Abstract

We introduce an anamorphic photonic crystal fiber (PCF) produced by postprocessing techniques to improve the coupling loss between a conventional single-mode fiber and rectangular microwaveguide. One end of the round core is connected with the conventional fiber, and the other end of the rectangular core is connected with the rectangular microwaveguide, then the PCF is tapered pro rata. In this way, the loss of mode mismatch between the output of the conventional fiber and the input of the waveguide would be reduced, which results in enhanced coupling efficiency. The conclusion was confirmed by numerical simulation: the new method is better than straight coupling between the optical fiber and the rectangular microwaveguide, and more than 2.8 dB improvement of coupling efficiency is achieved.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [CrossRef]
  2. P. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
    [CrossRef]
  3. T. A. Birks, J. C. Knight, and P. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
    [CrossRef]
  4. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
    [CrossRef]
  5. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
    [CrossRef]
  6. A. Witkowska, K. Lai, S. G. Leon-Saval, W. J. Wadsworth, and T. A. Birks “All-fiber anamorphic core-shape transitions,” Opt. Lett. 31, 2672–2674 (2006).
    [CrossRef]
  7. M. Lehtonen, G. Genty, and H. Ludvigsen, “Tapered microstructured fibers for efficient coupling to optical waveguides: a numerical study,” Appl. Phys. B 81, 295–300 (2005).
    [CrossRef]
  8. D. Tabor, Gases, Liquids and Solids (Penguin, 1969).
  9. W. D. Kingery, “Surface tension of some liquid oxides and their temperature coefficients,” J. Am. Ceramic Soc. 42, 6–10 (1959).
    [CrossRef]
  10. W. Wadsworth, A. Witkowska, S. Leon-Saval, and T. Birks “Hole inflation and tapering of stock photonic crystal fibres,” Opt. Express 13, 6541–6549 (2005).
    [CrossRef]
  11. D. Yevick and B. Hermansson, “Split-step finite difference analysis of rib waveguides,” Electron. Lett. 25, 461–462 (1989).
    [CrossRef]
  12. D. Yevick and B. Hermansson, “New formulations of the matrix beam propagation method: application to rib waveguides,” IEEE J. Quantum Electron. 25, 221–229 (1989).
    [CrossRef]
  13. Z. Chen, J. Hou, and Z. Jiang, “Post-processing techniques of photonics crystal fibers,” Laser Optoelectron. Prog. 47, 020602 (2010).

2010 (1)

Z. Chen, J. Hou, and Z. Jiang, “Post-processing techniques of photonics crystal fibers,” Laser Optoelectron. Prog. 47, 020602 (2010).

2006 (2)

2005 (2)

M. Lehtonen, G. Genty, and H. Ludvigsen, “Tapered microstructured fibers for efficient coupling to optical waveguides: a numerical study,” Appl. Phys. B 81, 295–300 (2005).
[CrossRef]

W. Wadsworth, A. Witkowska, S. Leon-Saval, and T. Birks “Hole inflation and tapering of stock photonic crystal fibres,” Opt. Express 13, 6541–6549 (2005).
[CrossRef]

2003 (1)

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef]

2000 (2)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

1997 (1)

1989 (2)

D. Yevick and B. Hermansson, “Split-step finite difference analysis of rib waveguides,” Electron. Lett. 25, 461–462 (1989).
[CrossRef]

D. Yevick and B. Hermansson, “New formulations of the matrix beam propagation method: application to rib waveguides,” IEEE J. Quantum Electron. 25, 221–229 (1989).
[CrossRef]

1959 (1)

W. D. Kingery, “Surface tension of some liquid oxides and their temperature coefficients,” J. Am. Ceramic Soc. 42, 6–10 (1959).
[CrossRef]

Arriaga, J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

Birks, T.

Birks, T. A.

Chen, Z.

Z. Chen, J. Hou, and Z. Jiang, “Post-processing techniques of photonics crystal fibers,” Laser Optoelectron. Prog. 47, 020602 (2010).

Genty, G.

M. Lehtonen, G. Genty, and H. Ludvigsen, “Tapered microstructured fibers for efficient coupling to optical waveguides: a numerical study,” Appl. Phys. B 81, 295–300 (2005).
[CrossRef]

Hermansson, B.

D. Yevick and B. Hermansson, “Split-step finite difference analysis of rib waveguides,” Electron. Lett. 25, 461–462 (1989).
[CrossRef]

D. Yevick and B. Hermansson, “New formulations of the matrix beam propagation method: application to rib waveguides,” IEEE J. Quantum Electron. 25, 221–229 (1989).
[CrossRef]

Hou, J.

Z. Chen, J. Hou, and Z. Jiang, “Post-processing techniques of photonics crystal fibers,” Laser Optoelectron. Prog. 47, 020602 (2010).

Jiang, Z.

Z. Chen, J. Hou, and Z. Jiang, “Post-processing techniques of photonics crystal fibers,” Laser Optoelectron. Prog. 47, 020602 (2010).

Kingery, W. D.

W. D. Kingery, “Surface tension of some liquid oxides and their temperature coefficients,” J. Am. Ceramic Soc. 42, 6–10 (1959).
[CrossRef]

Knight, J. C.

Lai, K.

Lehtonen, M.

M. Lehtonen, G. Genty, and H. Ludvigsen, “Tapered microstructured fibers for efficient coupling to optical waveguides: a numerical study,” Appl. Phys. B 81, 295–300 (2005).
[CrossRef]

Leon-Saval, S.

Leon-Saval, S. G.

Ludvigsen, H.

M. Lehtonen, G. Genty, and H. Ludvigsen, “Tapered microstructured fibers for efficient coupling to optical waveguides: a numerical study,” Appl. Phys. B 81, 295–300 (2005).
[CrossRef]

Mangan, B. J.

Ortigosa-Blanch, A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

Russell, P.

St. J. Russell, P.

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Tabor, D.

D. Tabor, Gases, Liquids and Solids (Penguin, 1969).

Wadsworth, W.

Wadsworth, W. J.

Witkowska, A.

Yevick, D.

D. Yevick and B. Hermansson, “Split-step finite difference analysis of rib waveguides,” Electron. Lett. 25, 461–462 (1989).
[CrossRef]

D. Yevick and B. Hermansson, “New formulations of the matrix beam propagation method: application to rib waveguides,” IEEE J. Quantum Electron. 25, 221–229 (1989).
[CrossRef]

Appl. Phys. B (1)

M. Lehtonen, G. Genty, and H. Ludvigsen, “Tapered microstructured fibers for efficient coupling to optical waveguides: a numerical study,” Appl. Phys. B 81, 295–300 (2005).
[CrossRef]

Electron. Lett. (1)

D. Yevick and B. Hermansson, “Split-step finite difference analysis of rib waveguides,” Electron. Lett. 25, 461–462 (1989).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Yevick and B. Hermansson, “New formulations of the matrix beam propagation method: application to rib waveguides,” IEEE J. Quantum Electron. 25, 221–229 (1989).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

J. Am. Ceramic Soc. (1)

W. D. Kingery, “Surface tension of some liquid oxides and their temperature coefficients,” J. Am. Ceramic Soc. 42, 6–10 (1959).
[CrossRef]

J. Lightwave Technol. (1)

Laser Optoelectron. Prog. (1)

Z. Chen, J. Hou, and Z. Jiang, “Post-processing techniques of photonics crystal fibers,” Laser Optoelectron. Prog. 47, 020602 (2010).

Opt. Express (1)

Opt. Lett. (3)

Science (1)

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef]

Other (1)

D. Tabor, Gases, Liquids and Solids (Penguin, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Process of anamorphic core and diagram of the axial sections.

Fig. 2.
Fig. 2.

Connection scheme of conventional SMF and rectangular waveguide.

Fig. 3.
Fig. 3.

Light spot in the various parts of anamorphic PCF at (a) incident, (b) middle, (c) exit end, and (d) the incident of rectangular waveguide.

Fig. 4.
Fig. 4.

Loss situation of two coupled models: (a) fiber coupling by using anamorphic photonic crystal (b) straight coupling.

Fig. 5.
Fig. 5.

(a) End faces of the PCF with four holes sealed, (b) end face of the PCF with an anamorphic core shape, (c) end face of the tapered PCF with an anamorphic core shape, and (d) light spot shape at the rectangular core of the anamorphic PCF.

Tables (1)

Tables Icon

Table 1. Coupling Loss between Conventional SMF and a Rectangular Waveguide with or without Anamorphic PCF

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Pst=6/d,
α=20lg(2ωPCFωSMFωPCF2+ωSMF2).

Metrics