Abstract

Colloidal particles in a liquid medium are transported with constant velocity, and dynamic light scattering experiments are performed on the samples by self-mixing laser Doppler velocimetry. The power spectrum of the modulated wave induced by the motion of the colloidal particles cannot be described by the well-known formula for flowing Brownian motion systems, i.e., a combination of Doppler shift, diffusion, and translation. Rather, the power spectrum was found to be described by the q-Gaussian distribution function. The molecular mechanism resulting in this anomalous line shape of the power spectrum is attributed to the anomalous molecular dynamics of colloidal particles in transported dilute samples, which satisfy a nonlinear Langevin equation.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription