).
    [CrossRef]
  4. N. Olivier, A. Mermillod-Blondin, C. B. Arnold, and E. Beaurepaire, “Two-photon microscopy with simultaneous standard and extended depth of field using a tunable acoustic gradient-index lens,” Opt. Lett. 34, 1684–1686 (2009).
    [CrossRef]
  5. E. Haustein and P. Schwille, “Trends in fluorescence imaging and related techniques to unravel biological information,” HFSP J. 1, 169–180 (2007).
    [CrossRef]
  6. P. Dufour, M. Piche, Y. De Koninck, and N. McCarthy, “Two-photon excitation fluorescence microscopy with a high depth of field using an axicon,” Appl. Opt. 45, 9246–9252 (2006).
    [CrossRef]
  7. E. J. Botcherby, R. Juskaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268, 253–260 (2006).
    [CrossRef]
  8. J. Durnin, J. J. Miceli, and J. H. Eberly, “Comparison of Bessel and Gaussian beams,” Opt. Lett. 13, 79–80 (1988).
    [CrossRef]
  9. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
    [CrossRef]
  10. T. Cizmar and K. Dholakia, “Tunable Bessel light modes: engineering the axial propagation,” Opt. Express 17, 15558–15570 (2009).
    [CrossRef]
  11. T. Cizmar, V. Kollarova, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple Bessel beams for a biophotonics workstation,” Opt. Express 16, 14024–14035 (2008).
    [CrossRef]
  12. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Meth. 8, 417–423 (2011).
    [CrossRef]
  13. F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photon. 4, 780–785 (2010).
    [CrossRef]
  14. J. A. Davis, C. S. Tuvey, O. Lopez-Coronado, J. Campos, M. J. Yzuel, and C. Iemmi, “Tailoring the depth of focus for optical imaging systems using a Fourier transform approach,” Opt. Lett. 32, 844–846 (2007).
    [CrossRef]
  15. J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Meth. 8, 811–819 (2011).
    [CrossRef]
  16. R. Arimoto, C. Saloma, T. Tanaka, and S. Kawata, “Imaging properties of axicon in a scanning optical-system,” Appl. Opt. 31, 6653–6657 (1992).
    [CrossRef]
  17. S. H. Tao and X. C. Yuan, “Self-reconstruction property of fractional Bessel beams,” J. Opt. Soc. Am. A 21, 1192–1197 (2004).
    [CrossRef]
  18. J. Arlt, and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
    [CrossRef]
  19. M. Lei, B. L. Yao, and R. A. Rupp, “Structuring by multi-beam interference using symmetric pyramids,” Opt. Express 14, 5803–5811 (2006).
    [CrossRef]
  20. G. Milne, G. D. M. Jeffries, and D. T. Chiu, “Tunable generation of Bessel beams with a fluidic axicon,” Appl. Phys. Lett. 92, 261101 (2008).
    [CrossRef]
  21. N. Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. A 2, 121–127 (1985).
    [CrossRef]
  22. A. Rohrbach, “Artifacts resulting from imaging in scattering media: a theoretical prediction,” Opt. Lett. 34, 3041–3043 (2009).
    [CrossRef]
  23. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  24. P. Gao, B. Yao, I. Harder, J. Min, R. Guo, J. Zheng, and T. Ye, “Parallel two-step phase-shifting digital holograph microscopy based on a grating pair,” J. Opt. Soc. Am. A 28, 434–440 (2011).
    [CrossRef]
  25. C. Vecchio and P. Lewin, “Finite amplitude acoustic propagation modeling using the extended angular spectrum method,” J. Opt. Soc. Am. 95, 2399–2408 (1994).
  26. I. L. Katsev, A. S. Prikhach, N. S. Kazak, and M. Kroening, “Peculiarities of propagation of quasi-diffraction-free light beams in strongly scattering absorbing media,” Quantum Electron. 36, 357–362 (2006).
    [CrossRef]
  27. D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
    [CrossRef]
  28. L. V. Wang and H. I. Wu, Biomedical Optics: Principles and Imaging (Wiley-Interscience, 2007), Chaps. 1, 2, pp. 5–35.
  29. H. Duadi, O. Margalit, Z. Zalevsky, and V. Sarafis, “Optimized extended depth of focus simulated analysis for confocal microscopy,” J. Opt. Soc. Am. A 27, 1378–1384 (2010).
    [CrossRef]
  30. I. J. Cox, C. J. R. Sheppard, and T. Wilson, “Improvement in resolution by nearly confocal microscopy,” Appl. Opt. 21, 778–781 (1982).
    [CrossRef]

2011 (3)

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Meth. 8, 417–423 (2011).
[CrossRef]

J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Meth. 8, 811–819 (2011).
[CrossRef]

P. Gao, B. Yao, I. Harder, J. Min, R. Guo, J. Zheng, and T. Ye, “Parallel two-step phase-shifting digital holograph microscopy based on a grating pair,” J. Opt. Soc. Am. A 28, 434–440 (2011).
[CrossRef]

2010 (2)

2009 (3)

2008 (2)

2007 (2)

2006 (4)

M. Lei, B. L. Yao, and R. A. Rupp, “Structuring by multi-beam interference using symmetric pyramids,” Opt. Express 14, 5803–5811 (2006).
[CrossRef]

P. Dufour, M. Piche, Y. De Koninck, and N. McCarthy, “Two-photon excitation fluorescence microscopy with a high depth of field using an axicon,” Appl. Opt. 45, 9246–9252 (2006).
[CrossRef]

E. J. Botcherby, R. Juskaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268, 253–260 (2006).
[CrossRef]

I. L. Katsev, A. S. Prikhach, N. S. Kazak, and M. Kroening, “Peculiarities of propagation of quasi-diffraction-free light beams in strongly scattering absorbing media,” Quantum Electron. 36, 357–362 (2006).
[CrossRef]

2005 (1)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Meth. 2, 932–940 (2005).
[CrossRef]

2004 (1)

2000 (2)

A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” Appl. Opt. 9, 1194–1201 (2000).
[CrossRef]

J. Arlt, and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
[CrossRef]

1999 (1)

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[CrossRef]

1994 (1)

C. Vecchio and P. Lewin, “Finite amplitude acoustic propagation modeling using the extended angular spectrum method,” J. Opt. Soc. Am. 95, 2399–2408 (1994).

1992 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef]

1988 (1)

1987 (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef]

1985 (1)

1982 (1)

Arimoto, R.

Arlt, J.

J. Arlt, and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
[CrossRef]

Arnold, C. B.

Beaurepaire, E.

Bernardo, L. M.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[CrossRef]

Berns, M. W.

A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” Appl. Opt. 9, 1194–1201 (2000).
[CrossRef]

Betzig, E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Meth. 8, 417–423 (2011).
[CrossRef]

Botcherby, E. J.

E. J. Botcherby, R. Juskaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268, 253–260 (2006).
[CrossRef]

Bouchal, Z.

Campos, J.

Chiu, D. T.

G. Milne, G. D. M. Jeffries, and D. T. Chiu, “Tunable generation of Bessel beams with a fluidic axicon,” Appl. Phys. Lett. 92, 261101 (2008).
[CrossRef]

Cizmar, T.

Coleno, M.

A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” Appl. Opt. 9, 1194–1201 (2000).
[CrossRef]

Cox, I. J.

Davidson, M. W.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Meth. 8, 417–423 (2011).
[CrossRef]

Davis, J. A.

De Koninck, Y.

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Meth. 2, 932–940 (2005).
[CrossRef]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef]

Dholakia, K.

Duadi, H.

Dufour, P.

Dunn, A. K.

A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” Appl. Opt. 9, 1194–1201 (2000).
[CrossRef]

Durnin, J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Comparison of Bessel and Gaussian beams,” Opt. Lett. 13, 79–80 (1988).
[CrossRef]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef]

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Comparison of Bessel and Gaussian beams,” Opt. Lett. 13, 79–80 (1988).
[CrossRef]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef]

Fahrbach, F. O.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photon. 4, 780–785 (2010).
[CrossRef]

Ferreira, C.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[CrossRef]

Galbraith, C. G.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Meth. 8, 417–423 (2011).
[CrossRef]

Galbraith, J. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Meth. 8, 417–423 (2011).
[CrossRef]

Gao, L.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Meth. 8, 417–423 (2011).
[CrossRef]

Gao, P.

Garcia, J.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Gunn-Moore, F.

Guo, R.

Harder, I.

Haustein, E.

E. Haustein and P. Schwille, “Trends in fluorescence imaging and related techniques to unravel biological information,” HFSP J. 1, 169–180 (2007).
[CrossRef]

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Meth. 2, 932–940 (2005).
[CrossRef]

Iemmi, C.

Jeffries, G. D. M.

G. Milne, G. D. M. Jeffries, and D. T. Chiu, “Tunable generation of Bessel beams with a fluidic axicon,” Appl. Phys. Lett. 92, 261101 (2008).
[CrossRef]

Juskaitis, R.

E. J. Botcherby, R. Juskaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268, 253–260 (2006).
[CrossRef]

Katsev, I. L.

I. L. Katsev, A. S. Prikhach, N. S. Kazak, and M. Kroening, “Peculiarities of propagation of quasi-diffraction-free light beams in strongly scattering absorbing media,” Quantum Electron. 36, 357–362 (2006).
[CrossRef]

Kawata, S.

Kazak, N. S.

I. L. Katsev, A. S. Prikhach, N. S. Kazak, and M. Kroening, “Peculiarities of propagation of quasi-diffraction-free light beams in strongly scattering absorbing media,” Quantum Electron. 36, 357–362 (2006).
[CrossRef]

Kollarova, V.

Kroening, M.

I. L. Katsev, A. S. Prikhach, N. S. Kazak, and M. Kroening, “Peculiarities of propagation of quasi-diffraction-free light beams in strongly scattering absorbing media,” Quantum Electron. 36, 357–362 (2006).
[CrossRef]

Lei, M.

Lewin, P.

C. Vecchio and P. Lewin, “Finite amplitude acoustic propagation modeling using the extended angular spectrum method,” J. Opt. Soc. Am. 95, 2399–2408 (1994).

Lopez-Coronado, O.

Margalit, O.

Marinho, F.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[CrossRef]

Mas, D.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[CrossRef]

McCarthy, N.

Mermillod-Blondin, A.

Mertz, J.

J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Meth. 8, 811–819 (2011).
[CrossRef]

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Comparison of Bessel and Gaussian beams,” Opt. Lett. 13, 79–80 (1988).
[CrossRef]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef]

Milkie, D. E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Meth. 8, 417–423 (2011).
[CrossRef]

Milne, G.

G. Milne, G. D. M. Jeffries, and D. T. Chiu, “Tunable generation of Bessel beams with a fluidic axicon,” Appl. Phys. Lett. 92, 261101 (2008).
[CrossRef]

Min, J.

Olivier, N.

Piche, M.

Planchon, T. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Meth. 8, 417–423 (2011).
[CrossRef]

Prikhach, A. S.

I. L. Katsev, A. S. Prikhach, N. S. Kazak, and M. Kroening, “Peculiarities of propagation of quasi-diffraction-free light beams in strongly scattering absorbing media,” Quantum Electron. 36, 357–362 (2006).
[CrossRef]

Rohrbach, A.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photon. 4, 780–785 (2010).
[CrossRef]

A. Rohrbach, “Artifacts resulting from imaging in scattering media: a theoretical prediction,” Opt. Lett. 34, 3041–3043 (2009).
[CrossRef]

Rupp, R. A.

Saloma, C.

Sarafis, V.

Schwille, P.

E. Haustein and P. Schwille, “Trends in fluorescence imaging and related techniques to unravel biological information,” HFSP J. 1, 169–180 (2007).
[CrossRef]

Sheppard, C. J. R.

Sibbett, W.

Simon, P.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photon. 4, 780–785 (2010).
[CrossRef]

Streibl, N.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef]

Tanaka, T.

Tao, S. H.

Tromberg, B. J.

A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” Appl. Opt. 9, 1194–1201 (2000).
[CrossRef]

Tsampoula, X.

Tuvey, C. S.

Vecchio, C.

C. Vecchio and P. Lewin, “Finite amplitude acoustic propagation modeling using the extended angular spectrum method,” J. Opt. Soc. Am. 95, 2399–2408 (1994).

Wallace, V. P.

A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” Appl. Opt. 9, 1194–1201 (2000).
[CrossRef]

Wang, L. V.

L. V. Wang and H. I. Wu, Biomedical Optics: Principles and Imaging (Wiley-Interscience, 2007), Chaps. 1, 2, pp. 5–35.

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef]

Wilson, T.

E. J. Botcherby, R. Juskaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268, 253–260 (2006).
[CrossRef]

I. J. Cox, C. J. R. Sheppard, and T. Wilson, “Improvement in resolution by nearly confocal microscopy,” Appl. Opt. 21, 778–781 (1982).
[CrossRef]

Wu, H. I.

L. V. Wang and H. I. Wu, Biomedical Optics: Principles and Imaging (Wiley-Interscience, 2007), Chaps. 1, 2, pp. 5–35.

Yao, B.

Yao, B. L.

Ye, T.

Yuan, X. C.

Yzuel, M. J.

Zalevsky, Z.

Zheng, J.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

G. Milne, G. D. M. Jeffries, and D. T. Chiu, “Tunable generation of Bessel beams with a fluidic axicon,” Appl. Phys. Lett. 92, 261101 (2008).
[CrossRef]

HFSP J. (1)

E. Haustein and P. Schwille, “Trends in fluorescence imaging and related techniques to unravel biological information,” HFSP J. 1, 169–180 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

C. Vecchio and P. Lewin, “Finite amplitude acoustic propagation modeling using the extended angular spectrum method,” J. Opt. Soc. Am. 95, 2399–2408 (1994).

J. Opt. Soc. Am. A (4)

Nat. Meth. (3)

J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Meth. 8, 811–819 (2011).
[CrossRef]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Meth. 2, 932–940 (2005).
[CrossRef]

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Meth. 8, 417–423 (2011).
[CrossRef]

Nat. Photon. (1)

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photon. 4, 780–785 (2010).
[CrossRef]

Opt. Commun. (3)

E. J. Botcherby, R. Juskaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268, 253–260 (2006).
[CrossRef]

J. Arlt, and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
[CrossRef]

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef]

Quantum Electron. (1)

I. L. Katsev, A. S. Prikhach, N. S. Kazak, and M. Kroening, “Peculiarities of propagation of quasi-diffraction-free light beams in strongly scattering absorbing media,” Quantum Electron. 36, 357–362 (2006).
[CrossRef]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef]

Other (2)

L. V. Wang and H. I. Wu, Biomedical Optics: Principles and Imaging (Wiley-Interscience, 2007), Chaps. 1, 2, pp. 5–35.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Schematic diagram of TPFVI with an axicon.

Fig. 2.
Fig. 2.

Slice-by-slice propagation model for the Bessel beam in the scattering media.

Fig. 3.
Fig. 3.

Transmittance and phase distributions of the transmittance functions of the layer in the scattering media: (a) transmittance distribution of the slice and (b) phase distribution of the slice.

Fig. 4.
Fig. 4.

Intensity distributions of a Bessel beam generated by an axicon. (a), (b) Intensity distributions of the Bessel beam in the xy plane with the distance z=1mm and z=3mm from the plane of the axicon, respectively. (c) Intensity distribution of the Bessel beam in the xy plane. (d) Intensity distribution of the Bessel beam along z axis.

Fig. 5.
Fig. 5.

Simulation results of the intensity distribution of the Bessel beam propagating in scattering media: (a) at the initial incident plane of the media, (b) at the plane with the obstacles of spherical beads, and (c) after propagating for a distance of 0.15 mm.

Fig. 6.
Fig. 6.

Axial intensity distribution of the Bessel beam propagating in a media, when (a) the center lobe of the Bessel beam is blocked by one bead and (b) the side lobe of the Bessel beam is blocked by one bead.

Fig. 7.
Fig. 7.

Intensity distribution of the Bessel beam in the scattering media: (a)–(c) in the planes with the distance of dz=0mm, dz=0.5mm, and dz=1mm from the medium surface, respectively, and (d) in the xy plane. (e) Comparison of propagation depth of the Bessel beam in scattering media for different beads-filling-ratios.

Fig. 8.
Fig. 8.

Intensity distribution of the generated fluorescence in the xy plane.

Fig. 9.
Fig. 9.

Intensity distributions of the light emitted from the point-like fluorescence source in the propagating process: (a)–(c) in the planes at the distances of dz=0.2mm, dz=0.4mm, and dz=0.6mm from the point-like fluorescence source, respectively, (d) at the axicon surface, and (e) at the detector plane.

Fig. 10.
Fig. 10.

Intensity distributions of the generated fluorescence. (a)–(c) Are on the medium surface, the axicon surface, and the detector plane, respectively.

Fig. 11.
Fig. 11.

Intensity profiles of the Bessel beam and the generated fluorescence: (a) Bessel beam, (b) two-photon excited fluorescence intensity generated by the Bessel beam in the scattering media, and (c) fluorescence in the detector plane. (d) Fluorescence signal generated on a bead that is placed at the side lobe of the Bessel beam. (e) Fluorescence intensity at the detector plane.

Fig. 12.
Fig. 12.

Fluorescence projection image from three slices of the simulated phantom. (a)–(c) Images of the patterns with dz=0.25mm, dz=0.3mm, and dz=0.35mm, respectively. (d) Fluorescence projection image from all three slices of the simulated phantom.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E(x,y,z)=E0w(z)exp[x2+y2w2(z)]exp{ik[z+x2+y22R(z)]arctanzf},
EBessel(x,y,z)=IFT{FT[T˜·E(x,y,0)]exp[ikz1(λξ)2(λη)2]}.
T˜i(x,y)=exp[ij=1Mkδndij(x,y)]=j=1Mexp[ikδndij(x,y)].
Ei+1(x,y)=IFT{FT(T˜i·Ei(x,y))·exp[ikΔ1(λξ)2(λη)2]}.
Efluij(x,y,zaxicon)=C·FT{Efluij(x,y,zmedia)·exp(ikx2+y22d)}.
Iflu(x,y,z)=i=1Nj=1M|Efluij(x,y,z)|2.

Metrics