Abstract

In this paper, we report the basic theory and method of single exposure interference lithography (IL) to fabricate two-dimensional (2D) superposed microstructures. Distribution of six-beam interference intensities with different azimuth angle is discussed, and 2D superposed microstructures with different periodic constants are obtained by computer simulations. The experiment results using CHP-C positive photoresist show a 2D superposed photonic crystal composed of a periodically repeated hexagonal pattern of hexagonal lattice cells, which is in close agreement with the computer simulation. Fabrication of a superposed structure by single exposure IL paves the way for studying 2D photonic crystal fabrication, surface lasing, optical waveguides, and so on.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef]
  3. A. Sharkawy, S. Y. Shi, and D. W. Prather, “Heterostructure photonic crystals: theory and applications,” Appl. Opt. 41, 7245–7253 (2002).
    [CrossRef]
  4. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, J. A. Ozin, O. Toader, and H. M. Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
    [CrossRef]
  5. S. Kedia, R. Vijaya, A. K. Ray, and S. Sinha, “Emission studies in double-layered and triple-layered photonic crystal microcavities,” Appl. Opt. 50, E86–E91 (2011).
    [CrossRef]
  6. L. Ferrier, O. E. Daif, X. Letartre, P. R. Romeo, C. Seassal, R. Mazurczyk, and P. Viktorovitch, “Surface emitting microlaser based on 2D photonic crystal rod lattices,” Opt. Express 17, 9780–9788 (2009).
    [CrossRef]
  7. H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nature 2, 622–626 (2008).
    [CrossRef]
  8. Y. D. Wu, M. L. Huang, and T. T. Shih, “Optical interleavers based on two-dimensional photonic crystals,” Appl. Opt. 46, 7212–7217 (2007).
    [CrossRef]
  9. E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93, 111112 (2008).
    [CrossRef]
  10. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. V. Freymann, S. Linden, and M. Wegner, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).
    [CrossRef]
  11. M. D. Vittorio, M. T. Todaroa, T. Stomeo, R. Cingolani, D. Cojoc, and E. D. Fabrizio, “Two-dimensional photonic crystal waveguide obtained by e-beam direct writing of SU8-2000 photoresist,” Microelectron. Eng. 73–74, 388–391 (2004).
    [CrossRef]
  12. A. Birner, U. Grüning, S. Ottow, A. Schneider, F. Müller, V. Lehmann, H. Föll, and U. Gösele, “Macroporous silicon: a two-dimensional photonic bandgap material suitable for the near-infrared spectral range,” Phys. Stat. Solidi A 165, 111–117 (1998).
    [CrossRef]
  13. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfeld, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
    [CrossRef]
  14. X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212 (2003).
    [CrossRef]
  15. Y. Liu, S. Liu, and X. S. Zhang, “Fabrication of three-dimensional photonic crystals with two-beam holographic lithography,” Appl. Opt. 45, 480–483 (2006).
    [CrossRef]
  16. Y. K. Lin, D. Rivera, Z. Poole, and K. P. Chen, “Five-beam interference pattern controlled through phases and wave vectors for diamondlike photonic crystals,” Appl. Opt. 45, 7971–7976 (2006).
    [CrossRef]
  17. X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystal,” Adv. Mater. 15, 1526–1528 (2003).
    [CrossRef]
  18. X. Wang, J. Xu, J. C. W. Lee, E. K. Pang, and W. Y. Tam, “Realization of optical periodic quasicrystals using holographic lithography,” Appl. Phys. Lett. 88, 051901 (2006).
    [CrossRef]
  19. W. D. Mao, J. W. Dong, Y. C. Zhong, G. Q. Liang, and H. Z. Wang, “Formation principles of two-dimensional compound photonic lattices by one-step holographic lithography,” Opt. Express 13, 2994–2999 (2005) .
    [CrossRef]
  20. G. Q. Liang, W. D. Mao, Y. Y. Pu, H. Zou, and H. Z. Wang, “Fabrication of two-dimensional coupled photonic crystal resonator arrays by holographic lithography,” Appl. Phys. Lett. 89, 041902 (2006).
    [CrossRef]
  21. H. Altug and J. Vučkovič, “Two-dimensional coupled photonic crystal resonator arrays,” Appl. Phys. Lett. 84, 161–163 (2004).
    [CrossRef]
  22. H. Altug and J. Vučkovič, “Polarization control and sensing with two-dimensional coupled photonic crystal microcavity arrays,” Opt. Lett. 30, 982–984 (2005).
    [CrossRef]
  23. T. D. Happ, M. Kamp, A. Forchel, J.-L. Gentner, and L. Goldstein, “Two-dimensional photonic crystal coupled-defect laser diode,” Appl. Phys. Lett. 82, 4–6 (2003).
    [CrossRef]
  24. H. Altug and J. Vučkovič, “Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,” Appl. Phys. Lett. 86, 111102 (2005).
    [CrossRef]
  25. H. H. Solak, “Space-invariant multiple-beam achromatic EUV interference lithography,” Microelectron. Eng. 78–79, 410–416 (2005).
    [CrossRef]
  26. N. D. Lai, J. H. Lin, and C. C. Hsu, “Fabrication of highly rotational symmetric superposed structures by multiexposure of a three-beam interference technique,” Appl. Opt. 46, 5645–5648 (2007).
    [CrossRef]
  27. W. Y. Tam, “Icosahedral quasicrystals by optical interference holography,” Appl. Phys. Lett. 89, 251111 (2006).
    [CrossRef]
  28. A. Jimenez-Ceniceros, M. Trejo-Duran, E. Alvarado-Mendez, and V. M. Castano, “Extinction zones and scalability in N-beam interference lattices,” Opt. Commun. 283, 362–367 (2010).
    [CrossRef]
  29. L. J. Wu, Y. C. Zhong, K. S. Wong, G. P. Wang, and L. Yuan, “Fabrication of hetero-binary and honeycomb photonic crystals by one-step holographic lithography,” Appl. Phys. Lett. 88, 09115 (2006).
    [CrossRef]

2011 (1)

2010 (1)

A. Jimenez-Ceniceros, M. Trejo-Duran, E. Alvarado-Mendez, and V. M. Castano, “Extinction zones and scalability in N-beam interference lattices,” Opt. Commun. 283, 362–367 (2010).
[CrossRef]

2009 (1)

2008 (3)

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nature 2, 622–626 (2008).
[CrossRef]

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93, 111112 (2008).
[CrossRef]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. V. Freymann, S. Linden, and M. Wegner, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).
[CrossRef]

2007 (2)

2006 (6)

W. Y. Tam, “Icosahedral quasicrystals by optical interference holography,” Appl. Phys. Lett. 89, 251111 (2006).
[CrossRef]

L. J. Wu, Y. C. Zhong, K. S. Wong, G. P. Wang, and L. Yuan, “Fabrication of hetero-binary and honeycomb photonic crystals by one-step holographic lithography,” Appl. Phys. Lett. 88, 09115 (2006).
[CrossRef]

X. Wang, J. Xu, J. C. W. Lee, E. K. Pang, and W. Y. Tam, “Realization of optical periodic quasicrystals using holographic lithography,” Appl. Phys. Lett. 88, 051901 (2006).
[CrossRef]

G. Q. Liang, W. D. Mao, Y. Y. Pu, H. Zou, and H. Z. Wang, “Fabrication of two-dimensional coupled photonic crystal resonator arrays by holographic lithography,” Appl. Phys. Lett. 89, 041902 (2006).
[CrossRef]

Y. Liu, S. Liu, and X. S. Zhang, “Fabrication of three-dimensional photonic crystals with two-beam holographic lithography,” Appl. Opt. 45, 480–483 (2006).
[CrossRef]

Y. K. Lin, D. Rivera, Z. Poole, and K. P. Chen, “Five-beam interference pattern controlled through phases and wave vectors for diamondlike photonic crystals,” Appl. Opt. 45, 7971–7976 (2006).
[CrossRef]

2005 (4)

W. D. Mao, J. W. Dong, Y. C. Zhong, G. Q. Liang, and H. Z. Wang, “Formation principles of two-dimensional compound photonic lattices by one-step holographic lithography,” Opt. Express 13, 2994–2999 (2005) .
[CrossRef]

H. Altug and J. Vučkovič, “Polarization control and sensing with two-dimensional coupled photonic crystal microcavity arrays,” Opt. Lett. 30, 982–984 (2005).
[CrossRef]

H. Altug and J. Vučkovič, “Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,” Appl. Phys. Lett. 86, 111102 (2005).
[CrossRef]

H. H. Solak, “Space-invariant multiple-beam achromatic EUV interference lithography,” Microelectron. Eng. 78–79, 410–416 (2005).
[CrossRef]

2004 (2)

H. Altug and J. Vučkovič, “Two-dimensional coupled photonic crystal resonator arrays,” Appl. Phys. Lett. 84, 161–163 (2004).
[CrossRef]

M. D. Vittorio, M. T. Todaroa, T. Stomeo, R. Cingolani, D. Cojoc, and E. D. Fabrizio, “Two-dimensional photonic crystal waveguide obtained by e-beam direct writing of SU8-2000 photoresist,” Microelectron. Eng. 73–74, 388–391 (2004).
[CrossRef]

2003 (3)

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystal,” Adv. Mater. 15, 1526–1528 (2003).
[CrossRef]

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212 (2003).
[CrossRef]

T. D. Happ, M. Kamp, A. Forchel, J.-L. Gentner, and L. Goldstein, “Two-dimensional photonic crystal coupled-defect laser diode,” Appl. Phys. Lett. 82, 4–6 (2003).
[CrossRef]

2002 (1)

2000 (2)

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, J. A. Ozin, O. Toader, and H. M. Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[CrossRef]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfeld, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef]

1998 (1)

A. Birner, U. Grüning, S. Ottow, A. Schneider, F. Müller, V. Lehmann, H. Föll, and U. Gösele, “Macroporous silicon: a two-dimensional photonic bandgap material suitable for the near-infrared spectral range,” Phys. Stat. Solidi A 165, 111–117 (1998).
[CrossRef]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

Altug, H.

H. Altug and J. Vučkovič, “Polarization control and sensing with two-dimensional coupled photonic crystal microcavity arrays,” Opt. Lett. 30, 982–984 (2005).
[CrossRef]

H. Altug and J. Vučkovič, “Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,” Appl. Phys. Lett. 86, 111102 (2005).
[CrossRef]

H. Altug and J. Vučkovič, “Two-dimensional coupled photonic crystal resonator arrays,” Appl. Phys. Lett. 84, 161–163 (2004).
[CrossRef]

Alvarado-Mendez, E.

A. Jimenez-Ceniceros, M. Trejo-Duran, E. Alvarado-Mendez, and V. M. Castano, “Extinction zones and scalability in N-beam interference lattices,” Opt. Commun. 283, 362–367 (2010).
[CrossRef]

Barrelet, C. J.

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nature 2, 622–626 (2008).
[CrossRef]

Birner, A.

A. Birner, U. Grüning, S. Ottow, A. Schneider, F. Müller, V. Lehmann, H. Föll, and U. Gösele, “Macroporous silicon: a two-dimensional photonic bandgap material suitable for the near-infrared spectral range,” Phys. Stat. Solidi A 165, 111–117 (1998).
[CrossRef]

Blanco, A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, J. A. Ozin, O. Toader, and H. M. Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[CrossRef]

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfeld, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef]

Castano, V. M.

A. Jimenez-Ceniceros, M. Trejo-Duran, E. Alvarado-Mendez, and V. M. Castano, “Extinction zones and scalability in N-beam interference lattices,” Opt. Commun. 283, 362–367 (2010).
[CrossRef]

Chan, C. T.

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystal,” Adv. Mater. 15, 1526–1528 (2003).
[CrossRef]

Chen, K. P.

Chen, Y. L.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212 (2003).
[CrossRef]

Chomski, E.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, J. A. Ozin, O. Toader, and H. M. Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[CrossRef]

Cingolani, R.

M. D. Vittorio, M. T. Todaroa, T. Stomeo, R. Cingolani, D. Cojoc, and E. D. Fabrizio, “Two-dimensional photonic crystal waveguide obtained by e-beam direct writing of SU8-2000 photoresist,” Microelectron. Eng. 73–74, 388–391 (2004).
[CrossRef]

Cojoc, D.

M. D. Vittorio, M. T. Todaroa, T. Stomeo, R. Cingolani, D. Cojoc, and E. D. Fabrizio, “Two-dimensional photonic crystal waveguide obtained by e-beam direct writing of SU8-2000 photoresist,” Microelectron. Eng. 73–74, 388–391 (2004).
[CrossRef]

Daif, O. E.

Denning, R. G.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfeld, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef]

Dong, J. W.

Driel, H. M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, J. A. Ozin, O. Toader, and H. M. Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[CrossRef]

Fabrizio, E. D.

M. D. Vittorio, M. T. Todaroa, T. Stomeo, R. Cingolani, D. Cojoc, and E. D. Fabrizio, “Two-dimensional photonic crystal waveguide obtained by e-beam direct writing of SU8-2000 photoresist,” Microelectron. Eng. 73–74, 388–391 (2004).
[CrossRef]

Ferrier, L.

Föll, H.

A. Birner, U. Grüning, S. Ottow, A. Schneider, F. Müller, V. Lehmann, H. Föll, and U. Gösele, “Macroporous silicon: a two-dimensional photonic bandgap material suitable for the near-infrared spectral range,” Phys. Stat. Solidi A 165, 111–117 (1998).
[CrossRef]

Forchel, A.

T. D. Happ, M. Kamp, A. Forchel, J.-L. Gentner, and L. Goldstein, “Two-dimensional photonic crystal coupled-defect laser diode,” Appl. Phys. Lett. 82, 4–6 (2003).
[CrossRef]

Freymann, G. V.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. V. Freymann, S. Linden, and M. Wegner, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).
[CrossRef]

Gentner, J.-L.

T. D. Happ, M. Kamp, A. Forchel, J.-L. Gentner, and L. Goldstein, “Two-dimensional photonic crystal coupled-defect laser diode,” Appl. Phys. Lett. 82, 4–6 (2003).
[CrossRef]

Goldstein, L.

T. D. Happ, M. Kamp, A. Forchel, J.-L. Gentner, and L. Goldstein, “Two-dimensional photonic crystal coupled-defect laser diode,” Appl. Phys. Lett. 82, 4–6 (2003).
[CrossRef]

Gösele, U.

A. Birner, U. Grüning, S. Ottow, A. Schneider, F. Müller, V. Lehmann, H. Föll, and U. Gösele, “Macroporous silicon: a two-dimensional photonic bandgap material suitable for the near-infrared spectral range,” Phys. Stat. Solidi A 165, 111–117 (1998).
[CrossRef]

Grabtchak, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, J. A. Ozin, O. Toader, and H. M. Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[CrossRef]

Grüning, U.

A. Birner, U. Grüning, S. Ottow, A. Schneider, F. Müller, V. Lehmann, H. Föll, and U. Gösele, “Macroporous silicon: a two-dimensional photonic bandgap material suitable for the near-infrared spectral range,” Phys. Stat. Solidi A 165, 111–117 (1998).
[CrossRef]

Happ, T. D.

T. D. Happ, M. Kamp, A. Forchel, J.-L. Gentner, and L. Goldstein, “Two-dimensional photonic crystal coupled-defect laser diode,” Appl. Phys. Lett. 82, 4–6 (2003).
[CrossRef]

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfeld, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef]

Hsu, C. C.

Huang, M. L.

Ibisate, M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, J. A. Ozin, O. Toader, and H. M. Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[CrossRef]

Jimenez-Ceniceros, A.

A. Jimenez-Ceniceros, M. Trejo-Duran, E. Alvarado-Mendez, and V. M. Castano, “Extinction zones and scalability in N-beam interference lattices,” Opt. Commun. 283, 362–367 (2010).
[CrossRef]

John, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, J. A. Ozin, O. Toader, and H. M. Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

Kamp, M.

T. D. Happ, M. Kamp, A. Forchel, J.-L. Gentner, and L. Goldstein, “Two-dimensional photonic crystal coupled-defect laser diode,” Appl. Phys. Lett. 82, 4–6 (2003).
[CrossRef]

Kedia, S.

Kuramochi, E.

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93, 111112 (2008).
[CrossRef]

Lai, N. D.

Lee, J. C. W.

X. Wang, J. Xu, J. C. W. Lee, E. K. Pang, and W. Y. Tam, “Realization of optical periodic quasicrystals using holographic lithography,” Appl. Phys. Lett. 88, 051901 (2006).
[CrossRef]

Lehmann, V.

A. Birner, U. Grüning, S. Ottow, A. Schneider, F. Müller, V. Lehmann, H. Föll, and U. Gösele, “Macroporous silicon: a two-dimensional photonic bandgap material suitable for the near-infrared spectral range,” Phys. Stat. Solidi A 165, 111–117 (1998).
[CrossRef]

Leonard, S. W.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, J. A. Ozin, O. Toader, and H. M. Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[CrossRef]

Letartre, X.

Liang, G. Q.

G. Q. Liang, W. D. Mao, Y. Y. Pu, H. Zou, and H. Z. Wang, “Fabrication of two-dimensional coupled photonic crystal resonator arrays by holographic lithography,” Appl. Phys. Lett. 89, 041902 (2006).
[CrossRef]

W. D. Mao, J. W. Dong, Y. C. Zhong, G. Q. Liang, and H. Z. Wang, “Formation principles of two-dimensional compound photonic lattices by one-step holographic lithography,” Opt. Express 13, 2994–2999 (2005) .
[CrossRef]

Lieber, C. M.

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nature 2, 622–626 (2008).
[CrossRef]

Lin, J. H.

Lin, Y. K.

Linden, S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. V. Freymann, S. Linden, and M. Wegner, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).
[CrossRef]

Liu, S.

Liu, Y.

Lopez, C.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, J. A. Ozin, O. Toader, and H. M. Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[CrossRef]

Mao, W. D.

G. Q. Liang, W. D. Mao, Y. Y. Pu, H. Zou, and H. Z. Wang, “Fabrication of two-dimensional coupled photonic crystal resonator arrays by holographic lithography,” Appl. Phys. Lett. 89, 041902 (2006).
[CrossRef]

W. D. Mao, J. W. Dong, Y. C. Zhong, G. Q. Liang, and H. Z. Wang, “Formation principles of two-dimensional compound photonic lattices by one-step holographic lithography,” Opt. Express 13, 2994–2999 (2005) .
[CrossRef]

Mazurczyk, R.

Meseguer, F.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, J. A. Ozin, O. Toader, and H. M. Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[CrossRef]

Miguez, H.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, J. A. Ozin, O. Toader, and H. M. Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[CrossRef]

Mondia, J. P.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, J. A. Ozin, O. Toader, and H. M. Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[CrossRef]

Müller, F.

A. Birner, U. Grüning, S. Ottow, A. Schneider, F. Müller, V. Lehmann, H. Föll, and U. Gösele, “Macroporous silicon: a two-dimensional photonic bandgap material suitable for the near-infrared spectral range,” Phys. Stat. Solidi A 165, 111–117 (1998).
[CrossRef]

Ng, C. Y.

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystal,” Adv. Mater. 15, 1526–1528 (2003).
[CrossRef]

Notomi, M.

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93, 111112 (2008).
[CrossRef]

Ottow, S.

A. Birner, U. Grüning, S. Ottow, A. Schneider, F. Müller, V. Lehmann, H. Föll, and U. Gösele, “Macroporous silicon: a two-dimensional photonic bandgap material suitable for the near-infrared spectral range,” Phys. Stat. Solidi A 165, 111–117 (1998).
[CrossRef]

Ozin, J. A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, J. A. Ozin, O. Toader, and H. M. Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[CrossRef]

Pang, E. K.

X. Wang, J. Xu, J. C. W. Lee, E. K. Pang, and W. Y. Tam, “Realization of optical periodic quasicrystals using holographic lithography,” Appl. Phys. Lett. 88, 051901 (2006).
[CrossRef]

Pang, Y. K.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212 (2003).
[CrossRef]

Park, H.-G.

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nature 2, 622–626 (2008).
[CrossRef]

Plet, C.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. V. Freymann, S. Linden, and M. Wegner, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).
[CrossRef]

Poole, Z.

Prather, D. W.

Pu, Y. Y.

G. Q. Liang, W. D. Mao, Y. Y. Pu, H. Zou, and H. Z. Wang, “Fabrication of two-dimensional coupled photonic crystal resonator arrays by holographic lithography,” Appl. Phys. Lett. 89, 041902 (2006).
[CrossRef]

Qian, F.

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nature 2, 622–626 (2008).
[CrossRef]

Ray, A. K.

Rill, M. S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. V. Freymann, S. Linden, and M. Wegner, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).
[CrossRef]

Rivera, D.

Romeo, P. R.

Schneider, A.

A. Birner, U. Grüning, S. Ottow, A. Schneider, F. Müller, V. Lehmann, H. Föll, and U. Gösele, “Macroporous silicon: a two-dimensional photonic bandgap material suitable for the near-infrared spectral range,” Phys. Stat. Solidi A 165, 111–117 (1998).
[CrossRef]

Seassal, C.

Sharkawy, A.

Sharp, D. N.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfeld, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef]

Sheng, P.

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystal,” Adv. Mater. 15, 1526–1528 (2003).
[CrossRef]

Shi, S. Y.

Shih, T. T.

Shinya, A.

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93, 111112 (2008).
[CrossRef]

Sinha, S.

Solak, H. H.

H. H. Solak, “Space-invariant multiple-beam achromatic EUV interference lithography,” Microelectron. Eng. 78–79, 410–416 (2005).
[CrossRef]

Staude, I.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. V. Freymann, S. Linden, and M. Wegner, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).
[CrossRef]

Stomeo, T.

M. D. Vittorio, M. T. Todaroa, T. Stomeo, R. Cingolani, D. Cojoc, and E. D. Fabrizio, “Two-dimensional photonic crystal waveguide obtained by e-beam direct writing of SU8-2000 photoresist,” Microelectron. Eng. 73–74, 388–391 (2004).
[CrossRef]

Su, H. M.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212 (2003).
[CrossRef]

Tam, W. Y.

W. Y. Tam, “Icosahedral quasicrystals by optical interference holography,” Appl. Phys. Lett. 89, 251111 (2006).
[CrossRef]

X. Wang, J. Xu, J. C. W. Lee, E. K. Pang, and W. Y. Tam, “Realization of optical periodic quasicrystals using holographic lithography,” Appl. Phys. Lett. 88, 051901 (2006).
[CrossRef]

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystal,” Adv. Mater. 15, 1526–1528 (2003).
[CrossRef]

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212 (2003).
[CrossRef]

Tanabe, T.

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93, 111112 (2008).
[CrossRef]

Taniyama, H.

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93, 111112 (2008).
[CrossRef]

Thiel, M.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. V. Freymann, S. Linden, and M. Wegner, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).
[CrossRef]

Tian, B.

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nature 2, 622–626 (2008).
[CrossRef]

Toader, O.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, J. A. Ozin, O. Toader, and H. M. Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[CrossRef]

Todaroa, M. T.

M. D. Vittorio, M. T. Todaroa, T. Stomeo, R. Cingolani, D. Cojoc, and E. D. Fabrizio, “Two-dimensional photonic crystal waveguide obtained by e-beam direct writing of SU8-2000 photoresist,” Microelectron. Eng. 73–74, 388–391 (2004).
[CrossRef]

Trejo-Duran, M.

A. Jimenez-Ceniceros, M. Trejo-Duran, E. Alvarado-Mendez, and V. M. Castano, “Extinction zones and scalability in N-beam interference lattices,” Opt. Commun. 283, 362–367 (2010).
[CrossRef]

Turberfeld, A. J.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfeld, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef]

Vijaya, R.

Viktorovitch, P.

Vittorio, M. D.

M. D. Vittorio, M. T. Todaroa, T. Stomeo, R. Cingolani, D. Cojoc, and E. D. Fabrizio, “Two-dimensional photonic crystal waveguide obtained by e-beam direct writing of SU8-2000 photoresist,” Microelectron. Eng. 73–74, 388–391 (2004).
[CrossRef]

Vuckovic, J.

H. Altug and J. Vučkovič, “Polarization control and sensing with two-dimensional coupled photonic crystal microcavity arrays,” Opt. Lett. 30, 982–984 (2005).
[CrossRef]

H. Altug and J. Vučkovič, “Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,” Appl. Phys. Lett. 86, 111102 (2005).
[CrossRef]

H. Altug and J. Vučkovič, “Two-dimensional coupled photonic crystal resonator arrays,” Appl. Phys. Lett. 84, 161–163 (2004).
[CrossRef]

Wang, G. P.

L. J. Wu, Y. C. Zhong, K. S. Wong, G. P. Wang, and L. Yuan, “Fabrication of hetero-binary and honeycomb photonic crystals by one-step holographic lithography,” Appl. Phys. Lett. 88, 09115 (2006).
[CrossRef]

Wang, H. Z.

G. Q. Liang, W. D. Mao, Y. Y. Pu, H. Zou, and H. Z. Wang, “Fabrication of two-dimensional coupled photonic crystal resonator arrays by holographic lithography,” Appl. Phys. Lett. 89, 041902 (2006).
[CrossRef]

W. D. Mao, J. W. Dong, Y. C. Zhong, G. Q. Liang, and H. Z. Wang, “Formation principles of two-dimensional compound photonic lattices by one-step holographic lithography,” Opt. Express 13, 2994–2999 (2005) .
[CrossRef]

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212 (2003).
[CrossRef]

Wang, X.

X. Wang, J. Xu, J. C. W. Lee, E. K. Pang, and W. Y. Tam, “Realization of optical periodic quasicrystals using holographic lithography,” Appl. Phys. Lett. 88, 051901 (2006).
[CrossRef]

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystal,” Adv. Mater. 15, 1526–1528 (2003).
[CrossRef]

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212 (2003).
[CrossRef]

Wegner, M.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. V. Freymann, S. Linden, and M. Wegner, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).
[CrossRef]

Wong, K. S.

L. J. Wu, Y. C. Zhong, K. S. Wong, G. P. Wang, and L. Yuan, “Fabrication of hetero-binary and honeycomb photonic crystals by one-step holographic lithography,” Appl. Phys. Lett. 88, 09115 (2006).
[CrossRef]

Wu, L. J.

L. J. Wu, Y. C. Zhong, K. S. Wong, G. P. Wang, and L. Yuan, “Fabrication of hetero-binary and honeycomb photonic crystals by one-step holographic lithography,” Appl. Phys. Lett. 88, 09115 (2006).
[CrossRef]

Wu, Y.

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nature 2, 622–626 (2008).
[CrossRef]

Wu, Y. D.

Xu, J.

X. Wang, J. Xu, J. C. W. Lee, E. K. Pang, and W. Y. Tam, “Realization of optical periodic quasicrystals using holographic lithography,” Appl. Phys. Lett. 88, 051901 (2006).
[CrossRef]

Xu, J. F.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212 (2003).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

Yuan, L.

L. J. Wu, Y. C. Zhong, K. S. Wong, G. P. Wang, and L. Yuan, “Fabrication of hetero-binary and honeycomb photonic crystals by one-step holographic lithography,” Appl. Phys. Lett. 88, 09115 (2006).
[CrossRef]

Zeng, Z. H.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212 (2003).
[CrossRef]

Zhang, X. S.

Zhong, Y. C.

L. J. Wu, Y. C. Zhong, K. S. Wong, G. P. Wang, and L. Yuan, “Fabrication of hetero-binary and honeycomb photonic crystals by one-step holographic lithography,” Appl. Phys. Lett. 88, 09115 (2006).
[CrossRef]

W. D. Mao, J. W. Dong, Y. C. Zhong, G. Q. Liang, and H. Z. Wang, “Formation principles of two-dimensional compound photonic lattices by one-step holographic lithography,” Opt. Express 13, 2994–2999 (2005) .
[CrossRef]

Zou, H.

G. Q. Liang, W. D. Mao, Y. Y. Pu, H. Zou, and H. Z. Wang, “Fabrication of two-dimensional coupled photonic crystal resonator arrays by holographic lithography,” Appl. Phys. Lett. 89, 041902 (2006).
[CrossRef]

Adv. Mater. (1)

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystal,” Adv. Mater. 15, 1526–1528 (2003).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (9)

W. Y. Tam, “Icosahedral quasicrystals by optical interference holography,” Appl. Phys. Lett. 89, 251111 (2006).
[CrossRef]

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212 (2003).
[CrossRef]

L. J. Wu, Y. C. Zhong, K. S. Wong, G. P. Wang, and L. Yuan, “Fabrication of hetero-binary and honeycomb photonic crystals by one-step holographic lithography,” Appl. Phys. Lett. 88, 09115 (2006).
[CrossRef]

G. Q. Liang, W. D. Mao, Y. Y. Pu, H. Zou, and H. Z. Wang, “Fabrication of two-dimensional coupled photonic crystal resonator arrays by holographic lithography,” Appl. Phys. Lett. 89, 041902 (2006).
[CrossRef]

H. Altug and J. Vučkovič, “Two-dimensional coupled photonic crystal resonator arrays,” Appl. Phys. Lett. 84, 161–163 (2004).
[CrossRef]

T. D. Happ, M. Kamp, A. Forchel, J.-L. Gentner, and L. Goldstein, “Two-dimensional photonic crystal coupled-defect laser diode,” Appl. Phys. Lett. 82, 4–6 (2003).
[CrossRef]

H. Altug and J. Vučkovič, “Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,” Appl. Phys. Lett. 86, 111102 (2005).
[CrossRef]

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93, 111112 (2008).
[CrossRef]

X. Wang, J. Xu, J. C. W. Lee, E. K. Pang, and W. Y. Tam, “Realization of optical periodic quasicrystals using holographic lithography,” Appl. Phys. Lett. 88, 051901 (2006).
[CrossRef]

Microelectron. Eng. (2)

M. D. Vittorio, M. T. Todaroa, T. Stomeo, R. Cingolani, D. Cojoc, and E. D. Fabrizio, “Two-dimensional photonic crystal waveguide obtained by e-beam direct writing of SU8-2000 photoresist,” Microelectron. Eng. 73–74, 388–391 (2004).
[CrossRef]

H. H. Solak, “Space-invariant multiple-beam achromatic EUV interference lithography,” Microelectron. Eng. 78–79, 410–416 (2005).
[CrossRef]

Nat. Mater. (1)

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. V. Freymann, S. Linden, and M. Wegner, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).
[CrossRef]

Nature (3)

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, J. A. Ozin, O. Toader, and H. M. Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[CrossRef]

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nature 2, 622–626 (2008).
[CrossRef]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfeld, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef]

Opt. Commun. (1)

A. Jimenez-Ceniceros, M. Trejo-Duran, E. Alvarado-Mendez, and V. M. Castano, “Extinction zones and scalability in N-beam interference lattices,” Opt. Commun. 283, 362–367 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

Phys. Stat. Solidi A (1)

A. Birner, U. Grüning, S. Ottow, A. Schneider, F. Müller, V. Lehmann, H. Föll, and U. Gösele, “Macroporous silicon: a two-dimensional photonic bandgap material suitable for the near-infrared spectral range,” Phys. Stat. Solidi A 165, 111–117 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Beam configuration for fabricating a superposed photonic crystal.

Fig. 2.
Fig. 2.

Azimuth angle distribution sketch of six coherent beams. (a) Six beams are symmetrical and have the same azimuth angle; (b) the azimuth angles of the nonadjacent three beams rotate σ.

Fig. 3.
Fig. 3.

Computer simulation results of six-beam interference with different azimuth angles ωi: (a) (ω1,ω2,ω3,ω4,ω5,ω6)=(0°,60°,120°,180°,240°,300°), (b) (ω1,ω2,ω3,ω4,ω5,ω6)=(0°,63°,120°,183°,240°,303°), (c) (ω1,ω2,ω3,ω4,ω5,ω6)=(0°,65°,120°,185°,240°,305°), (d) (ω1,ω2,ω3,ω4,ω5,ω6)=(0°,67°,120°,187°,240°,307°).

Fig. 4.
Fig. 4.

Schematic diagram for six-beam IL experimental setup. The top left inset shows the six-hole array of the mask with three nonadjacent holes rotated 5° from the regular ones.

Fig. 5.
Fig. 5.

SEM images of superposed photonic crystal fabricated with CHP-C positive photoresist (the scale bar is 1 μm). (a) Surface of superposed photonic crystal, (b) hexangular lattice arrays inside the hexagonal lattice cell.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I(r)=i=16|Ei|2+ij6Ei*·Ejexp[i(kjki)·r].
ki=k(sinφi·cosωi,sinφi·sinωi,cosφi)
Ei=E(cosωi·cosφi·cosθisinωi·sinθi,sinωi·cosφi·cosθi+cosωi·sinθi,cosωi·cosφi).

Metrics