Abstract

The problem of finding analytical solutions for time-dependent or time-independent heat equations, especially for solid-state laser media, has required a lot of work in the field of thermal effects. However, to calculate the temperature distributions analytically, researchers often have to make some approximations or employ complex methods. In this work, we present full analytical solutions for anisotropic time-dependent heat equations in the Cartesian coordinates with various source terms corresponding to various pumping schemes. Moreover, the most general boundary condition of Robin (or impedance boundary condition), corresponding to the convection cooling mechanism, was applied. This general condition can be easily switched to constant temperature and thermal insulation as special cases. To this end, we first proposed a general approach to solving time-dependent heat equations with an arbitrary heat source. We then applied our approach to explore the temperature distribution for three cases: steady-state pumping or long transient, single-shot pumping or short transient, and repetitively pulsed pumping. Our results show the possibility of an easier and more accurate approach to analytical calculations of the thermal dispersion, thermal stresses (strains), thermal bending, thermal phase shift, and other thermal effects.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Jiang, X. Yuan, H. Yu, M. Xu, D. Cao, and W. Duan, “Influence of the thermal effect on stability of the output in a heat capacity laser,” Chin. Opt. Lett. 5, S19–S20 (2007).
  2. C. Pfistrner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortion in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE Quantum Electron. 30, 1605–1615 (1994).
    [CrossRef]
  3. W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state laser,” J. Phys. D 34, 2381–2395 (2001).
    [CrossRef]
  4. I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. Ikesue, and Y. L. Aung, “Experimental study of thermally induced depolarization in Nd:YAG ceramics,” Opt. Express 13, 5983–5987 (2005).
    [CrossRef]
  5. J. Song, A. Liu, K. Okino, and K. I. Ueda, “Control of the thermal lensing effect with different pump light distributions,” Appl. Opt. 36, 8051–8055 (1997).
    [CrossRef]
  6. D. C. Brown, “Heat, fluorescence, and stimulated-emission power densities and fractions in Nd:YAG,” IEEE J. Quantum Electron. 34, 560–572 (1998).
    [CrossRef]
  7. J. Zheng, Sh. Zhao, Q. Wang, X. Zhang, and L. Chen, “Influence of thermal effect on KTP type-II phase-matching second-harmonic generation,” Opt. Commun. 199, 207–214 (2001).
    [CrossRef]
  8. M. Sabaeian, L. Mousave, and H. Nadgaran, “Investigation of thermally-induced phase mismatching in continuous-wave second harmonic generation: A theoretical model,” Opt. Express 18, 18732–18743 (2010).
    [CrossRef]
  9. M. Sabaeian, H. Nadgaran, and L. Mousave, “Analytical solution of the heat equation in a longitudinally pumped cubic solid-state laser,” Appl. Opt. 47, 2317–2325 (2008).
    [CrossRef]
  10. R. Lausten and P. Baling, “Thermal lensing in pulsed laser amplifiers: an analytical model,” J. Opt. Soc. Am. B 20, 1479–1485 (2003).
    [CrossRef]
  11. P. Shi, W. Chen, L. Li, and A. Gan, “Semianalytical thermal analysis on a Nd:YVO4 crystal,” Appl. Opt. 46, 4046–4051 (2007).
    [CrossRef]
  12. J. K. Jabczynski, K. Kopczynski, and A. Szczesniak, “Thermal lensing and thermal aberration investigations in diode-pumped lasers,” Opt. Eng. 35, 3572–3578 (1996).
    [CrossRef]
  13. H. Nadgaran and P. Elahi, “The overall phase shift and lens effect calculation using Gaussian boundary conditions and paraxial ray approximation for an end-pumped solid state laser,” Pramana 66, 513–519 (2006).
    [CrossRef]
  14. A. K. Cousins, “Temperature and thermal stress scaling in finite-length, end-pumped laser rods,” IEEE J. Quantum Electron. 28, 1057–1069 (1992).
    [CrossRef]
  15. M. Schmid, T. Graf, and H. P. Weber, “Analytical model of the temperature distribution and the thermally induced birefringence in laser rods with cylindrically symmetric heating,” J. Opt. Soc. Am. B 17, 1398–1404 (2000).
    [CrossRef]
  16. Z. Xiong, Zh. G. Li, W. L. Huang, and G. C. Lim, “Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 laser,” IEEE J. Quantum Electron. 39, 979–986 (2003).
    [CrossRef]
  17. O. L. Antipov, E. A. Anashkina, and K. A. Fedorova, “Electronic and thermal lensing in diode end-pumped Yb:YAG laser rods and discs,” Quantum Electron. 39, 1131–1136 (2009).
    [CrossRef]
  18. L. L. Zhang, P. Shi, and L. Li, “Semianalytical thermal analysis of rectangle Nd:GGG in heat capacity laser,” Appl. Phys. B 101, 137–142 (2010).
    [CrossRef]
  19. N. P. Barnes, R. C. Eckhardt, D. J. Gettemy, and L. B. Edgett, “Absorption coefficient and the temperature variation of the refractive index difference of nonlinear optical crystal,” IEEE J. Quantum Electron. 15, 1074–1076 (1979).
    [CrossRef]
  20. M. Sabaeian and H. Nadgaran, “Bessel–Gauss beams: Investigations of thermal effects on their generation,” Opt. Commum. 281, 672–678 (2008).
    [CrossRef]
  21. H. Nadgaran, M. Servatkhah, and M. Sabaeian, “Mathieu–Gauss beams: A thermal consideration,” Opt. Commun. 283, 417–426 (2010).
    [CrossRef]
  22. H. Nadgaran and M. Servatkhah, “The effects of induced heat loads on the propagation of Ince–Gaussian beams,” Opt. Commun. 284, 5329–5337 (2011).
    [CrossRef]
  23. Sh. H. Li, H. B. He, Y. G. Shan, D. W. Li, Y. A. Zhao, and Zh. X. Fan, “Enhanced surface thermal lensing for absorption evaluation and defect identification of optical films,” Appl. Opt. 49, 2417–2421 (2010).
    [CrossRef]
  24. S. L. Prins, A. C. Barron, C. Herrmann, and J. R. McNeil, “Effect of stress on performance of dense wavelength division multiplexing filters: thermal properties,” Appl. Opt. 43, 633–637 (2004).
    [CrossRef]
  25. M. Shimosegawa, T. Omatsu, M. Tateda, I. Ogura, J. L. Blows, P. Wang, and J. M. Dawes, “Thermal conductivity of a self-frequency-doubling laser crystal measured by use of optical methods,” Appl. Opt. 40, 1372–1377 (2001).
    [CrossRef]
  26. F. Jürgensen and W. Schröer , “Studies on the diffraction image of a thermal lens,” Appl. Opt. 34, 41–50 (1995).
    [CrossRef]
  27. B. A. Usievich, V. A. Sychugov, F. Pigeon, and A. Tishchenko, “Analytical treatment of the thermal problem in axially pumped solid-state lasers,” IEEE J. Quantum Electron. 37, 1210–1214 (2001).
    [CrossRef]
  28. Y. Peng, Zh. Cheng, Y. Zhang, and J. Qiu, “Temperature distribution and thermal deformations of mirror substrates in laser resonator,” Appl. Opt. 40, 4824–4830 (2001).
    [CrossRef]
  29. P. Shi, W. Chen, L. Li, and A. Gan, “Semianalytical thermal analysis of thermal focal length on Nd:YAG rods,” Appl. Opt. 46, 6655–6661 (2007).
    [CrossRef]
  30. Z. Ma, D. Li, J. Gao, N. Wu, and K. Du, “Thermal effects of the diode end-pumped Nd:YVO4 slab,” Opt. Commun. 275, 179–185 (2007).
    [CrossRef]
  31. Zh. Li, X. Huai, Y. Tao, and Z. Guo, “Analysis of thermal effects in an orthotropic laser medium,” Appl. Opt. 48, 598–608(2009).
    [CrossRef]
  32. T. Liu, Z. M. Yang, and S. H. Xu, “Analytical investigation on transient thermal effects in pulse end-pumped short-length fiber laser,” Opt. Express 17, 12875–12890 (2009).
    [CrossRef]
  33. G. L. Bourdet and C. Gouedard, “Simple analytical derivations of thermal lensing in longitudinally Q-CW pumped Yb:YAG,” Appl. Opt. 49, 4160–4167 (2010).
    [CrossRef]
  34. T. T. L. Kristensen, W. Withayakumnankul, P. U. Jensen, and D. Abbott, “Modeling terahertz heating effects on water,” Opt. Express 18, 4727–4739 (2010).
    [CrossRef]
  35. H. Nadgaran and M. Sabaian, “Pulsed pump: Thermal effects in solid state lasers under super-Gaussian pulses,” Paramana 67, 1119–1128 (2006).
    [CrossRef]
  36. G. Arfken, Mathematical Methods for Physicists (Academic, 1988).
  37. X. Peng, A. Asundi, Y. Chen, and Zh. Xiong, “Study of the mechanical properties of Nd:YVO4 crystal by use of laser interferometry and finite-element analysis,” Appl. Opt. 40, 1396–1403 (2001).
    [CrossRef]

2011 (1)

H. Nadgaran and M. Servatkhah, “The effects of induced heat loads on the propagation of Ince–Gaussian beams,” Opt. Commun. 284, 5329–5337 (2011).
[CrossRef]

2010 (6)

2009 (3)

2008 (2)

M. Sabaeian and H. Nadgaran, “Bessel–Gauss beams: Investigations of thermal effects on their generation,” Opt. Commum. 281, 672–678 (2008).
[CrossRef]

M. Sabaeian, H. Nadgaran, and L. Mousave, “Analytical solution of the heat equation in a longitudinally pumped cubic solid-state laser,” Appl. Opt. 47, 2317–2325 (2008).
[CrossRef]

2007 (4)

2006 (2)

H. Nadgaran and M. Sabaian, “Pulsed pump: Thermal effects in solid state lasers under super-Gaussian pulses,” Paramana 67, 1119–1128 (2006).
[CrossRef]

H. Nadgaran and P. Elahi, “The overall phase shift and lens effect calculation using Gaussian boundary conditions and paraxial ray approximation for an end-pumped solid state laser,” Pramana 66, 513–519 (2006).
[CrossRef]

2005 (1)

2004 (1)

2003 (2)

R. Lausten and P. Baling, “Thermal lensing in pulsed laser amplifiers: an analytical model,” J. Opt. Soc. Am. B 20, 1479–1485 (2003).
[CrossRef]

Z. Xiong, Zh. G. Li, W. L. Huang, and G. C. Lim, “Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 laser,” IEEE J. Quantum Electron. 39, 979–986 (2003).
[CrossRef]

2001 (6)

W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state laser,” J. Phys. D 34, 2381–2395 (2001).
[CrossRef]

J. Zheng, Sh. Zhao, Q. Wang, X. Zhang, and L. Chen, “Influence of thermal effect on KTP type-II phase-matching second-harmonic generation,” Opt. Commun. 199, 207–214 (2001).
[CrossRef]

B. A. Usievich, V. A. Sychugov, F. Pigeon, and A. Tishchenko, “Analytical treatment of the thermal problem in axially pumped solid-state lasers,” IEEE J. Quantum Electron. 37, 1210–1214 (2001).
[CrossRef]

M. Shimosegawa, T. Omatsu, M. Tateda, I. Ogura, J. L. Blows, P. Wang, and J. M. Dawes, “Thermal conductivity of a self-frequency-doubling laser crystal measured by use of optical methods,” Appl. Opt. 40, 1372–1377 (2001).
[CrossRef]

X. Peng, A. Asundi, Y. Chen, and Zh. Xiong, “Study of the mechanical properties of Nd:YVO4 crystal by use of laser interferometry and finite-element analysis,” Appl. Opt. 40, 1396–1403 (2001).
[CrossRef]

Y. Peng, Zh. Cheng, Y. Zhang, and J. Qiu, “Temperature distribution and thermal deformations of mirror substrates in laser resonator,” Appl. Opt. 40, 4824–4830 (2001).
[CrossRef]

2000 (1)

1998 (1)

D. C. Brown, “Heat, fluorescence, and stimulated-emission power densities and fractions in Nd:YAG,” IEEE J. Quantum Electron. 34, 560–572 (1998).
[CrossRef]

1997 (1)

1996 (1)

J. K. Jabczynski, K. Kopczynski, and A. Szczesniak, “Thermal lensing and thermal aberration investigations in diode-pumped lasers,” Opt. Eng. 35, 3572–3578 (1996).
[CrossRef]

1995 (1)

1994 (1)

C. Pfistrner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortion in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE Quantum Electron. 30, 1605–1615 (1994).
[CrossRef]

1992 (1)

A. K. Cousins, “Temperature and thermal stress scaling in finite-length, end-pumped laser rods,” IEEE J. Quantum Electron. 28, 1057–1069 (1992).
[CrossRef]

1979 (1)

N. P. Barnes, R. C. Eckhardt, D. J. Gettemy, and L. B. Edgett, “Absorption coefficient and the temperature variation of the refractive index difference of nonlinear optical crystal,” IEEE J. Quantum Electron. 15, 1074–1076 (1979).
[CrossRef]

Schröer , W.

Abbott, D.

Anashkina, E. A.

O. L. Antipov, E. A. Anashkina, and K. A. Fedorova, “Electronic and thermal lensing in diode end-pumped Yb:YAG laser rods and discs,” Quantum Electron. 39, 1131–1136 (2009).
[CrossRef]

Antipov, O. L.

O. L. Antipov, E. A. Anashkina, and K. A. Fedorova, “Electronic and thermal lensing in diode end-pumped Yb:YAG laser rods and discs,” Quantum Electron. 39, 1131–1136 (2009).
[CrossRef]

Arfken, G.

G. Arfken, Mathematical Methods for Physicists (Academic, 1988).

Asundi, A.

Aung, Y. L.

Baling, P.

Barnes, N. P.

N. P. Barnes, R. C. Eckhardt, D. J. Gettemy, and L. B. Edgett, “Absorption coefficient and the temperature variation of the refractive index difference of nonlinear optical crystal,” IEEE J. Quantum Electron. 15, 1074–1076 (1979).
[CrossRef]

Barron, A. C.

Blows, J. L.

Bourdet, G. L.

Brown, D. C.

D. C. Brown, “Heat, fluorescence, and stimulated-emission power densities and fractions in Nd:YAG,” IEEE J. Quantum Electron. 34, 560–572 (1998).
[CrossRef]

Cao, D.

Chen, L.

J. Zheng, Sh. Zhao, Q. Wang, X. Zhang, and L. Chen, “Influence of thermal effect on KTP type-II phase-matching second-harmonic generation,” Opt. Commun. 199, 207–214 (2001).
[CrossRef]

Chen, W.

Chen, Y.

Cheng, Zh.

Clarkson, W. A.

W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state laser,” J. Phys. D 34, 2381–2395 (2001).
[CrossRef]

Cousins, A. K.

A. K. Cousins, “Temperature and thermal stress scaling in finite-length, end-pumped laser rods,” IEEE J. Quantum Electron. 28, 1057–1069 (1992).
[CrossRef]

Dawes, J. M.

Du, K.

Z. Ma, D. Li, J. Gao, N. Wu, and K. Du, “Thermal effects of the diode end-pumped Nd:YVO4 slab,” Opt. Commun. 275, 179–185 (2007).
[CrossRef]

Duan, W.

Eckhardt, R. C.

N. P. Barnes, R. C. Eckhardt, D. J. Gettemy, and L. B. Edgett, “Absorption coefficient and the temperature variation of the refractive index difference of nonlinear optical crystal,” IEEE J. Quantum Electron. 15, 1074–1076 (1979).
[CrossRef]

Edgett, L. B.

N. P. Barnes, R. C. Eckhardt, D. J. Gettemy, and L. B. Edgett, “Absorption coefficient and the temperature variation of the refractive index difference of nonlinear optical crystal,” IEEE J. Quantum Electron. 15, 1074–1076 (1979).
[CrossRef]

Elahi, P.

H. Nadgaran and P. Elahi, “The overall phase shift and lens effect calculation using Gaussian boundary conditions and paraxial ray approximation for an end-pumped solid state laser,” Pramana 66, 513–519 (2006).
[CrossRef]

Fan, Zh. X.

Fedorova, K. A.

O. L. Antipov, E. A. Anashkina, and K. A. Fedorova, “Electronic and thermal lensing in diode end-pumped Yb:YAG laser rods and discs,” Quantum Electron. 39, 1131–1136 (2009).
[CrossRef]

Gan, A.

Gao, J.

Z. Ma, D. Li, J. Gao, N. Wu, and K. Du, “Thermal effects of the diode end-pumped Nd:YVO4 slab,” Opt. Commun. 275, 179–185 (2007).
[CrossRef]

Gettemy, D. J.

N. P. Barnes, R. C. Eckhardt, D. J. Gettemy, and L. B. Edgett, “Absorption coefficient and the temperature variation of the refractive index difference of nonlinear optical crystal,” IEEE J. Quantum Electron. 15, 1074–1076 (1979).
[CrossRef]

Gouedard, C.

Graf, T.

Gruber, R.

C. Pfistrner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortion in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE Quantum Electron. 30, 1605–1615 (1994).
[CrossRef]

Guo, Z.

He, H. B.

Herrmann, C.

Huai, X.

Huang, W. L.

Z. Xiong, Zh. G. Li, W. L. Huang, and G. C. Lim, “Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 laser,” IEEE J. Quantum Electron. 39, 979–986 (2003).
[CrossRef]

Ikesue, A.

Jabczynski, J. K.

J. K. Jabczynski, K. Kopczynski, and A. Szczesniak, “Thermal lensing and thermal aberration investigations in diode-pumped lasers,” Opt. Eng. 35, 3572–3578 (1996).
[CrossRef]

Jensen, P. U.

Jiang, X.

Jürgensen, F.

Khazanov, E. A.

Kopczynski, K.

J. K. Jabczynski, K. Kopczynski, and A. Szczesniak, “Thermal lensing and thermal aberration investigations in diode-pumped lasers,” Opt. Eng. 35, 3572–3578 (1996).
[CrossRef]

Kristensen, T. T. L.

Lausten, R.

Li, D.

Z. Ma, D. Li, J. Gao, N. Wu, and K. Du, “Thermal effects of the diode end-pumped Nd:YVO4 slab,” Opt. Commun. 275, 179–185 (2007).
[CrossRef]

Li, D. W.

Li, L.

Li, Sh. H.

Li, Zh.

Li, Zh. G.

Z. Xiong, Zh. G. Li, W. L. Huang, and G. C. Lim, “Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 laser,” IEEE J. Quantum Electron. 39, 979–986 (2003).
[CrossRef]

Lim, G. C.

Z. Xiong, Zh. G. Li, W. L. Huang, and G. C. Lim, “Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 laser,” IEEE J. Quantum Electron. 39, 979–986 (2003).
[CrossRef]

Liu, A.

Liu, T.

Ma, Z.

Z. Ma, D. Li, J. Gao, N. Wu, and K. Du, “Thermal effects of the diode end-pumped Nd:YVO4 slab,” Opt. Commun. 275, 179–185 (2007).
[CrossRef]

McNeil, J. R.

Merazzi, S.

C. Pfistrner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortion in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE Quantum Electron. 30, 1605–1615 (1994).
[CrossRef]

Mousave, L.

Mukhin, I. B.

Nadgaran, H.

H. Nadgaran and M. Servatkhah, “The effects of induced heat loads on the propagation of Ince–Gaussian beams,” Opt. Commun. 284, 5329–5337 (2011).
[CrossRef]

H. Nadgaran, M. Servatkhah, and M. Sabaeian, “Mathieu–Gauss beams: A thermal consideration,” Opt. Commun. 283, 417–426 (2010).
[CrossRef]

M. Sabaeian, L. Mousave, and H. Nadgaran, “Investigation of thermally-induced phase mismatching in continuous-wave second harmonic generation: A theoretical model,” Opt. Express 18, 18732–18743 (2010).
[CrossRef]

M. Sabaeian, H. Nadgaran, and L. Mousave, “Analytical solution of the heat equation in a longitudinally pumped cubic solid-state laser,” Appl. Opt. 47, 2317–2325 (2008).
[CrossRef]

M. Sabaeian and H. Nadgaran, “Bessel–Gauss beams: Investigations of thermal effects on their generation,” Opt. Commum. 281, 672–678 (2008).
[CrossRef]

H. Nadgaran and P. Elahi, “The overall phase shift and lens effect calculation using Gaussian boundary conditions and paraxial ray approximation for an end-pumped solid state laser,” Pramana 66, 513–519 (2006).
[CrossRef]

H. Nadgaran and M. Sabaian, “Pulsed pump: Thermal effects in solid state lasers under super-Gaussian pulses,” Paramana 67, 1119–1128 (2006).
[CrossRef]

Ogura, I.

Okino, K.

Omatsu, T.

Palashov, O. V.

Peng, X.

Peng, Y.

Pfistrner, C.

C. Pfistrner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortion in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE Quantum Electron. 30, 1605–1615 (1994).
[CrossRef]

Pigeon, F.

B. A. Usievich, V. A. Sychugov, F. Pigeon, and A. Tishchenko, “Analytical treatment of the thermal problem in axially pumped solid-state lasers,” IEEE J. Quantum Electron. 37, 1210–1214 (2001).
[CrossRef]

Prins, S. L.

Qiu, J.

Sabaeian, M.

M. Sabaeian, L. Mousave, and H. Nadgaran, “Investigation of thermally-induced phase mismatching in continuous-wave second harmonic generation: A theoretical model,” Opt. Express 18, 18732–18743 (2010).
[CrossRef]

H. Nadgaran, M. Servatkhah, and M. Sabaeian, “Mathieu–Gauss beams: A thermal consideration,” Opt. Commun. 283, 417–426 (2010).
[CrossRef]

M. Sabaeian and H. Nadgaran, “Bessel–Gauss beams: Investigations of thermal effects on their generation,” Opt. Commum. 281, 672–678 (2008).
[CrossRef]

M. Sabaeian, H. Nadgaran, and L. Mousave, “Analytical solution of the heat equation in a longitudinally pumped cubic solid-state laser,” Appl. Opt. 47, 2317–2325 (2008).
[CrossRef]

Sabaian, M.

H. Nadgaran and M. Sabaian, “Pulsed pump: Thermal effects in solid state lasers under super-Gaussian pulses,” Paramana 67, 1119–1128 (2006).
[CrossRef]

Schmid, M.

Servatkhah, M.

H. Nadgaran and M. Servatkhah, “The effects of induced heat loads on the propagation of Ince–Gaussian beams,” Opt. Commun. 284, 5329–5337 (2011).
[CrossRef]

H. Nadgaran, M. Servatkhah, and M. Sabaeian, “Mathieu–Gauss beams: A thermal consideration,” Opt. Commun. 283, 417–426 (2010).
[CrossRef]

Shan, Y. G.

Shi, P.

Shimosegawa, M.

Song, J.

Sychugov, V. A.

B. A. Usievich, V. A. Sychugov, F. Pigeon, and A. Tishchenko, “Analytical treatment of the thermal problem in axially pumped solid-state lasers,” IEEE J. Quantum Electron. 37, 1210–1214 (2001).
[CrossRef]

Szczesniak, A.

J. K. Jabczynski, K. Kopczynski, and A. Szczesniak, “Thermal lensing and thermal aberration investigations in diode-pumped lasers,” Opt. Eng. 35, 3572–3578 (1996).
[CrossRef]

Tao, Y.

Tateda, M.

Tishchenko, A.

B. A. Usievich, V. A. Sychugov, F. Pigeon, and A. Tishchenko, “Analytical treatment of the thermal problem in axially pumped solid-state lasers,” IEEE J. Quantum Electron. 37, 1210–1214 (2001).
[CrossRef]

Ueda, K. I.

Usievich, B. A.

B. A. Usievich, V. A. Sychugov, F. Pigeon, and A. Tishchenko, “Analytical treatment of the thermal problem in axially pumped solid-state lasers,” IEEE J. Quantum Electron. 37, 1210–1214 (2001).
[CrossRef]

Wang, P.

Wang, Q.

J. Zheng, Sh. Zhao, Q. Wang, X. Zhang, and L. Chen, “Influence of thermal effect on KTP type-II phase-matching second-harmonic generation,” Opt. Commun. 199, 207–214 (2001).
[CrossRef]

Weber, H. P.

M. Schmid, T. Graf, and H. P. Weber, “Analytical model of the temperature distribution and the thermally induced birefringence in laser rods with cylindrically symmetric heating,” J. Opt. Soc. Am. B 17, 1398–1404 (2000).
[CrossRef]

C. Pfistrner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortion in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE Quantum Electron. 30, 1605–1615 (1994).
[CrossRef]

Weber, R.

C. Pfistrner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortion in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE Quantum Electron. 30, 1605–1615 (1994).
[CrossRef]

Withayakumnankul, W.

Wu, N.

Z. Ma, D. Li, J. Gao, N. Wu, and K. Du, “Thermal effects of the diode end-pumped Nd:YVO4 slab,” Opt. Commun. 275, 179–185 (2007).
[CrossRef]

Xiong, Z.

Z. Xiong, Zh. G. Li, W. L. Huang, and G. C. Lim, “Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 laser,” IEEE J. Quantum Electron. 39, 979–986 (2003).
[CrossRef]

Xiong, Zh.

Xu, M.

Xu, S. H.

Yang, Z. M.

Yu, H.

Yuan, X.

Zhang, L. L.

L. L. Zhang, P. Shi, and L. Li, “Semianalytical thermal analysis of rectangle Nd:GGG in heat capacity laser,” Appl. Phys. B 101, 137–142 (2010).
[CrossRef]

Zhang, X.

J. Zheng, Sh. Zhao, Q. Wang, X. Zhang, and L. Chen, “Influence of thermal effect on KTP type-II phase-matching second-harmonic generation,” Opt. Commun. 199, 207–214 (2001).
[CrossRef]

Zhang, Y.

Zhao, Sh.

J. Zheng, Sh. Zhao, Q. Wang, X. Zhang, and L. Chen, “Influence of thermal effect on KTP type-II phase-matching second-harmonic generation,” Opt. Commun. 199, 207–214 (2001).
[CrossRef]

Zhao, Y. A.

Zheng, J.

J. Zheng, Sh. Zhao, Q. Wang, X. Zhang, and L. Chen, “Influence of thermal effect on KTP type-II phase-matching second-harmonic generation,” Opt. Commun. 199, 207–214 (2001).
[CrossRef]

Appl. Opt. (12)

J. Song, A. Liu, K. Okino, and K. I. Ueda, “Control of the thermal lensing effect with different pump light distributions,” Appl. Opt. 36, 8051–8055 (1997).
[CrossRef]

F. Jürgensen and W. Schröer , “Studies on the diffraction image of a thermal lens,” Appl. Opt. 34, 41–50 (1995).
[CrossRef]

M. Shimosegawa, T. Omatsu, M. Tateda, I. Ogura, J. L. Blows, P. Wang, and J. M. Dawes, “Thermal conductivity of a self-frequency-doubling laser crystal measured by use of optical methods,” Appl. Opt. 40, 1372–1377 (2001).
[CrossRef]

X. Peng, A. Asundi, Y. Chen, and Zh. Xiong, “Study of the mechanical properties of Nd:YVO4 crystal by use of laser interferometry and finite-element analysis,” Appl. Opt. 40, 1396–1403 (2001).
[CrossRef]

Y. Peng, Zh. Cheng, Y. Zhang, and J. Qiu, “Temperature distribution and thermal deformations of mirror substrates in laser resonator,” Appl. Opt. 40, 4824–4830 (2001).
[CrossRef]

S. L. Prins, A. C. Barron, C. Herrmann, and J. R. McNeil, “Effect of stress on performance of dense wavelength division multiplexing filters: thermal properties,” Appl. Opt. 43, 633–637 (2004).
[CrossRef]

P. Shi, W. Chen, L. Li, and A. Gan, “Semianalytical thermal analysis on a Nd:YVO4 crystal,” Appl. Opt. 46, 4046–4051 (2007).
[CrossRef]

P. Shi, W. Chen, L. Li, and A. Gan, “Semianalytical thermal analysis of thermal focal length on Nd:YAG rods,” Appl. Opt. 46, 6655–6661 (2007).
[CrossRef]

M. Sabaeian, H. Nadgaran, and L. Mousave, “Analytical solution of the heat equation in a longitudinally pumped cubic solid-state laser,” Appl. Opt. 47, 2317–2325 (2008).
[CrossRef]

Zh. Li, X. Huai, Y. Tao, and Z. Guo, “Analysis of thermal effects in an orthotropic laser medium,” Appl. Opt. 48, 598–608(2009).
[CrossRef]

Sh. H. Li, H. B. He, Y. G. Shan, D. W. Li, Y. A. Zhao, and Zh. X. Fan, “Enhanced surface thermal lensing for absorption evaluation and defect identification of optical films,” Appl. Opt. 49, 2417–2421 (2010).
[CrossRef]

G. L. Bourdet and C. Gouedard, “Simple analytical derivations of thermal lensing in longitudinally Q-CW pumped Yb:YAG,” Appl. Opt. 49, 4160–4167 (2010).
[CrossRef]

Appl. Phys. B (1)

L. L. Zhang, P. Shi, and L. Li, “Semianalytical thermal analysis of rectangle Nd:GGG in heat capacity laser,” Appl. Phys. B 101, 137–142 (2010).
[CrossRef]

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (5)

N. P. Barnes, R. C. Eckhardt, D. J. Gettemy, and L. B. Edgett, “Absorption coefficient and the temperature variation of the refractive index difference of nonlinear optical crystal,” IEEE J. Quantum Electron. 15, 1074–1076 (1979).
[CrossRef]

D. C. Brown, “Heat, fluorescence, and stimulated-emission power densities and fractions in Nd:YAG,” IEEE J. Quantum Electron. 34, 560–572 (1998).
[CrossRef]

B. A. Usievich, V. A. Sychugov, F. Pigeon, and A. Tishchenko, “Analytical treatment of the thermal problem in axially pumped solid-state lasers,” IEEE J. Quantum Electron. 37, 1210–1214 (2001).
[CrossRef]

Z. Xiong, Zh. G. Li, W. L. Huang, and G. C. Lim, “Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 laser,” IEEE J. Quantum Electron. 39, 979–986 (2003).
[CrossRef]

A. K. Cousins, “Temperature and thermal stress scaling in finite-length, end-pumped laser rods,” IEEE J. Quantum Electron. 28, 1057–1069 (1992).
[CrossRef]

IEEE Quantum Electron. (1)

C. Pfistrner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortion in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE Quantum Electron. 30, 1605–1615 (1994).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. D (1)

W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state laser,” J. Phys. D 34, 2381–2395 (2001).
[CrossRef]

Opt. Commum. (1)

M. Sabaeian and H. Nadgaran, “Bessel–Gauss beams: Investigations of thermal effects on their generation,” Opt. Commum. 281, 672–678 (2008).
[CrossRef]

Opt. Commun. (4)

H. Nadgaran, M. Servatkhah, and M. Sabaeian, “Mathieu–Gauss beams: A thermal consideration,” Opt. Commun. 283, 417–426 (2010).
[CrossRef]

H. Nadgaran and M. Servatkhah, “The effects of induced heat loads on the propagation of Ince–Gaussian beams,” Opt. Commun. 284, 5329–5337 (2011).
[CrossRef]

J. Zheng, Sh. Zhao, Q. Wang, X. Zhang, and L. Chen, “Influence of thermal effect on KTP type-II phase-matching second-harmonic generation,” Opt. Commun. 199, 207–214 (2001).
[CrossRef]

Z. Ma, D. Li, J. Gao, N. Wu, and K. Du, “Thermal effects of the diode end-pumped Nd:YVO4 slab,” Opt. Commun. 275, 179–185 (2007).
[CrossRef]

Opt. Eng. (1)

J. K. Jabczynski, K. Kopczynski, and A. Szczesniak, “Thermal lensing and thermal aberration investigations in diode-pumped lasers,” Opt. Eng. 35, 3572–3578 (1996).
[CrossRef]

Opt. Express (4)

Paramana (1)

H. Nadgaran and M. Sabaian, “Pulsed pump: Thermal effects in solid state lasers under super-Gaussian pulses,” Paramana 67, 1119–1128 (2006).
[CrossRef]

Pramana (1)

H. Nadgaran and P. Elahi, “The overall phase shift and lens effect calculation using Gaussian boundary conditions and paraxial ray approximation for an end-pumped solid state laser,” Pramana 66, 513–519 (2006).
[CrossRef]

Quantum Electron. (1)

O. L. Antipov, E. A. Anashkina, and K. A. Fedorova, “Electronic and thermal lensing in diode end-pumped Yb:YAG laser rods and discs,” Quantum Electron. 39, 1131–1136 (2009).
[CrossRef]

Other (1)

G. Arfken, Mathematical Methods for Physicists (Academic, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Two successive pulses with time duration of τ p and pulse interval time of τ .

Fig. 2.
Fig. 2.

Temperature distribution along z axis for long transient case at t = 0.001 s , t = 0.005 s , t = 0.01 s , t = 0.05 s , and t = 0.1 s . The heat transfer coefficients are h x = h y = 15 , 000 W / m 2 / K and h z = 6.5 W / m 2 / K .

Fig. 3.
Fig. 3.

Comparison between analytical (solid curve) and numerical (dashed curve) solutions at t = 0.1 s .

Fig. 4.
Fig. 4.

Temperature distribution along x axis at y = b / 2 and z = 0 for long transient case at t = 0.001 s , t = 0.005 s , t = 0.01 s , t = 0.05 s , and t = 0.1 s . The parameters used are the same as used in Fig. 2.

Fig. 5.
Fig. 5.

Temperature distribution along z direction at various times for cooling with air: h x = h y = h z = 6.5 W / m 2 / K .

Fig. 6.
Fig. 6.

Heat buildup reaching the temperature of its steady state for P abs = 15 W .

Fig. 7.
Fig. 7.

Temperature change along the z axis for a single shot at t = τ p , t = 2 τ p , t = 3 τ p , and t = 8 τ p for a pulse with the energy of E abs = 0.01 J and duration of τ p = 50 μs .

Fig. 8.
Fig. 8.

Temperature change along the z axis at t = 10 τ p , t = 40 τ p , t = 80 τ p , and t = 160 τ p for a pulse with energy of E abs = 0.01 J and duration of τ p = 50 μs .

Fig. 9.
Fig. 9.

Temperature change at z = 0 , x = a / 2 and y = b / 2 versus time for single shot for three pulse durations of τ p = 50 μs (solid curve), τ p = 100 μs (dashed curve), and τ p = 150 μs (dashed–dotted curve). The energy of the pulse is E abs = 0.01 J .

Fig. 10.
Fig. 10.

3D plot of time evolution of crystal temperature when irradiating with a single shot. The energy of the pulse is E abs = 0.01 J with duration of τ p = 50 μs .

Fig. 11.
Fig. 11.

Temperature change versus normalized time for repetitively pulsed pumping at the entrance face of the crystal at x = a / 2 and y = b / 2 . The energy of the pulses are E abs = 0.1 J , their duration is τ p = 100 μs , and repetition rate is ν = 100 Hz .

Fig. 12.
Fig. 12.

Temperature change versus normalized time for repetitively pulsed pumping at the entrance face of the crystal at x = a / 2 and y = b / 2 . The energy of the pulses are E abs = 0.1 J , their duration is τ p = 100 μs , and repetition rate is υ = 1000 Hz .

Fig. 13.
Fig. 13.

Heat buildup during repetitively pulsed pumping. The energy per pulse is E abs = 0.1 J with repetition rate of υ = 1000 Hz .

Fig. 14.
Fig. 14.

Temperature distribution along the x direction at several times for repetitively pulsed pumping. The pulse energy is E abs = 0.1 J , repetition rate is ν = 1000 Hz , and pulse duration is τ p = 100 μs .

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

ρ C T ( x , y , z , t ) t K x 2 T ( x , y , z ) x 2 K y 2 T ( x , y , z ) y 2 K z 2 T ( x , y , z ) z 2 = Q ( x , y , z , t ) ,
K n ^ · T + h ( T T 0 ) | boundary + ε σ ( T 4 T 4 ) = 0 ,
K x T x | x = 0 = h x [ T ( x , y , z ) T 0 ] x = 0 ,
K x T x | x = a = h x [ T ( x , y , z ) T 0 ] x = a ,
K y T y | y = 0 = h y [ T ( x , y , z ) T 0 ] y = 0 ,
K y T y | y = b = h y [ T ( x , y , z ) T 0 ] y = b ,
K z T z | z = 0 = h z [ T ( x , y , z ) T 0 ] z = 0 ,
K z T z | z = c = h z [ T ( x , y , z ) T 0 ] z = c .
T ( x , y , z , t ) = l , m , n sin ( α l x a + β l ) sin ( δ m y b + θ m ) sin ( γ n z c + ϕ n ) f l m n ( t ) + T 0 ,
tan ( β l ) = K x α l h x a ,
tan ( α l + β l ) = K x α l h x a .
2 cot ( α l ) = K x α l h x a h x a K x α l .
ρ C d f l m n ( t ) d t + Γ l m n f l m n ( t ) = 0 a 0 b 0 c Q ( x , y , z , t ) sin ( α l x a + β l ) sin ( δ m y b + θ m ) sin ( γ n z c + ϕ n ) d z d y d x / { a 2 a 4 α l [ sin ( 2 α l + 2 β l ) sin ( 2 β l ) ] } × { b 2 b 4 δ m [ sin ( 2 δ m + 2 θ m ) sin ( 2 θ m ) ] } × { c 2 c 4 γ n [ sin ( 2 γ n + 2 ϕ n ) sin ( 2 ϕ n ) ] } ,
Q ( x , y , z ) = η P abs Q 0 e 2 [ ( x a / 2 ) 2 + ( y b / 2 ) 2 ] / ω p 2 e κ z ,
Q 0 0 c 0 b 0 a e 2 [ ( x a / 2 ) 2 + ( y b / 2 ) 2 ] / ω p 2 e κ z d x d y d z = 1 ,
Q 0 = 2 κ π ω p 2 ( 1 e κ c ) erf ( a 2 2 ω p ) erf ( b 2 2 ω p ) ,
f l m n ( t ) = η P abs Q 0 q l s m t n Γ l m n [ 1 exp ( t Γ l m n ρ C ) ] ,
q l = 0 a e 2 ( x a 2 ) 2 / ω p 2 sin ( α l x 2 + β l ) d x a 2 a 4 α l [ sin ( 2 α l + 2 β l ) sin ( 2 β l ) sin ( 2 β l ) ] = π / 2 ω p e α l 2 ω p 2 / 8 a 2 sin ( α l 2 + β l ) Re [ erf ( 2 a 2 ω p + i 2 α l ω p 4 a ) ] a 2 a 4 α l [ sin ( 2 α l + 2 β l ) sin ( 2 β l ) sin ( 2 β l ) ] ,
s m = 0 b e 2 ( y b 2 ) 2 / ω p 2 sin ( δ m y 2 + θ m ) d y b 2 b 4 δ m [ sin ( 2 δ m + 2 θ m ) sin ( 2 θ m ) sin ( 2 θ m ) ] = π / 2 ω p e β m 2 ω p 2 / 8 b 2 sin ( δ m 2 + θ m ) Re [ erf ( 2 b 2 ω p + i 2 δ m ω p 4 b ) ] b 2 b 4 δ m [ sin ( 2 δ m + 2 θ m ) sin ( 2 θ m ) sin ( 2 θ m ) ] ,
t n = 0 c e κ z sin ( γ n z c + ϕ n ) d z ( κ 2 c 2 + γ n 2 ) { 1 2 1 4 γ n [ sin ( 2 γ n + 2 ϕ n ) sin ( 2 ϕ n ) ] } = γ n cos ( ϕ n ) + κ c sin ( ϕ n ) e κ c [ γ n cos ( γ n + ϕ n ) + κ c sin ( γ n + ϕ n ) ] ( κ 2 c 2 + γ n 2 ) { 1 2 1 4 γ n [ sin ( 2 γ n + 2 ϕ n ) sin ( 2 ϕ n ) ] } ,
d f l m n d t + Γ l m n ρ C f l m n ( t ) = η E abs Q 0 τ p ρ C s l q m t n exp ( ( t 2 τ p ) 2 / τ p 2 ) ,
f l m n ( t ) = π η E abs Q 0 s l q m t n 2 ρ C e 2 Γ l m n t / ρ C [ erf ( t τ p Γ l m n τ p 2 ρ C 2 ) + erf ( Γ l m n τ p 2 ρ C + 2 ) ] .
ε ( t ) = k = 0 [ a k sin ( 2 k π t τ ) + b k cos ( 2 k π t τ ) ] ,
a k = 2 τ 0 4 τ p e ( t 2 τ p ) 2 / τ p 2 sin ( 2 k π t τ ) d t = π τ p τ e k 2 π 2 τ p 2 / τ 2 sin ( 4 k π τ p / τ ) [ erf ( 2 + i k π τ p / τ ) erf ( 2 + i k π τ p / τ ) ] ,
b k = 2 τ 0 4 τ p e ( t 2 τ p ) 2 / τ p 2 cos ( 2 k π t τ ) d t = π τ p τ e k 2 π 2 τ p 2 / τ 2 cos ( 4 k π τ p / τ ) [ erf ( 2 + i k π τ p / τ ) erf ( 2 + i k π τ p / τ ) ] ,
ε ( t ) = 2 π τ p τ k = 0 e k 2 π 2 τ p 2 / τ 2 cos [ 2 k π ( t 2 τ p ) τ ] ,
Q ( x , y , z , t ) = η E abs τ p Q 0 ε ( t ) e ( x 2 + y 2 ) / ω 2 e κ z ,
d f l m n ( t ) d t + Γ l m n ρ C f l m n ( t ) = η E abs Q 0 ρ C τ p q l s m t n ε ( t ) .
f l m n ( t ) = E 0 Q 0 ρ C τ p q l s m t n e Γ l m n t / ρ C ( t ε ( t ) e Γ l m n t / ρ C d t + C 1 ) ,
f l m n ( t ) = 2 π η E 0 Q 0 q l s m t n τ Γ l m n k = 0 e k 2 π 2 τ p 2 / τ 2 1 + ( 2 k π ρ C / τ Γ l m n ) 2 × { cos ( 2 k π ( t 2 τ p ) τ ) e Γ l m n t / ρ C cos ( 4 k π τ p τ ) + 2 k π ρ C τ Γ l m n [ sin ( 2 k π ( t 2 τ p ) τ ) + e Γ l m n t / ρ C sin ( 4 k π τ p τ ) ] } .

Metrics