Abstract

Important nuances of a process or processes in action can be obtained from the phase retrieval of diffraction patterns for analysis of transient events. A significant limitation associated with the iterative approach is that predictive input functions are needed and can result in situations of nonconvergence. In dealing with a transient event recorded as a series of Fourier magnitude patterns, such a hit-and-miss characteristic, on the surface, appears computationally daunting. We report and demonstrate a strategy here that effectively minimizes this by using a prior retrieved frame as the predictive function for the current retrieval process.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase retrieval with transverse translation diversity: a nonlinear optimization approach

Manuel Guizar-Sicairos and James R. Fienup
Opt. Express 16(10) 7264-7278 (2008)

Phase and amplitude retrieval of objects embedded in a sinusoidal background from its diffraction pattern

Chu Wu, Tuck Wah Ng, and Adrian Neild
Appl. Opt. 49(10) 1831-1837 (2010)

Blind deconvolution of speckle images

R. G. Lane
J. Opt. Soc. Am. A 9(9) 1508-1514 (1992)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (1)

» Media 1: MPG (2544 KB)     

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription