Abstract

A digital micromirror device (DMD) is a kind of widely used spatial light modulator. We apply DMD as wavelength selector in tunable fiber lasers. Based on the two-dimensional diffraction theory, the diffraction of DMD and its effect on properties of fiber laser parameters are analyzed in detail. The theoretical results show that the diffraction efficiency is strongly dependent upon the angle of incident light and the pixel spacing of DMD. Compared with the other models of DMDs, the 0.55 in. DMD grating is an approximate blazed state in our configuration, which makes most of the diffracted radiation concentrated into one order. It is therefore a better choice to improve the stability and reliability of tunable fiber laser systems.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–20 (2003).
    [CrossRef]
  2. Y. Lim, H. Joonku, and L. Byoungho, “Phase-conjugate holographic lithography based on micromirror array recording,” Appl. Opt. 50, H68–H74 (2011).
    [CrossRef]
  3. M. L. Huebschman and H. R. Munjuluri Garner, “Dynamic holographic 3-D image projection,” Opt. Express 11, 437–445 (2003).
    [CrossRef]
  4. P. M. Friedman, G. R. Skover, G. Payonk, A. N. B. Kauvar, and R. G. Geronemus, “3D in-vivo optical skin imaging for topographical quantitative assessment of non-ablative laser technology,” Dermatol. Surg. 28, 199–204 (2002).
    [CrossRef]
  5. S. D. Cha, P. C. Lin, L. J. Zhu, P. C. Sun, and Y. Fainman, “Nontranslational three-dimensional profilometry by chromatic confocal microscopy with dynamically configurable micromirror scanning,” Appl. Opt. 39, 2605–2613 (2000).
    [CrossRef]
  6. T. Fukano and A. Miyawaki, “Whole-field fluorescence microscope with digital micromirror device: imaging of biological samples,” Appl. Opt. 42, 4119–4124 (2003).
    [CrossRef]
  7. W. Shin, B.-A. Yu, Y. L. Lee, T. J. Yu, T. JoongEom, Y.-C. Noh, J. Lee, and D.-K. Ko, “Tunable Q-switched erbium-doped fiber laser based on digital micro-mirror array,” Opt. Express 14, 5356–5364 (2006).
    [CrossRef]
  8. X. Chen, Y. Q. Wang, K. Z. Huang, F. J. Song, G. X. Chen, Z. Z. Sang, B. B. Yan, Y. Zhang, F. Xiao, and K. Alameh, “Tunable polarization-maintaining single-mode fiber laser based on a MEMS processor,” CLEO: QELS-Fundamental Science, OSA Technical Digest (Optical Society of America, 2012), paper JW2A.59.
  9. http://www.ti.com/analog/docs/memsmidmodlevel.tsp?sectionId=651&tabId=2447 .

2011 (1)

2006 (1)

2003 (3)

2002 (1)

P. M. Friedman, G. R. Skover, G. Payonk, A. N. B. Kauvar, and R. G. Geronemus, “3D in-vivo optical skin imaging for topographical quantitative assessment of non-ablative laser technology,” Dermatol. Surg. 28, 199–204 (2002).
[CrossRef]

2000 (1)

Alameh, K.

X. Chen, Y. Q. Wang, K. Z. Huang, F. J. Song, G. X. Chen, Z. Z. Sang, B. B. Yan, Y. Zhang, F. Xiao, and K. Alameh, “Tunable polarization-maintaining single-mode fiber laser based on a MEMS processor,” CLEO: QELS-Fundamental Science, OSA Technical Digest (Optical Society of America, 2012), paper JW2A.59.

Byoungho, L.

Cha, S. D.

Chen, G. X.

X. Chen, Y. Q. Wang, K. Z. Huang, F. J. Song, G. X. Chen, Z. Z. Sang, B. B. Yan, Y. Zhang, F. Xiao, and K. Alameh, “Tunable polarization-maintaining single-mode fiber laser based on a MEMS processor,” CLEO: QELS-Fundamental Science, OSA Technical Digest (Optical Society of America, 2012), paper JW2A.59.

Chen, X.

X. Chen, Y. Q. Wang, K. Z. Huang, F. J. Song, G. X. Chen, Z. Z. Sang, B. B. Yan, Y. Zhang, F. Xiao, and K. Alameh, “Tunable polarization-maintaining single-mode fiber laser based on a MEMS processor,” CLEO: QELS-Fundamental Science, OSA Technical Digest (Optical Society of America, 2012), paper JW2A.59.

Dudley, D.

D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–20 (2003).
[CrossRef]

Duncan, W.

D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–20 (2003).
[CrossRef]

Fainman, Y.

Friedman, P. M.

P. M. Friedman, G. R. Skover, G. Payonk, A. N. B. Kauvar, and R. G. Geronemus, “3D in-vivo optical skin imaging for topographical quantitative assessment of non-ablative laser technology,” Dermatol. Surg. 28, 199–204 (2002).
[CrossRef]

Fukano, T.

Geronemus, R. G.

P. M. Friedman, G. R. Skover, G. Payonk, A. N. B. Kauvar, and R. G. Geronemus, “3D in-vivo optical skin imaging for topographical quantitative assessment of non-ablative laser technology,” Dermatol. Surg. 28, 199–204 (2002).
[CrossRef]

Huang, K. Z.

X. Chen, Y. Q. Wang, K. Z. Huang, F. J. Song, G. X. Chen, Z. Z. Sang, B. B. Yan, Y. Zhang, F. Xiao, and K. Alameh, “Tunable polarization-maintaining single-mode fiber laser based on a MEMS processor,” CLEO: QELS-Fundamental Science, OSA Technical Digest (Optical Society of America, 2012), paper JW2A.59.

Huebschman, M. L.

JoongEom, T.

Joonku, H.

Kauvar, A. N. B.

P. M. Friedman, G. R. Skover, G. Payonk, A. N. B. Kauvar, and R. G. Geronemus, “3D in-vivo optical skin imaging for topographical quantitative assessment of non-ablative laser technology,” Dermatol. Surg. 28, 199–204 (2002).
[CrossRef]

Ko, D.-K.

Lee, J.

Lee, Y. L.

Lim, Y.

Lin, P. C.

Miyawaki, A.

Munjuluri Garner, H. R.

Noh, Y.-C.

Payonk, G.

P. M. Friedman, G. R. Skover, G. Payonk, A. N. B. Kauvar, and R. G. Geronemus, “3D in-vivo optical skin imaging for topographical quantitative assessment of non-ablative laser technology,” Dermatol. Surg. 28, 199–204 (2002).
[CrossRef]

Sang, Z. Z.

X. Chen, Y. Q. Wang, K. Z. Huang, F. J. Song, G. X. Chen, Z. Z. Sang, B. B. Yan, Y. Zhang, F. Xiao, and K. Alameh, “Tunable polarization-maintaining single-mode fiber laser based on a MEMS processor,” CLEO: QELS-Fundamental Science, OSA Technical Digest (Optical Society of America, 2012), paper JW2A.59.

Shin, W.

Skover, G. R.

P. M. Friedman, G. R. Skover, G. Payonk, A. N. B. Kauvar, and R. G. Geronemus, “3D in-vivo optical skin imaging for topographical quantitative assessment of non-ablative laser technology,” Dermatol. Surg. 28, 199–204 (2002).
[CrossRef]

Slaughter, J.

D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–20 (2003).
[CrossRef]

Song, F. J.

X. Chen, Y. Q. Wang, K. Z. Huang, F. J. Song, G. X. Chen, Z. Z. Sang, B. B. Yan, Y. Zhang, F. Xiao, and K. Alameh, “Tunable polarization-maintaining single-mode fiber laser based on a MEMS processor,” CLEO: QELS-Fundamental Science, OSA Technical Digest (Optical Society of America, 2012), paper JW2A.59.

Sun, P. C.

Wang, Y. Q.

X. Chen, Y. Q. Wang, K. Z. Huang, F. J. Song, G. X. Chen, Z. Z. Sang, B. B. Yan, Y. Zhang, F. Xiao, and K. Alameh, “Tunable polarization-maintaining single-mode fiber laser based on a MEMS processor,” CLEO: QELS-Fundamental Science, OSA Technical Digest (Optical Society of America, 2012), paper JW2A.59.

Xiao, F.

X. Chen, Y. Q. Wang, K. Z. Huang, F. J. Song, G. X. Chen, Z. Z. Sang, B. B. Yan, Y. Zhang, F. Xiao, and K. Alameh, “Tunable polarization-maintaining single-mode fiber laser based on a MEMS processor,” CLEO: QELS-Fundamental Science, OSA Technical Digest (Optical Society of America, 2012), paper JW2A.59.

Yan, B. B.

X. Chen, Y. Q. Wang, K. Z. Huang, F. J. Song, G. X. Chen, Z. Z. Sang, B. B. Yan, Y. Zhang, F. Xiao, and K. Alameh, “Tunable polarization-maintaining single-mode fiber laser based on a MEMS processor,” CLEO: QELS-Fundamental Science, OSA Technical Digest (Optical Society of America, 2012), paper JW2A.59.

Yu, B.-A.

Yu, T. J.

Zhang, Y.

X. Chen, Y. Q. Wang, K. Z. Huang, F. J. Song, G. X. Chen, Z. Z. Sang, B. B. Yan, Y. Zhang, F. Xiao, and K. Alameh, “Tunable polarization-maintaining single-mode fiber laser based on a MEMS processor,” CLEO: QELS-Fundamental Science, OSA Technical Digest (Optical Society of America, 2012), paper JW2A.59.

Zhu, L. J.

Appl. Opt. (3)

Dermatol. Surg. (1)

P. M. Friedman, G. R. Skover, G. Payonk, A. N. B. Kauvar, and R. G. Geronemus, “3D in-vivo optical skin imaging for topographical quantitative assessment of non-ablative laser technology,” Dermatol. Surg. 28, 199–204 (2002).
[CrossRef]

Opt. Express (2)

Proc. SPIE (1)

D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–20 (2003).
[CrossRef]

Other (2)

X. Chen, Y. Q. Wang, K. Z. Huang, F. J. Song, G. X. Chen, Z. Z. Sang, B. B. Yan, Y. Zhang, F. Xiao, and K. Alameh, “Tunable polarization-maintaining single-mode fiber laser based on a MEMS processor,” CLEO: QELS-Fundamental Science, OSA Technical Digest (Optical Society of America, 2012), paper JW2A.59.

http://www.ti.com/analog/docs/memsmidmodlevel.tsp?sectionId=651&tabId=2447 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic diagram of the DMD-based tunable fiber laser.

Fig. 2.
Fig. 2.

Measured ASE gain spectrum of a C-band EDFA. The inset is an example of an arbitrary wavelength selected by DMD (optical loop is open).

Fig. 3.
Fig. 3.

(a) Coordinate system (xyz) established on DMD and the pixel coding. (b) Local coordinate system (ξηζ) introduced in a mirror pixel.

Fig. 4.
Fig. 4.

Diagram of the OPD.

Fig. 5.
Fig. 5.

OPD between the rays along α⃗ and α⃗ at points P and Q in a pixel.

Fig. 6.
Fig. 6.

Diffraction distribution of light radiating on a 0.7″ DMD with the wave incident vertically upon the tilting mirror in the angle-bisecting plane in the first octant (red curve for single-pixel diffraction, blue curve for multiple-pixel interference).

Fig. 7.
Fig. 7.

Diffractive distribution of light radiating on a 0.55″DMD on the bisecting plane.

Fig. 8.
Fig. 8.

Optimal experimental configuration of light radiating on a DMD system.

Fig. 9.
Fig. 9.

Measured output intensities of the DMD-based fiber laser with the wavelength tuning over C-band.

Tables (1)

Tables Icon

Table 1. Irradiance Maxima of Light in 1550 nm Radiating on a 0.7″ DMD Over a Large Solid Angle

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

dAmn=A0exp{ik[Δmn(x,y)+Δ(ξ,η)]},
A=dAmn=m,nA0eikΔmn(x,y)σPeikΔ(ξ,η)dξdη,
ΔAR=ν⃗AR·α⃗,
α⃗=(a,b,c)α⃗=(a,b,c)}.
Δ=(PG¯)+(PG¯)=(ξ,η,ζ)·α⃗+(ξ,η,ζ)·α⃗=(ξ,η,ζ)(α⃗α⃗)=ξ(aa)+η(bb)+ζ(cc).
ζ=tanψ2(ξ+η).
Δ=ξ[(aa)+tanψ2(cc)]+η[(bb)+tanψ2(cc)].
Pmn=δ0(m,n,0),
Δmn=(mδ0,nδ0,0)·(α⃗α⃗)=δ0[m(aa)+n(bb)].
A=δ0/2δ0/2eik[(aa)+tanψ2(cc)]ξdξδ0/2δ0/2eik[(bb)+tanψ2(cc)]ηdη=δ02sinc{πδ0λ[(aa)+tanψ2(cc)]}sinc{πδ0λ[(bb)+tanψ2(cc)]}.
u=πδ0λ[(aa)+tanψ2(cc)]u=πδ0λ[(bb)+tanψ2(cc)]}.
I=|A|2=δ04sinc2u·sinc2u.
a=sinθ0cosϕ0,b=sinθ0sinϕ0,c=cosθ0a=sinθcosϕ,b=sinθsinϕ,c=cosθ},
u=πδ0λ[(sinθcosϕsinθ0cosϕ0)+tanψ2(cosθcosθ0)]u=πδ0λ[(sinθsinϕsinθ0sinϕ0)+tanψ2(cosθcosθ0)]}.
A=m=MMn=NNeikδ0[m(aa)+n(bb)]=m=MMeikδ0m(aa)n=NNeikδ0n(bb)=eiπδ0λ[(aa)+(bb)]sin[πδ0λ(2M)(aa)]sin[πδ0λ(aa)]sin[πδ0λ(2N)(bb)]sin[πδ0λ(bb)].
I=|A|2=sin2[(2M)ν]sin2[(2N)ν]sin2νsin2ν,
v=πδ0λ(aa),v=πδ0λ(bb).
v=πδ0λ(sinθcosϕsinθ0cosϕ0),v=πδ0λ(sinθsinϕsinθ0sinϕ0).
v=πδ0λ(sinθcosϕsinθ0cosϕ0)=pπv=πδ0λ(sinθsinϕsinθ0sinϕ0)=qπ}
sinθcosϕ=pλδ0+sinθ0cosϕ0=gp(θ0,ϕ0)sinθsinϕ=qλδ0+sinθ0sinϕ0=hq(θ0,ϕ0)}
tanϕ=hq(θ0,ϕ0)gp(θ0,ϕ0)=qλ/δ0+sinθ0sinϕ0pλ/δ0+sinθ0cosϕ0.
ϕpq(θ0,ϕ0)=tan1[hq(θ0,ϕ0)gp(θ0,ϕ0)]θpq(θ0,ϕ0)=sin1{gp(θ0,ϕ0)cos[ϕpq(θ0,ϕ0)]}}.
α⃗p,q·(α⃗)>cos(Δθ),

Metrics