Abstract

We propose a plasma chemical vaporization machining device with a hemispherical tip electrode for optical fabrication. Radio-frequency plasma is generated close to the electrode under atmospheric conditions, and a workpiece is scanned relative to the stationary electrode under three-axis motion control to remove target areas on a workpiece surface. Experimental results demonstrate that surface removal progresses although process gas is not forcibly supplied to the plasma. The correction of shape errors on conventionally polished spheres is performed. As a result, highly accurate smooth surfaces with the desired rms shape accuracy of 3 nm are successfully obtained, which confirms that the device is effective for the fabrication of optics.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Bárdos, S. Berg, and H.-O. Blom, “Superhigh-rate plasma jet etching of silicon,” Appl. Phys. Lett. 55, 1615–1617(1989).
    [CrossRef]
  2. D. Bollinger, G. Gallatin, J. Samuels, G. Steinberg, and C. Zarowin, “Rapid, noncontact optical figuring of aspheric surfaces with plasma assisted chemical etching (PACE),” Proc. SPIE 1333, 44–57 (1990).
  3. H. Koinuma, H. Ohkubo, and T. Hashimoto, “Development and application of a microbeam plasma generator,” Appl. Phys. Lett. 60, 816–817 (1992).
    [CrossRef]
  4. G. Boehm, W. Frank, A. Schindler, A. Nickel, H. J. Thomas, F. Bigl, and M. Weiser, “Plasma jet chemical etching—a tool for the figuring of optical precision aspheres,” in Proceedings of the Ninth International Conference on Production Engineering (Japan Society for Precision Engineering, 1991), pp. 231–236.
  5. A. Schindler, G. Boehm, T. Haensel, W. Frank, A. Nickel, B. Rauschenbach, and F. Bigl, “Precison optical asphere fabrication by plasma jet chemical etching (PJCE) and ion beam figuring,” Proc. SPIE 4451, 242–248 (2001).
  6. T. Ichiki, Y. Sugiyama, R. Taura, T. Koidesawa, and Y. Horiike, “Plasma applications for biochip technology,” Thin Solid Films 435, 62–68 (2003).
    [CrossRef]
  7. T. Ichiki, R. Taura, and Y. Horiike, “Localized and ultrahigh-rate etching of silicon wafers using atmospheric-pressure microplasma jets,” J. Appl. Phys. 95, 35–39 (2004).
    [CrossRef]
  8. C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006).
    [CrossRef]
  9. C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, P. Sommer, and P. Fiske, “A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE optical surfaces,” Proc. SPIE 6273, 62730A (2006).
  10. D. M. Allen, P. Shore, R. W. Evans, C. Fanara, W. O’Brien, S. Marson, and W. O’Neill, “Ion beam, focused ion beam, and plasma discharge machining,” CIRP Ann. 58, 647–662(2009).
    [CrossRef]
  11. Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth–Heinemann, 1993), pp. 78–87.
  12. Y. Mori, K. Yamamura, and Y. Sano, “The study of fabrication of the x-ray mirror by numerically controlled plasma chemical vaporization machining: Development of the machine for the X-ray mirror fabrication,” Rev. Sci. Instrum. 71, 4620–4626 (2000).
    [CrossRef]
  13. Y. Mori, K. Yamauchi, K. Yamamura, and Y. Sano, “Development of plasma chemical vaporization machining,” Rev. Sci. Instrum. 71, 4627–4632 (2000).
    [CrossRef]
  14. K. Yamamura, Y. Sano, M. Shibahara, K. Yamauchi, H. Mimura, K. Endo, and Y. Mori, “Ultra precision machining utilizing numerically controlled scanning of localized atmospheric pressure plasma,” Jpn. J. Appl. Phys. 45, 8270–8276 (2006).
    [CrossRef]
  15. K. Yamamura, S. Shimada, and Y. Mori, “Damage-free improvement of thickness uniformity of quartz crystal wafer by plasma chemical vaporization machining,” CIRP Ann 57, 567–570 (2008).
    [CrossRef]
  16. H. Takino, N. Shibata, H. Itoh, T. Kobayashi, H. Tanaka, M. Ebi, K. Yamamura, Y. Sano, and Y. Mori, “Computer numerically controlled plasma chemical vaporization machining with a pipe electrode for optical fabrication,” Appl. Opt. 37, 5198–5210 (1998).
    [CrossRef]
  17. H. Takino, N. Shibata, H. Itoh, T. Kobayashi, K. Yamamura, Y. Sano, and Y. Mori, “Fabrication of optics by use of plasma chemical vaporization machining with a pipe electrode,” Appl. Opt. 41, 3971–3977 (2002).
    [CrossRef]
  18. H. Takino, N. Shibata, H. Itoh, T. Kobayashi, K. Nemoto, T. Fujii, N. Goto, K. Yamamura, Y. Sano, and Y. Mori, “Fabrication of small complex-shaped optics by plasma chemical vaporization machining with a microelectrode,” Appl. Opt. 45, 5897–5902 (2006).
    [CrossRef]
  19. H. Takino, K. Yamamura, Y. Sano, and Y. Mori, “Removal characteristics of plasma chemical vaporization machining with a pipe electrode for optical fabrication,” Appl. Opt. 49, 4434–4440 (2010).
    [CrossRef]

2010 (1)

2009 (1)

D. M. Allen, P. Shore, R. W. Evans, C. Fanara, W. O’Brien, S. Marson, and W. O’Neill, “Ion beam, focused ion beam, and plasma discharge machining,” CIRP Ann. 58, 647–662(2009).
[CrossRef]

2008 (1)

K. Yamamura, S. Shimada, and Y. Mori, “Damage-free improvement of thickness uniformity of quartz crystal wafer by plasma chemical vaporization machining,” CIRP Ann 57, 567–570 (2008).
[CrossRef]

2006 (4)

H. Takino, N. Shibata, H. Itoh, T. Kobayashi, K. Nemoto, T. Fujii, N. Goto, K. Yamamura, Y. Sano, and Y. Mori, “Fabrication of small complex-shaped optics by plasma chemical vaporization machining with a microelectrode,” Appl. Opt. 45, 5897–5902 (2006).
[CrossRef]

K. Yamamura, Y. Sano, M. Shibahara, K. Yamauchi, H. Mimura, K. Endo, and Y. Mori, “Ultra precision machining utilizing numerically controlled scanning of localized atmospheric pressure plasma,” Jpn. J. Appl. Phys. 45, 8270–8276 (2006).
[CrossRef]

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006).
[CrossRef]

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, P. Sommer, and P. Fiske, “A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE optical surfaces,” Proc. SPIE 6273, 62730A (2006).

2004 (1)

T. Ichiki, R. Taura, and Y. Horiike, “Localized and ultrahigh-rate etching of silicon wafers using atmospheric-pressure microplasma jets,” J. Appl. Phys. 95, 35–39 (2004).
[CrossRef]

2003 (1)

T. Ichiki, Y. Sugiyama, R. Taura, T. Koidesawa, and Y. Horiike, “Plasma applications for biochip technology,” Thin Solid Films 435, 62–68 (2003).
[CrossRef]

2002 (1)

2001 (1)

A. Schindler, G. Boehm, T. Haensel, W. Frank, A. Nickel, B. Rauschenbach, and F. Bigl, “Precison optical asphere fabrication by plasma jet chemical etching (PJCE) and ion beam figuring,” Proc. SPIE 4451, 242–248 (2001).

2000 (2)

Y. Mori, K. Yamamura, and Y. Sano, “The study of fabrication of the x-ray mirror by numerically controlled plasma chemical vaporization machining: Development of the machine for the X-ray mirror fabrication,” Rev. Sci. Instrum. 71, 4620–4626 (2000).
[CrossRef]

Y. Mori, K. Yamauchi, K. Yamamura, and Y. Sano, “Development of plasma chemical vaporization machining,” Rev. Sci. Instrum. 71, 4627–4632 (2000).
[CrossRef]

1998 (1)

1992 (1)

H. Koinuma, H. Ohkubo, and T. Hashimoto, “Development and application of a microbeam plasma generator,” Appl. Phys. Lett. 60, 816–817 (1992).
[CrossRef]

1990 (1)

D. Bollinger, G. Gallatin, J. Samuels, G. Steinberg, and C. Zarowin, “Rapid, noncontact optical figuring of aspheric surfaces with plasma assisted chemical etching (PACE),” Proc. SPIE 1333, 44–57 (1990).

1989 (1)

L. Bárdos, S. Berg, and H.-O. Blom, “Superhigh-rate plasma jet etching of silicon,” Appl. Phys. Lett. 55, 1615–1617(1989).
[CrossRef]

Allen, D. M.

D. M. Allen, P. Shore, R. W. Evans, C. Fanara, W. O’Brien, S. Marson, and W. O’Neill, “Ion beam, focused ion beam, and plasma discharge machining,” CIRP Ann. 58, 647–662(2009).
[CrossRef]

Bárdos, L.

L. Bárdos, S. Berg, and H.-O. Blom, “Superhigh-rate plasma jet etching of silicon,” Appl. Phys. Lett. 55, 1615–1617(1989).
[CrossRef]

Berg, S.

L. Bárdos, S. Berg, and H.-O. Blom, “Superhigh-rate plasma jet etching of silicon,” Appl. Phys. Lett. 55, 1615–1617(1989).
[CrossRef]

Bigl, F.

A. Schindler, G. Boehm, T. Haensel, W. Frank, A. Nickel, B. Rauschenbach, and F. Bigl, “Precison optical asphere fabrication by plasma jet chemical etching (PJCE) and ion beam figuring,” Proc. SPIE 4451, 242–248 (2001).

G. Boehm, W. Frank, A. Schindler, A. Nickel, H. J. Thomas, F. Bigl, and M. Weiser, “Plasma jet chemical etching—a tool for the figuring of optical precision aspheres,” in Proceedings of the Ninth International Conference on Production Engineering (Japan Society for Precision Engineering, 1991), pp. 231–236.

Blom, H.-O.

L. Bárdos, S. Berg, and H.-O. Blom, “Superhigh-rate plasma jet etching of silicon,” Appl. Phys. Lett. 55, 1615–1617(1989).
[CrossRef]

Boehm, G.

A. Schindler, G. Boehm, T. Haensel, W. Frank, A. Nickel, B. Rauschenbach, and F. Bigl, “Precison optical asphere fabrication by plasma jet chemical etching (PJCE) and ion beam figuring,” Proc. SPIE 4451, 242–248 (2001).

G. Boehm, W. Frank, A. Schindler, A. Nickel, H. J. Thomas, F. Bigl, and M. Weiser, “Plasma jet chemical etching—a tool for the figuring of optical precision aspheres,” in Proceedings of the Ninth International Conference on Production Engineering (Japan Society for Precision Engineering, 1991), pp. 231–236.

Bollinger, D.

D. Bollinger, G. Gallatin, J. Samuels, G. Steinberg, and C. Zarowin, “Rapid, noncontact optical figuring of aspheric surfaces with plasma assisted chemical etching (PACE),” Proc. SPIE 1333, 44–57 (1990).

Carr, J.

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006).
[CrossRef]

Ebi, M.

Endo, K.

K. Yamamura, Y. Sano, M. Shibahara, K. Yamauchi, H. Mimura, K. Endo, and Y. Mori, “Ultra precision machining utilizing numerically controlled scanning of localized atmospheric pressure plasma,” Jpn. J. Appl. Phys. 45, 8270–8276 (2006).
[CrossRef]

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth–Heinemann, 1993), pp. 78–87.

Evans, R. W.

D. M. Allen, P. Shore, R. W. Evans, C. Fanara, W. O’Brien, S. Marson, and W. O’Neill, “Ion beam, focused ion beam, and plasma discharge machining,” CIRP Ann. 58, 647–662(2009).
[CrossRef]

Fanara, C.

D. M. Allen, P. Shore, R. W. Evans, C. Fanara, W. O’Brien, S. Marson, and W. O’Neill, “Ion beam, focused ion beam, and plasma discharge machining,” CIRP Ann. 58, 647–662(2009).
[CrossRef]

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006).
[CrossRef]

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, P. Sommer, and P. Fiske, “A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE optical surfaces,” Proc. SPIE 6273, 62730A (2006).

Fiske, P.

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, P. Sommer, and P. Fiske, “A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE optical surfaces,” Proc. SPIE 6273, 62730A (2006).

Frank, W.

A. Schindler, G. Boehm, T. Haensel, W. Frank, A. Nickel, B. Rauschenbach, and F. Bigl, “Precison optical asphere fabrication by plasma jet chemical etching (PJCE) and ion beam figuring,” Proc. SPIE 4451, 242–248 (2001).

G. Boehm, W. Frank, A. Schindler, A. Nickel, H. J. Thomas, F. Bigl, and M. Weiser, “Plasma jet chemical etching—a tool for the figuring of optical precision aspheres,” in Proceedings of the Ninth International Conference on Production Engineering (Japan Society for Precision Engineering, 1991), pp. 231–236.

Fujii, T.

Gallatin, G.

D. Bollinger, G. Gallatin, J. Samuels, G. Steinberg, and C. Zarowin, “Rapid, noncontact optical figuring of aspheric surfaces with plasma assisted chemical etching (PACE),” Proc. SPIE 1333, 44–57 (1990).

Goto, N.

Haensel, T.

A. Schindler, G. Boehm, T. Haensel, W. Frank, A. Nickel, B. Rauschenbach, and F. Bigl, “Precison optical asphere fabrication by plasma jet chemical etching (PJCE) and ion beam figuring,” Proc. SPIE 4451, 242–248 (2001).

Hashimoto, T.

H. Koinuma, H. Ohkubo, and T. Hashimoto, “Development and application of a microbeam plasma generator,” Appl. Phys. Lett. 60, 816–817 (1992).
[CrossRef]

Horiike, Y.

T. Ichiki, R. Taura, and Y. Horiike, “Localized and ultrahigh-rate etching of silicon wafers using atmospheric-pressure microplasma jets,” J. Appl. Phys. 95, 35–39 (2004).
[CrossRef]

T. Ichiki, Y. Sugiyama, R. Taura, T. Koidesawa, and Y. Horiike, “Plasma applications for biochip technology,” Thin Solid Films 435, 62–68 (2003).
[CrossRef]

Ichiki, T.

T. Ichiki, R. Taura, and Y. Horiike, “Localized and ultrahigh-rate etching of silicon wafers using atmospheric-pressure microplasma jets,” J. Appl. Phys. 95, 35–39 (2004).
[CrossRef]

T. Ichiki, Y. Sugiyama, R. Taura, T. Koidesawa, and Y. Horiike, “Plasma applications for biochip technology,” Thin Solid Films 435, 62–68 (2003).
[CrossRef]

Inagaki, K.

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth–Heinemann, 1993), pp. 78–87.

Itoh, H.

Kakiuchi, H.

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth–Heinemann, 1993), pp. 78–87.

Kataoka, T.

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth–Heinemann, 1993), pp. 78–87.

Kelley, J.

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006).
[CrossRef]

Kobayashi, T.

Koidesawa, T.

T. Ichiki, Y. Sugiyama, R. Taura, T. Koidesawa, and Y. Horiike, “Plasma applications for biochip technology,” Thin Solid Films 435, 62–68 (2003).
[CrossRef]

Koinuma, H.

H. Koinuma, H. Ohkubo, and T. Hashimoto, “Development and application of a microbeam plasma generator,” Appl. Phys. Lett. 60, 816–817 (1992).
[CrossRef]

Lyford, N.

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006).
[CrossRef]

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, P. Sommer, and P. Fiske, “A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE optical surfaces,” Proc. SPIE 6273, 62730A (2006).

Marson, S.

D. M. Allen, P. Shore, R. W. Evans, C. Fanara, W. O’Brien, S. Marson, and W. O’Neill, “Ion beam, focused ion beam, and plasma discharge machining,” CIRP Ann. 58, 647–662(2009).
[CrossRef]

Mimura, H.

K. Yamamura, Y. Sano, M. Shibahara, K. Yamauchi, H. Mimura, K. Endo, and Y. Mori, “Ultra precision machining utilizing numerically controlled scanning of localized atmospheric pressure plasma,” Jpn. J. Appl. Phys. 45, 8270–8276 (2006).
[CrossRef]

Mori, Y.

H. Takino, K. Yamamura, Y. Sano, and Y. Mori, “Removal characteristics of plasma chemical vaporization machining with a pipe electrode for optical fabrication,” Appl. Opt. 49, 4434–4440 (2010).
[CrossRef]

K. Yamamura, S. Shimada, and Y. Mori, “Damage-free improvement of thickness uniformity of quartz crystal wafer by plasma chemical vaporization machining,” CIRP Ann 57, 567–570 (2008).
[CrossRef]

K. Yamamura, Y. Sano, M. Shibahara, K. Yamauchi, H. Mimura, K. Endo, and Y. Mori, “Ultra precision machining utilizing numerically controlled scanning of localized atmospheric pressure plasma,” Jpn. J. Appl. Phys. 45, 8270–8276 (2006).
[CrossRef]

H. Takino, N. Shibata, H. Itoh, T. Kobayashi, K. Nemoto, T. Fujii, N. Goto, K. Yamamura, Y. Sano, and Y. Mori, “Fabrication of small complex-shaped optics by plasma chemical vaporization machining with a microelectrode,” Appl. Opt. 45, 5897–5902 (2006).
[CrossRef]

H. Takino, N. Shibata, H. Itoh, T. Kobayashi, K. Yamamura, Y. Sano, and Y. Mori, “Fabrication of optics by use of plasma chemical vaporization machining with a pipe electrode,” Appl. Opt. 41, 3971–3977 (2002).
[CrossRef]

Y. Mori, K. Yamauchi, K. Yamamura, and Y. Sano, “Development of plasma chemical vaporization machining,” Rev. Sci. Instrum. 71, 4627–4632 (2000).
[CrossRef]

Y. Mori, K. Yamamura, and Y. Sano, “The study of fabrication of the x-ray mirror by numerically controlled plasma chemical vaporization machining: Development of the machine for the X-ray mirror fabrication,” Rev. Sci. Instrum. 71, 4620–4626 (2000).
[CrossRef]

H. Takino, N. Shibata, H. Itoh, T. Kobayashi, H. Tanaka, M. Ebi, K. Yamamura, Y. Sano, and Y. Mori, “Computer numerically controlled plasma chemical vaporization machining with a pipe electrode for optical fabrication,” Appl. Opt. 37, 5198–5210 (1998).
[CrossRef]

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth–Heinemann, 1993), pp. 78–87.

Nemoto, K.

Nicholls, J. R.

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006).
[CrossRef]

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, P. Sommer, and P. Fiske, “A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE optical surfaces,” Proc. SPIE 6273, 62730A (2006).

Nickel, A.

A. Schindler, G. Boehm, T. Haensel, W. Frank, A. Nickel, B. Rauschenbach, and F. Bigl, “Precison optical asphere fabrication by plasma jet chemical etching (PJCE) and ion beam figuring,” Proc. SPIE 4451, 242–248 (2001).

G. Boehm, W. Frank, A. Schindler, A. Nickel, H. J. Thomas, F. Bigl, and M. Weiser, “Plasma jet chemical etching—a tool for the figuring of optical precision aspheres,” in Proceedings of the Ninth International Conference on Production Engineering (Japan Society for Precision Engineering, 1991), pp. 231–236.

O’Brien, W.

D. M. Allen, P. Shore, R. W. Evans, C. Fanara, W. O’Brien, S. Marson, and W. O’Neill, “Ion beam, focused ion beam, and plasma discharge machining,” CIRP Ann. 58, 647–662(2009).
[CrossRef]

O’Neill, W.

D. M. Allen, P. Shore, R. W. Evans, C. Fanara, W. O’Brien, S. Marson, and W. O’Neill, “Ion beam, focused ion beam, and plasma discharge machining,” CIRP Ann. 58, 647–662(2009).
[CrossRef]

Ohkubo, H.

H. Koinuma, H. Ohkubo, and T. Hashimoto, “Development and application of a microbeam plasma generator,” Appl. Phys. Lett. 60, 816–817 (1992).
[CrossRef]

Rauschenbach, B.

A. Schindler, G. Boehm, T. Haensel, W. Frank, A. Nickel, B. Rauschenbach, and F. Bigl, “Precison optical asphere fabrication by plasma jet chemical etching (PJCE) and ion beam figuring,” Proc. SPIE 4451, 242–248 (2001).

Samuels, J.

D. Bollinger, G. Gallatin, J. Samuels, G. Steinberg, and C. Zarowin, “Rapid, noncontact optical figuring of aspheric surfaces with plasma assisted chemical etching (PACE),” Proc. SPIE 1333, 44–57 (1990).

Sano, Y.

H. Takino, K. Yamamura, Y. Sano, and Y. Mori, “Removal characteristics of plasma chemical vaporization machining with a pipe electrode for optical fabrication,” Appl. Opt. 49, 4434–4440 (2010).
[CrossRef]

K. Yamamura, Y. Sano, M. Shibahara, K. Yamauchi, H. Mimura, K. Endo, and Y. Mori, “Ultra precision machining utilizing numerically controlled scanning of localized atmospheric pressure plasma,” Jpn. J. Appl. Phys. 45, 8270–8276 (2006).
[CrossRef]

H. Takino, N. Shibata, H. Itoh, T. Kobayashi, K. Nemoto, T. Fujii, N. Goto, K. Yamamura, Y. Sano, and Y. Mori, “Fabrication of small complex-shaped optics by plasma chemical vaporization machining with a microelectrode,” Appl. Opt. 45, 5897–5902 (2006).
[CrossRef]

H. Takino, N. Shibata, H. Itoh, T. Kobayashi, K. Yamamura, Y. Sano, and Y. Mori, “Fabrication of optics by use of plasma chemical vaporization machining with a pipe electrode,” Appl. Opt. 41, 3971–3977 (2002).
[CrossRef]

Y. Mori, K. Yamauchi, K. Yamamura, and Y. Sano, “Development of plasma chemical vaporization machining,” Rev. Sci. Instrum. 71, 4627–4632 (2000).
[CrossRef]

Y. Mori, K. Yamamura, and Y. Sano, “The study of fabrication of the x-ray mirror by numerically controlled plasma chemical vaporization machining: Development of the machine for the X-ray mirror fabrication,” Rev. Sci. Instrum. 71, 4620–4626 (2000).
[CrossRef]

H. Takino, N. Shibata, H. Itoh, T. Kobayashi, H. Tanaka, M. Ebi, K. Yamamura, Y. Sano, and Y. Mori, “Computer numerically controlled plasma chemical vaporization machining with a pipe electrode for optical fabrication,” Appl. Opt. 37, 5198–5210 (1998).
[CrossRef]

Schindler, A.

A. Schindler, G. Boehm, T. Haensel, W. Frank, A. Nickel, B. Rauschenbach, and F. Bigl, “Precison optical asphere fabrication by plasma jet chemical etching (PJCE) and ion beam figuring,” Proc. SPIE 4451, 242–248 (2001).

G. Boehm, W. Frank, A. Schindler, A. Nickel, H. J. Thomas, F. Bigl, and M. Weiser, “Plasma jet chemical etching—a tool for the figuring of optical precision aspheres,” in Proceedings of the Ninth International Conference on Production Engineering (Japan Society for Precision Engineering, 1991), pp. 231–236.

Shibahara, M.

K. Yamamura, Y. Sano, M. Shibahara, K. Yamauchi, H. Mimura, K. Endo, and Y. Mori, “Ultra precision machining utilizing numerically controlled scanning of localized atmospheric pressure plasma,” Jpn. J. Appl. Phys. 45, 8270–8276 (2006).
[CrossRef]

Shibata, N.

Shimada, S.

K. Yamamura, S. Shimada, and Y. Mori, “Damage-free improvement of thickness uniformity of quartz crystal wafer by plasma chemical vaporization machining,” CIRP Ann 57, 567–570 (2008).
[CrossRef]

Shore, P.

D. M. Allen, P. Shore, R. W. Evans, C. Fanara, W. O’Brien, S. Marson, and W. O’Neill, “Ion beam, focused ion beam, and plasma discharge machining,” CIRP Ann. 58, 647–662(2009).
[CrossRef]

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006).
[CrossRef]

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, P. Sommer, and P. Fiske, “A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE optical surfaces,” Proc. SPIE 6273, 62730A (2006).

Sommer, P.

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, P. Sommer, and P. Fiske, “A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE optical surfaces,” Proc. SPIE 6273, 62730A (2006).

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006).
[CrossRef]

Steinberg, G.

D. Bollinger, G. Gallatin, J. Samuels, G. Steinberg, and C. Zarowin, “Rapid, noncontact optical figuring of aspheric surfaces with plasma assisted chemical etching (PACE),” Proc. SPIE 1333, 44–57 (1990).

Sugiyama, Y.

T. Ichiki, Y. Sugiyama, R. Taura, T. Koidesawa, and Y. Horiike, “Plasma applications for biochip technology,” Thin Solid Films 435, 62–68 (2003).
[CrossRef]

Takino, H.

Tanaka, H.

Taura, R.

T. Ichiki, R. Taura, and Y. Horiike, “Localized and ultrahigh-rate etching of silicon wafers using atmospheric-pressure microplasma jets,” J. Appl. Phys. 95, 35–39 (2004).
[CrossRef]

T. Ichiki, Y. Sugiyama, R. Taura, T. Koidesawa, and Y. Horiike, “Plasma applications for biochip technology,” Thin Solid Films 435, 62–68 (2003).
[CrossRef]

Thomas, H. J.

G. Boehm, W. Frank, A. Schindler, A. Nickel, H. J. Thomas, F. Bigl, and M. Weiser, “Plasma jet chemical etching—a tool for the figuring of optical precision aspheres,” in Proceedings of the Ninth International Conference on Production Engineering (Japan Society for Precision Engineering, 1991), pp. 231–236.

Weiser, M.

G. Boehm, W. Frank, A. Schindler, A. Nickel, H. J. Thomas, F. Bigl, and M. Weiser, “Plasma jet chemical etching—a tool for the figuring of optical precision aspheres,” in Proceedings of the Ninth International Conference on Production Engineering (Japan Society for Precision Engineering, 1991), pp. 231–236.

Yamamura, K.

H. Takino, K. Yamamura, Y. Sano, and Y. Mori, “Removal characteristics of plasma chemical vaporization machining with a pipe electrode for optical fabrication,” Appl. Opt. 49, 4434–4440 (2010).
[CrossRef]

K. Yamamura, S. Shimada, and Y. Mori, “Damage-free improvement of thickness uniformity of quartz crystal wafer by plasma chemical vaporization machining,” CIRP Ann 57, 567–570 (2008).
[CrossRef]

H. Takino, N. Shibata, H. Itoh, T. Kobayashi, K. Nemoto, T. Fujii, N. Goto, K. Yamamura, Y. Sano, and Y. Mori, “Fabrication of small complex-shaped optics by plasma chemical vaporization machining with a microelectrode,” Appl. Opt. 45, 5897–5902 (2006).
[CrossRef]

K. Yamamura, Y. Sano, M. Shibahara, K. Yamauchi, H. Mimura, K. Endo, and Y. Mori, “Ultra precision machining utilizing numerically controlled scanning of localized atmospheric pressure plasma,” Jpn. J. Appl. Phys. 45, 8270–8276 (2006).
[CrossRef]

H. Takino, N. Shibata, H. Itoh, T. Kobayashi, K. Yamamura, Y. Sano, and Y. Mori, “Fabrication of optics by use of plasma chemical vaporization machining with a pipe electrode,” Appl. Opt. 41, 3971–3977 (2002).
[CrossRef]

Y. Mori, K. Yamauchi, K. Yamamura, and Y. Sano, “Development of plasma chemical vaporization machining,” Rev. Sci. Instrum. 71, 4627–4632 (2000).
[CrossRef]

Y. Mori, K. Yamamura, and Y. Sano, “The study of fabrication of the x-ray mirror by numerically controlled plasma chemical vaporization machining: Development of the machine for the X-ray mirror fabrication,” Rev. Sci. Instrum. 71, 4620–4626 (2000).
[CrossRef]

H. Takino, N. Shibata, H. Itoh, T. Kobayashi, H. Tanaka, M. Ebi, K. Yamamura, Y. Sano, and Y. Mori, “Computer numerically controlled plasma chemical vaporization machining with a pipe electrode for optical fabrication,” Appl. Opt. 37, 5198–5210 (1998).
[CrossRef]

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth–Heinemann, 1993), pp. 78–87.

Yamauchi, K.

K. Yamamura, Y. Sano, M. Shibahara, K. Yamauchi, H. Mimura, K. Endo, and Y. Mori, “Ultra precision machining utilizing numerically controlled scanning of localized atmospheric pressure plasma,” Jpn. J. Appl. Phys. 45, 8270–8276 (2006).
[CrossRef]

Y. Mori, K. Yamauchi, K. Yamamura, and Y. Sano, “Development of plasma chemical vaporization machining,” Rev. Sci. Instrum. 71, 4627–4632 (2000).
[CrossRef]

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth–Heinemann, 1993), pp. 78–87.

Yoshii, K.

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth–Heinemann, 1993), pp. 78–87.

Zarowin, C.

D. Bollinger, G. Gallatin, J. Samuels, G. Steinberg, and C. Zarowin, “Rapid, noncontact optical figuring of aspheric surfaces with plasma assisted chemical etching (PACE),” Proc. SPIE 1333, 44–57 (1990).

Adv. Eng. Mater. (1)

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (2)

L. Bárdos, S. Berg, and H.-O. Blom, “Superhigh-rate plasma jet etching of silicon,” Appl. Phys. Lett. 55, 1615–1617(1989).
[CrossRef]

H. Koinuma, H. Ohkubo, and T. Hashimoto, “Development and application of a microbeam plasma generator,” Appl. Phys. Lett. 60, 816–817 (1992).
[CrossRef]

CIRP Ann (1)

K. Yamamura, S. Shimada, and Y. Mori, “Damage-free improvement of thickness uniformity of quartz crystal wafer by plasma chemical vaporization machining,” CIRP Ann 57, 567–570 (2008).
[CrossRef]

CIRP Ann. (1)

D. M. Allen, P. Shore, R. W. Evans, C. Fanara, W. O’Brien, S. Marson, and W. O’Neill, “Ion beam, focused ion beam, and plasma discharge machining,” CIRP Ann. 58, 647–662(2009).
[CrossRef]

J. Appl. Phys. (1)

T. Ichiki, R. Taura, and Y. Horiike, “Localized and ultrahigh-rate etching of silicon wafers using atmospheric-pressure microplasma jets,” J. Appl. Phys. 95, 35–39 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Yamamura, Y. Sano, M. Shibahara, K. Yamauchi, H. Mimura, K. Endo, and Y. Mori, “Ultra precision machining utilizing numerically controlled scanning of localized atmospheric pressure plasma,” Jpn. J. Appl. Phys. 45, 8270–8276 (2006).
[CrossRef]

Proc. SPIE (3)

D. Bollinger, G. Gallatin, J. Samuels, G. Steinberg, and C. Zarowin, “Rapid, noncontact optical figuring of aspheric surfaces with plasma assisted chemical etching (PACE),” Proc. SPIE 1333, 44–57 (1990).

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, P. Sommer, and P. Fiske, “A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE optical surfaces,” Proc. SPIE 6273, 62730A (2006).

A. Schindler, G. Boehm, T. Haensel, W. Frank, A. Nickel, B. Rauschenbach, and F. Bigl, “Precison optical asphere fabrication by plasma jet chemical etching (PJCE) and ion beam figuring,” Proc. SPIE 4451, 242–248 (2001).

Rev. Sci. Instrum. (2)

Y. Mori, K. Yamamura, and Y. Sano, “The study of fabrication of the x-ray mirror by numerically controlled plasma chemical vaporization machining: Development of the machine for the X-ray mirror fabrication,” Rev. Sci. Instrum. 71, 4620–4626 (2000).
[CrossRef]

Y. Mori, K. Yamauchi, K. Yamamura, and Y. Sano, “Development of plasma chemical vaporization machining,” Rev. Sci. Instrum. 71, 4627–4632 (2000).
[CrossRef]

Thin Solid Films (1)

T. Ichiki, Y. Sugiyama, R. Taura, T. Koidesawa, and Y. Horiike, “Plasma applications for biochip technology,” Thin Solid Films 435, 62–68 (2003).
[CrossRef]

Other (2)

G. Boehm, W. Frank, A. Schindler, A. Nickel, H. J. Thomas, F. Bigl, and M. Weiser, “Plasma jet chemical etching—a tool for the figuring of optical precision aspheres,” in Proceedings of the Ninth International Conference on Production Engineering (Japan Society for Precision Engineering, 1991), pp. 231–236.

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth–Heinemann, 1993), pp. 78–87.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Schematic of the process using a previous plasma CVM device. A pipe electrode is used. The workpiece and electrode are operated such that the center axis of the electrode is normal to the surface.

Fig. 2.
Fig. 2.

Schematic of the process using a plasma CVM device proposed in the present study. A hemispherical tip electrode is used. The workpiece is moved relative to the stationary electrode so that the curvature center of the hemispherical tip is positioned normal to the workpiece surface at the removal point.

Fig. 3.
Fig. 3.

Schematic of a plasma CVM device with a hemispherical tip electrode.

Fig. 4.
Fig. 4.

Increase in removal depth with increasing process time. Two types of hemispherical tip electrodes with different diameters are used in the experiment.

Fig. 5.
Fig. 5.

Experimental method. Plates on blocks with various slope angles θ are processed with a hemispherical tip electrode.

Fig. 6.
Fig. 6.

Profiles of the removal marks for various slope angles. The origin of the horizontal axis is set at the center axis of the electrode OE.

Fig. 7.
Fig. 7.

Full-width half maximum (FWHM) of the removal marks and removal depth for various slope angles of the workpiece surfaces.

Fig. 8.
Fig. 8.

Schematic of the operation of the electrode and workpiece for the figuring of a curved surface. The removal of errors on area Aij is shown. The workpiece is scanned relative to the electrode so that the plasma moves over the surface with a constant feed pitch and a constant feed rate.

Fig. 9.
Fig. 9.

Initial shape error of the convex surface with a radius of curvature of 10 mm. The rms shape accuracy of this surface was 4.4 nm.

Fig. 10.
Fig. 10.

Shape error of the convex surface after the plasma CVM process with a 0.5 mm diameter electrode. The rms shape error was reduced to 2.9 nm.

Fig. 11.
Fig. 11.

Initial shape error of the concave surface with a radius of curvature of 12 mm. The rms shape accuracy was 7.9 nm.

Fig. 12.
Fig. 12.

Shape error of the concave surface after the plasma CVM process with a 0.5 mm diameter electrode. The rms shape accuracy was reduced to 2.5 nm.

Fig. 13.
Fig. 13.

Roughness profiles of the surface processed by plasma CVM. Roughnesses (a) before and (b) after the process are 0.46 and 0.44 nm rms, respectively. Flat plates were used as specimens. The process was performed under the same conditions as those for the lenses shown in Figs. 912.

Tables (2)

Tables Icon

Table 1. Process Conditions

Tables Icon

Table 2. Process conditions

Metrics