Abstract

The self-imaging phenomena in multimode Bragg reflection waveguides (BRWs) have been predicted and investigated by using the plane-wave expansion method and the finite-difference time-domain method. A compact wavelength splitter based on self-imaging principles in BRWs is presented, and its transmission characteristics are investigated by using the finite-difference time-domain method. Calculated results indicate that, for the wavelength splitter without any waveguide bend optimizations, two optical waves with different wavelengths can be spatially separated, and corresponding transmittances are 95.6% and 90.1%, respectively. The simple and compact wavelength splitter is expected to be applied to highly dense photonic integrated circuits.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Study on compact polarization beam splitters based on directional coupling in Bragg reflection waveguides

Bing Chen, Chunliang Liu, and Guizhong Liu
Appl. Opt. 54(12) 3624-3629 (2015)

Theoretical investigation of waveguide power splitters with parallel output ports in two-dimensional square-lattice photonic crystals

Jianhong Zhou, Qing Chang, Da Mu, Jinhua Yang, Wenbo Han, and Lu Wang
J. Opt. Soc. Am. B 26(12) 2469-2472 (2009)

Design of efficient photonic crystal bend and power splitter using super defects

Faraz Monifi, Mehrdad Djavid, Afshin Ghaffari, and M. S. Abrishamian
J. Opt. Soc. Am. B 25(11) 1805-1810 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription